Un algoritmo rank-revealing per la risoluzione nel senso dei minimi quadrati di sistemi lineari a rango non pieno

G. Rodriguez

Dipartimento di Matematica e Informatica, Università di Cagliari viale Merello 92, 09123 Cagliari, Italy

in collab. con A. Aricò (Dip. di Matematica e Informatica, Cagliari)

Giornate di Algebra Lineare Numerica ed Applicazioni Padova, 26–27 febbraio 2007

Minimi quadrati mediante eliminazione Gaussiana

$$A\mathbf{x} = \mathbf{b}, \qquad A \in \mathbb{R}^{m \times n}, \qquad rank(A) = n \le m$$

• Metodo di Peters-Wilkinson [1970]

$$PAQ = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} U, \qquad L_1, U \in \mathbb{R}^{n \times n}$$

 $L^T L \mathbf{y} = L^T (P \mathbf{b}), \qquad U(Q^T \mathbf{x}) = \mathbf{y}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Applicato a matrici sparse in [Björck et al. 1988].

Minimi quadrati mediante eliminazione Gaussiana

$$A\mathbf{x} = \mathbf{b}, \qquad A \in \mathbb{R}^{m \times n}, \qquad rank(A) = n \le m$$

- Metodo di Peters-Wilkinson [1970]
- Metodo della matrice aumentata [Siegel 1965, Bartel et al. 1970, Björck 1992]

$$\begin{bmatrix} I & A \\ A^* & 0 \end{bmatrix} \begin{bmatrix} \mathbf{r} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix}, \qquad \mathbf{r} = \mathbf{b} - A\mathbf{x}$$

Applicato con successo in [Arioli et al. 1989] e esteso in [Duff et al. 1990] al caso di matrici sparse con pivoting di Bunch-Kaufman.

Minimi quadrati e complemento di Schur

Metodo proposto per matrici di Toeplitz in [Kailath et al. 1994] e studiato e implementato in [GR 2006] per matrici con struttura di Toeplitz e Cauchy generalizzata.

$$A\mathbf{x} = \mathbf{b} \qquad \longrightarrow \qquad M_{\mathcal{A}} = \begin{bmatrix} I_m & \mathcal{A} & \mathbf{0} \\ \mathcal{A}^* & \mathbf{0} & \mathcal{A}^* \mathbf{b} \\ \hline \mathbf{0} & I_n & \mathbf{0} \end{bmatrix}$$

$$\mathcal{S}_{m+n}(M_A) = (A^*A)^{-1}A^*\mathbf{b} = \mathbf{x}_{LS}$$

Poiché M_A ha struttura di *displacement* è possibile applicare l'algoritmo di Schur generalizzato.

Inoltre la matrice pseudoinversa ha struttura di displacement

$$\mathbf{b} = I_m \qquad \Rightarrow \qquad \mathcal{S}_{m+n}(M_A) = A^{\dagger},$$

Calcolo del complemento di Schur di M_A

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Schema di calcolo

- la struttura viene convertita da Toeplitz a Cauchy generalizzata, mediante trasformate veloci
- viene applicato l'algoritmo di Schur generalizzato

Calcolo del complemento di Schur di M_A

Schema di calcolo

- la struttura viene convertita da Toeplitz a Cauchy generalizzata, mediante trasformate veloci
- viene applicato l'algoritmo di Schur generalizzato

Vantaggi

- *M_A*, pur avendo struttura di *displacement*, non è Toeplitz-like, mentre *M_C* è Cauchy-like
- il passaggio alla struttura di Cauchy consente l'uso del pivoting parziale o totale
- algoritmo fast O(27γ(m + n)²) e bassa occupazione di memoria O(3γ(m + n)) (γ = rank_Δ(M_A))
- facilmente applicabile ad altre strutture di displacement

Restrizione del pivoting

Nel calcolo del complemento di Schur $S_r(M)$, l'azione del pivoting parziale (o totale) deve essere ristretta alle prime r righe (e colonne) di M. Infatti se

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}, \quad P = \begin{bmatrix} P_r & 0 \\ 0 & I_{m-r} \end{bmatrix} \quad e \quad Q = \begin{bmatrix} Q_r & 0 \\ 0 & I_{n-r} \end{bmatrix}$$

allora

$$PMQ = \begin{bmatrix} P_r M_{11} Q_r & P_r M_{12} \\ M_{21} Q_r & M_{22} \end{bmatrix}$$

