MATEMATICA 1

Corsi di Laurea in Ingegneria Elettrotecnica e in Ingegneria Energetica Prova parziale dell'1.12.2005 Tempo concesso: 90 minuti

Tema B

N.B. - Le risposte vanno giustificate, dicendo quali teoremi si applicano, o tramite esempi.

- 1. Si enunci il teorema fondamentale del calcolo integrale e la Regola di Barrow-Torricelli che ne deriva.
- 2. Se si sommano le due funzioni f^+ ed f^- , che funzione si ottiene? E se si fa la differenza $f^+ f^-$?
- 3. Si calcoli $\int x^2 \arctan x + \cos \sqrt{x} \ dx$.
- 4. Enunciare la regola di L'Hospital nel caso $\frac{\infty}{\infty}$ ed esporre un caso in cui non esiste $\lim_{x\to+\infty} \frac{f'(x)}{g'(x)}$, mentre esiste $\lim_{x\to+\infty} \frac{f(x)}{g(x)}$.
- 5. Si studi la funzione

$$f(x) = \lg \sqrt{\frac{|x| - 1}{|x| + 2}}$$

(i.d.d, segno, eventuali simmetrie, immagine, limiti, massimi, minimi, prolungabilità, derivabilità, attacchi, grafico)

6. Per x uguale a quale valore il grafico della funzione

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

ha una tangente parallela alla bisettrice del 1° e 3° quadrante?

7. Si dia la definizione di parte principale e parte complementare di un infinitesimo. Si scrivano quindi le parti principali degli infinitesimi per $x\to 0$

$$x - \sin x$$
, $\tan^2 x - \sin x$, $1 - \cos x - \frac{x^2}{2} + \sin x - x$.

- 8. Ricordando la definizione di coseno iperbolico (vd. es. 6), si calcoli $\int \frac{1}{\cosh x} dx$ e si determini, se esiste, la primitiva F(x) tale che $\lim_{x\to +\infty} = 0$.
- 9. Calcolare, senza usare la regola di L'Hospital, bensí usando gli sviluppi di MacLaurin,

$$\lim_{x \to 0} \frac{\cos 2x - e^x + x}{x \sin x}$$

10. Determinare gli eventuali punti di massimo e minimo relativi per la funzione $f(x) = \lg \sqrt{x^2 + 1} + \arctan x$. Cosa si può dire del segno della f?