MATEMATICA I

Corsi di Laurea in Ingegneria Elettrotecnica e in Ingegneria Energetica Prova parziale del 4.11.2004 Tempo concesso: 90 minuti

Tema B

- 1. Si dica cosa significa $\lim_{x\to-\infty} f(x) = -\infty$ e si faccia un grafico di una funzione che goda di questa proprietà.
- 2. Sia $\{a_n\}$ una successione strettamente crescente; si dimostri che ha un limite, finito o $+\infty$.

Tale limite è l'estremo superiore? È il massimo? Giustificare tutte le risposte.

- 3. Sia $f(x) = \frac{P(x)}{Q(x)}$ un quoziente di due polinomi di uguale grado. Dove è definita la funzione? Dove è continua? Esiste finito il limite per $x \to \infty$? In quali casi la funzione è limitata? Giustificare tutte le risposte.
- 4. Si dia la definizione di funzione composta e si trovi un esempio in cui la composizione di due funzioni non è commutativa, cioè $f \circ g \neq g \circ f$.
- 5. La funzione $\frac{\cos x}{x}$ ha limite (finito) per $x \to 0$? Se sì, quanto vale? E ha limite (finito) per $x \to -\infty$? Se sì, quanto vale? Si giustifichino le risposte.
- 6. Si dica dove sono invertibili le funzioni a^x , con 0 < a < 1, $|\log x|$, $\tan x$, e si faccia un abbozzo del grafico delle funzioni inverse.
- 7. Si dica dove è definita la funzione $\sqrt{\lg(x^2-1)}$ e quale è la sua immagine. Si giustifichi la risposta.
- 8. Si dica se la funzione $f(x) = x^2 e^{\sin x}$ ha limite per $x \to \infty$; si dica se è periodica, se è superiormente limitata, se è inferiormente limitata. Si giustifichino le risposte.
- 9. Si enuncino due casi di indeterminazione del tipo $\frac{\infty}{\infty}$ per $x \to 2$ in cui esistono i limiti, ma diversi nei due casi, giustificando le risposte.
- 10. Due insiemi A e B della retta hanno lo stesso estremo inferiore e lo stesso estremo superiore. Dare un esempio in cui tali insiemi non sono uguali. Possono essere disuguali anche se sono due intervalli? Giustificare le risposte.