е

 $S_r(PMQ) = S_r(M).$

Blocchi parzialmente ricostruibili

$$C_{ij} = rac{\phi_i^* \cdot \psi_j}{t_i - s_j}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $D_{\mathbf{t}}C - CD_{\mathbf{s}} = G_C H_C^*$

Blocchi parzialmente ricostruibili

$$C_{ij} = \frac{\phi_i^* \cdot \psi_j}{t_i - s_j}$$
$$D_t C - C D_s = G_C H_C^* \qquad \Rightarrow \qquad \mathcal{D}_L M_C - M_C \mathcal{D}_R = G_{M_C} H_{M_C}^*$$

1 .1.

$$M_{C} = \begin{bmatrix} I_{m} & C & 0 \\ C^{*} & 0 & C^{*} \\ 0 & I_{n} & 0 \end{bmatrix},$$

 $\begin{aligned} \mathcal{D}_L &= D_{\mathbf{t}} \oplus D_{\mathbf{s}} \oplus D_{\mathbf{s}}, \\ \mathcal{D}_R &= D_{\mathbf{t}} \oplus D_{\mathbf{s}} \oplus D_{\mathbf{t}}, \end{aligned}$

Blocchi parzialmente ricostruibili

$$C_{ij} = \frac{\phi_i^* \cdot \psi_j}{t_i - s_j}$$

$$D_t C - C D_s = G_C H_C^* \qquad \Rightarrow \qquad \mathcal{D}_L M_C - M_C \mathcal{D}_R = G_{M_C} H_{M_C}^*$$

$$M_C = \begin{bmatrix} I_m & C & 0\\ C^* & 0 & C^*\\ 0 & I_n & 0 \end{bmatrix}, \qquad \mathcal{D}_L = D_t \oplus D_s \oplus D_s,$$

$$\mathcal{D}_R = D_t \oplus D_s \oplus D_t,$$

Alcuni blocchi sono parzialmente ricostruibili:

blocco (3,2)
$$\longrightarrow D_{s}I_{n} - I_{n}D_{s} = 0$$

È necessario memorizzare a parte gli elementi non ricostruibili e tener conto del pivoting.

$$Z_{\xi,m}A - AZ_{\eta,n} = G_A H_A^*, \qquad \xi, \eta \in \mathbb{C} \setminus \{0\}$$
$$Z_{\phi,k} = \begin{pmatrix} 0 & 0 & \cdots & 0 & \phi \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \in \mathbb{C}^{k \times k}.$$

$$Z_{\xi,m}A - AZ_{\eta,n} = G_A H_A^*, \qquad \xi, \eta \in \mathbb{C} \setminus \{0\}$$

 $D_{\mathbf{t}}C - CD_{\mathbf{s}} = G_C H_C^*$

$$C_{ij} = rac{\phi_i^* \cdot \psi_j}{t_i - s_j}, \qquad t_i^m = \xi, \ s_j^n = \eta$$

$$Z_{\xi,m}A - AZ_{\eta,n} = G_A H_A^*, \qquad \xi, \eta \in \mathbb{C} \setminus \{0\}$$

$$C_{ij} = \frac{\phi_i^* \cdot \psi_j}{t_i - s_j}, \qquad t_i^m = \xi, \ s_j^n = \eta$$

Posto $\xi=1$ e $\eta={
m e}^{{
m i}\pi arphi}$, sia

$$\varphi^* = \arg\max_{\varphi} \min_{i,j} |t_i - s_j|.$$

Allora

$$\varphi^* = \frac{\gcd(m,n)}{m} = \frac{g}{m}, \qquad \min_{i,j} |t_i - s_j| = 2\sin\frac{\pi g}{2mn}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Matrice KMS $(a_{ij} = \rho^{|i-j|})$ con $(m, n) = (3000, 1000), \rho = .99, \kappa = 3.7 \cdot 10^4$

Risultati numerici

Matrice KMS, m = 2n (sin.), $\alpha = \frac{m}{n}$ e n = 2000 (destra)

200

æ

<ロト <回ト < 注ト < 注ト

Dipendenza dal condizionamento

Condizionamento di x_{LS} rispetto ad una perturbazione in A

$$\kappa_{LS} = \kappa(A) + rac{\kappa(A)^2 \tan \theta}{\eta}$$

con
$$\kappa(A) = \|A\| \cdot \|A^{\dagger}\|$$
, $\eta = \frac{\|A\| \cdot \|\mathbf{x}\|}{\|A\mathbf{x}\|} \in [1, \kappa(A)]$, and

$$\theta = \arccos \frac{\|A\mathbf{x}\|}{\|\mathbf{b}\|} = \measuredangle(\mathbf{b}, A\mathbf{x}) \in \left[0, \frac{\pi}{2}\right]$$

- Householder QR è influenzato da κ_{LS}
- Eq. normali + Cholesky dipende da $\kappa(A)^2$ e non da $\eta, heta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• TLLS ?

Dipendenza dal condizionamento

Matrice KMS, (m, n) = (1500, 500), $\rho = .99$, .999 $\kappa(A) = 3.7 \cdot 10^4$, $1.1 \cdot 10^6$, $\eta \simeq 1$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト → 臣 → の � @

Complessità computazionale - metodi non strutturati

Confronto tra qr e chol di Matlab e la versione MEX di TLLS AMD Athlon 64 3200+, GNU/Linux x86_64, Matlab 64bit Matrice KMS ($\rho = .99$), m = 2n

Complessità computazionale - metodo superfast

Confronto tra le versioni Matlab di TLLS e di un algoritmo superfast [Van Barel, Heinig, Kravanja 2003] Matrice rand-Toeplitz, m = 2n

(人間) くほう くほう

Complessità: crossover risp. ai metodi non strutturati

La dipendenza da m è lineare per i metodi non strutturati e quadratica per TLLS.

Cholesky
$$\longrightarrow n^2(m + \frac{1}{3}n)$$

Householder QR $\longrightarrow 2n^2(m - \frac{1}{3}n)$
TLLS $\longrightarrow 143m^2 + 284mn + 133n^2$

Questo significa che per ogni *n*, all'aumentare di *m*, si arriva ad un punto in cui i metodi non strutturati risultano più efficienti.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complessità: crossover risp. ai metodi non strutturati

 $\log(\text{Complessita}/n^2)$ per Householder QR (grid) e TLLS (surf)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sistema lineare a rango non pieno

• Eliminiamo l'ipotesi che la matrice A sia sovradeterminata e a rango pieno

$$A\mathbf{x} = \mathbf{b}, \qquad A \in \mathbb{R}^{m \times n}, \qquad \begin{cases} m \ge n \\ rank(A) \le \min(m, n) \end{cases}$$

1 /

• Applichiamo l'algoritmo TLLS

$$M_{A} = \begin{bmatrix} I_{m} & A & 0 \\ A^{*} & 0 & A^{*}\mathbf{b} \\ \hline 0 & I_{n} & 0 \end{bmatrix} \longrightarrow S_{m+n}(M_{A}) = ?$$

Nel caso a rango pieno si ha

$$\mathbf{x}_{LS} = \mathcal{S}_{m+n}(M_A) = (A^*A)^{-1}A^*\mathbf{b}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Applichiamo l'algoritmo di eliminazione di Gauss alle prime *m* colonne. Il pivoting non è indispensabile per il funzionamento dell'algoritmo (lo è per la sua stabilità).

$$\begin{bmatrix} I_m & A & 0 \\ \hline A^* & 0 & A^* \mathbf{b} \\ 0 & I_n & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} I_m & A & 0 \\ \hline 0 & -A^* A & A^* \mathbf{b} \\ 0 & I_n & 0 \end{bmatrix}$$

Questa fase è equivalente alla costruzione delle equazioni normali.

 A^*A in generale è singolare

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Supponiamo inizialmente che A*A sia ben ordinata:

$$-A^*A = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}$$

con rank(A) = $k \in G_{11}$ quadrata $k \times k$ non singolare.

Applichiamo k passi dell'algoritmo di Gauss alla sottomatrice

$$\begin{bmatrix} I_m & A & 0 \\ 0 & -A^*A & A^*\mathbf{b} \\ 0 & I_n & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -A^*A & A^*\mathbf{b} \\ I_n & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Supponiamo inizialmente che A^*A sia ben ordinata:

$$-A^*A = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}$$

con rank(A) = $k \in G_{11}$ quadrata $k \times k$ non singolare.

Applichiamo k passi dell'algoritmo di Gauss alla sottomatrice

$$\begin{bmatrix} -A^*A & A^*\mathbf{b} \\ \hline I_n & 0 \end{bmatrix} = \begin{bmatrix} G_{11} & G_{12} & \mathbf{c}_1 \\ G_{21} & G_{22} & \mathbf{c}_1 \\ \hline I_k & 0 & 0 \\ 0 & I_{n-k} & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Supponiamo inizialmente che A^*A sia ben ordinata:

$$-A^*A = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}$$

con rank(A) = $k \in G_{11}$ quadrata $k \times k$ non singolare.

Applichiamo k passi dell'algoritmo di Gauss alla sottomatrice

$$\begin{bmatrix} G_{11} & G_{12} & \mathbf{c}_1 \\ G_{21} & G_{22} & \mathbf{c}_1 \\ \hline I_k & 0 & 0 \\ 0 & I_{n-k} & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} U_k & Z & \widetilde{\mathbf{c}}_1 \\ 0 & O_{n-k} & \widetilde{\mathbf{c}}_2 \\ \hline 0 & Y_1 & \mathbf{x}_1 \\ 0 & Y_2 & \mathbf{x}_2 \end{bmatrix}$$

Risultato dell'algoritmo

$$\begin{bmatrix} U_k & Z & \widetilde{\mathbf{c}}_1 \\ 0 & O_{n-k} & \widetilde{\mathbf{c}}_2 \\ \hline 0 & Y_1 & \mathbf{x}_1 \\ 0 & Y_2 & \mathbf{x}_2 \end{bmatrix}$$

• soluzione di base di Ax = b

$$\mathbf{x}_B = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Risultato dell'algoritmo

$$\begin{bmatrix} U_k & Z & \widetilde{\mathbf{c}}_1 \\ 0 & O_{n-k} & \widetilde{\mathbf{c}}_2 \\ 0 & Y_1 & \mathbf{x}_1 \\ 0 & Y_2 & \mathbf{x}_2 \end{bmatrix}$$

• soluzione di base di Ax = b

$$\mathbf{x}_B = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

• base per il nucleo di A

$$Y = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_{n-k} \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Risultato dell'algoritmo

$$\begin{bmatrix} U_k & Z & \widetilde{\mathbf{c}}_1 \\ 0 & O_{n-k} & \widetilde{\mathbf{c}}_2 \\ 0 & Y_1 & \mathbf{x}_1 \\ 0 & Y_2 & \mathbf{x}_2 \end{bmatrix}$$

• soluzione di base di Ax = b

$$\mathbf{x}_B = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} -G_{11}^{-1}\mathbf{c}_1 \\ 0 \end{bmatrix}$$

• base per il nucleo di A

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_{n-k} \end{bmatrix} = \begin{bmatrix} -G_{11}^{-1}G_{12} \\ I_{n-k} \end{bmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへで

Rank revealing?

Rango numerico

$$r_{\epsilon} = \min_{\|E\|_{2} \le \epsilon} \operatorname{rank}(A + E) \qquad \Leftrightarrow \qquad \sigma_{r_{\epsilon}} > \epsilon \ge \sigma_{r_{\epsilon}+1}$$

L'algoritmo si arresta quando

 $|M_{rr}| < \tau$

C'è relazione tra ϵ e τ ?

Rank revealing LU [Chan 1984], [Hwang et al. 1992]. Stime del condizionamento per matrici triangolari [Higham 1987].

Nella fase 2 il pivoting (su righe e colonne) è indispensabile Supponiamo di applicare il pivoting totale

$$\begin{bmatrix} -A^*A & A^*\mathbf{b} \\ I_n & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -PA^*AQ & PA^*\mathbf{b} \\ Q & 0 \end{bmatrix}$$

e poniamo

$$G = -PA^*AQ,$$
 $Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix},$ $\mathbf{c} = PA^*b.$

Allora

$$\begin{bmatrix} G_{11} & G_{12} & \mathbf{c}_1 \\ G_{21} & G_{22} & \mathbf{c}_1 \\ \hline Q_1 & Q_2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} U_k & L^{-1}G_{12} & L^{-1}\mathbf{c}_1 \\ 0 & O_{n-k} & \mathbf{c}_2 - G_{21}G_{11}^{-1}\mathbf{c}_1 \\ \hline 0 & Q_2 - Q_1G_{11}^{-1}G_{12} & -Q_1G_{11}^{-1}\mathbf{c}_1 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{bmatrix} U_k & L^{-1}G_{12} & L^{-1}\mathbf{c}_1 \\ 0 & O_{n-k} & \mathbf{c}_2 - G_{21}G_{11}^{-1}\mathbf{c}_1 \\ 0 & Q_2 - Q_1G_{11}^{-1}G_{12} & -Q_1G_{11}^{-1}\mathbf{c}_1 \end{bmatrix}$$

• soluzione di base di $A\mathbf{x} = \mathbf{b}$

$$\mathbf{x}_B = -Q_1 G_{11}^{-1} \mathbf{c}_1 = Q \begin{bmatrix} -G_{11}^{-1} \mathbf{c}_1 \\ 0 \end{bmatrix},$$

$$\begin{bmatrix} U_k & L^{-1}G_{12} & L^{-1}\mathbf{c}_1 \\ 0 & O_{n-k} & \mathbf{c}_2 - G_{21}G_{11}^{-1}\mathbf{c}_1 \\ 0 & Q_2 - Q_1G_{11}^{-1}G_{12} & -Q_1G_{11}^{-1}\mathbf{c}_1 \end{bmatrix}$$

soluzione di base di Ax = b

$$\mathbf{x}_B = -Q_1 G_{11}^{-1} \mathbf{c}_1 = Q \begin{bmatrix} -G_{11}^{-1} \mathbf{c}_1 \\ 0 \end{bmatrix},$$

• base per il nucleo di A

$$Y = Q_2 - Q_1 G_{11}^{-1} G_{12} = Q \begin{bmatrix} -G_{11}^{-1} G_{12} \\ I_{n-k} \end{bmatrix}$$

Nella fase 1 il pivoting non è indispensabile

$$M = \begin{bmatrix} I_m & A & 0 \\ A^* & 0 & A^* \mathbf{b} \\ 0 & I_n & 0 \end{bmatrix}$$

Nella fase 1 il pivoting non è indispensabile, ma è determinante per la stabilità dell'algoritmo.

$$M_{\gamma} = \begin{bmatrix} \gamma I_m & A & 0\\ A^* & 0 & \frac{1}{\gamma} A^* \mathbf{b}\\ 0 & I_n & 0 \end{bmatrix}$$

Il parametro di scala γ regola l'*entità* del pivoting.

Nella fase 1 il pivoting non è indispensabile, ma è determinante per la stabilità dell'algoritmo.

$$M_{\gamma} = \begin{bmatrix} \gamma I_m & A & 0\\ A^* & 0 & \frac{1}{\gamma} A^* \mathbf{b}\\ 0 & I_n & 0 \end{bmatrix}$$

Il parametro di scala γ regola l'*entità* del pivoting.

Per il metodo della matrice aumentata con equilibratura, è stato dimostrato [Björck 1992] che una buona scelta è

$$\gamma = 2^{-1/2} \sigma_n(A)$$

in quanto minimizza $\kappa_2(M_\gamma)$, e quindi la stima in avanti dell'errore sulla soluzione.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• pivoting totale (costoso)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- pivoting totale (costoso)
- pivoting parziale + "butta via le colonne piccole"

- pivoting totale (costoso)
- pivoting parziale + "butta via le colonne piccole"
- pivoting totale simmetrico (fattorizzazione LDL^T)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- pivoting totale (costoso)
- pivoting parziale + "butta via le colonne piccole"
- pivoting totale simmetrico (fattorizzazione LDL^T)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• pivoting di Bunch-Kaufman

Fattorizzazione LDL^{T}

Preserva la simmetria ed è connessa a Cholesky e QR.

$$\begin{bmatrix} I_m & A & 0 \\ A^* & 0 & A^* \mathbf{b} \\ 0 & I_n & 0 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} I_m & 0 & 0 \\ 0 & -A^* A & A^* \mathbf{b} \\ 0 & I_n & 0 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} I_m & 0 & 0 \\ 0 & D & 0 \\ 0 & 0 & \mathbf{x}_{LS} \end{bmatrix}$$

Pivoting totale simmetrico

• se al passo k il massimo è in posizione (ℓ, ℓ)

pivot = $M_{\ell\ell}$

• se il massimo è in posizione (r, s)

$$pivot = \begin{pmatrix} M_{ss} & M_{sr} \\ M_{rs} & M_{rr} \end{pmatrix} \qquad (tile \ pivot)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Da fare...

- implementazione nel caso strutturato
- test numerici (matrici con e senza struttura)
- indagare sulle varie strategie di pivoting
- confronto con RRQR, UTV, [Chan 1984]
- soluzione normale, *up/down-dating*, *subset selection*...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• matrici sparse?

Fine