FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015

MATTEO LONGO

Svolgere entrambe le parti (Teoria ed Esercizi). Si richiede la sufficienza su entrambe le parti.

1. Teoria

Discutere le seguenti domande. Risposte parziali, incomplete, non adeguatamente giustificate non saranno prese in considerazione.

- (a) Dare la definizione di base di uno spazio vettoriale V su un campo K.
- (b) Dimostrare che se \mathcal{B} è una base di V, allora ogni vettore di V si scrive in modo unico come combinazione lineare dei vettori di \mathcal{B} .

2. Esercizi

Esercizio 1 (4 punti). Al variare del parametro $a \in \mathbb{R}$, considerare il sistema

$$\Sigma_a : \begin{cases} x_1 + x_2 + x_4 = 2\\ -x_1 + 2x_3 = -1\\ x_1 + x_2 + ax_3 + x_4 = a + 2\\ x_1 + 2x_2 + 2x_3 + (a^2 + a + 2)x_4 = a + 3 \end{cases}$$

- (a) Discutere al variare del parametro $a \in \mathbb{R}$ la risolubilità di Σ_a .
- (b) In tutti i casi in cui il sistema ammetta soluzione, determinarla.

Soluzione. Applicando la riduzione a scalini, la matrice completa diventa:

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & a & 0 & a \\ 0 & 0 & 0 & a^2 + a & a \end{pmatrix}$$

perciò, analizzando i ranghi delle matrici complete ed incompleta ottengo:

- $a \neq 0, a \neq -1$: soluzione unica $\{(3, -1 1/(a+1), 1, 1/(a+1))\}$;
- a = 0: rango completa = rango incompleta = 2, soluzione:

$$(1,1,0,0) + \langle (2,-2,1,0), (0,-1,0,1) \rangle;$$

• a = -1: rango completa = 4, rango incompleta = 2, no soluzioni.

Esercizio 2 (6 punti). Al variare del parametro $a \in \mathbb{R}$, si consideri l'endomorfismo

$$f_a: \mathbb{R}^4 \to \mathbb{R}^4$$

che, rispetto alla base canonica, è rappresentato dalla matrice:

$$A_a = \begin{pmatrix} a^2 + 2a & a^2 + a & 0 & 0 \\ -a - a^2 & -a^2 & 0 & 0 \\ a^2 + a & a^2 + 1 & 1 & a^2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- (a) Posto a = 0, discutere la diagonalizzabilità di A_0 ; nel caso in cui A_0 sia diagonalizzabile, trovare una base di autovettori.
- (b) Discutere la diagonalizzabilità di A_a al variare del parametro a.

Svolgimento. Per a=0 ottengo la matrice

$$A_0 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

il cui polinomio caratteristico è $t^2(t-1)^2$. In rango di A_0 è 2, quindi la dimensione dell'autospazio relativo all'autovalore 0 è 2; inoltre

$$A_0 - 1 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

ha ancora rango 2, quindi la dimensione dell'autospazio relativo all'autovalore 1 è 2. Risulta quindi che A_0 è diagonalizzabile ed una base di autovettori si trova facilmente risolvendo i sistemi $A_0X=0$ e $A_0X=X$, ottenendo:

$$\{(1,0,0,0),(0,1,-1,0),(0,0,1,0),(0,0,0,1)\}.$$

La discussione generale procede in modo simile: il polinomio caratteristico (dopo facili calcoli, sviluppando lungo la quarta e terza colonna) risulta $(t-1)^2(t-a)^2$. Studio l'autospazio relativo all'autovalore 1:

$$A_a - 1 = \begin{pmatrix} a^2 + 2a - 1 & a^2 + a & 0 & 0 \\ -a - a^2 & -a^2 - 1 & 0 & 0 \\ a^2 + a & a^2 + 1 & 0 & a^2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Possiamo supporre $a \neq 0$ (caso già trattato in precedenza). Si ha:

$$\det \begin{pmatrix} a^2 + 2a - 1 & a^2 + a & 0 \\ -a - a^2 & -a^2 - 1 & 0 \\ a^2 + a & a^2 + 1 & a^2 \end{pmatrix} = (a - 1)^2 a^2.$$

Quindi, la dimensione dell'autospazio relativa all'autovalore 1 è 2 se e solo se a=0 o a=1. Per a=0 già abbiamo una discussione completa. Per a=1 la matrice diventa

$$A_1 = \begin{pmatrix} 3 & 2 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

ed il polinomio caratteristico è $(t-1)^4$. E' facile concludere che A_1 non è diagonalizzabile, visto che

$$A_1 - 1 = \begin{pmatrix} 2 & 2 & 0 & 0 \\ -2 & -2 & 0 & 0 \\ 2 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

FALG 3

ha rango 2. Quindi A_a è diagonalizzabile se e solo se a=0.

Esercizio 3 (4 punti). Sia W il sottospazio di \mathbb{R}^3 generato dai vettori (1,1,-1) e (2,0,1).

- (a) Trovare una base di si W^{\perp} , ortogonale di W rispetto al prodotto scalare standard di
- (b) Trovare tutti i vettori $v \in \mathbb{R}^3$ tali che la proiezione ortogonale di v su W sia (3,1,0)e la cui norma sia $\sqrt{24}$.

Svolgimento. $W^{\perp}=\langle (1,-3,-2)\rangle$. La condizione sulla proiezione dice quindi che il vettore cercato v è della forma $(3,1,0)+\alpha(1,-3,-2)=(3+\alpha,1-3\alpha,-2\alpha)$. Imponendo che la norma di questo vettore sia $\sqrt{24}$ ottengo

$$(3+\alpha)^2 + (1-3\alpha)^3 + (2\alpha)^2 = 24$$

le cui soluzioni sono $\alpha = \pm 1$.

(a) Trovare un sistema in 4 incognite che abbia come soluzione il Esercizio 4 (4 punti). sottospazio W generato dai vettori (1,1,0,1) e (0,0,1,1).

(b) Sia U il sottospazio generato dai vettori (1,2,1,3) e (0,1,0,1). Calcolare $U\cap W$, dire se $U + W = U \oplus W$ e completare una base di $U \cap W$ ad una base di U + W.

Soluzione. Il sistema è di due equazione (RC) ed è

$$\begin{cases} x_1 - x_2 = 0 \\ x_2 + x_3 - x_4 = 0 \end{cases}$$

un vettore di U è della forma (a, 2a + b, a, 3a + b) e per appartenere a W deve verificare: 2a+b+a=3a+b e a=2a+b: risulta a=-b da cui $U\cap W$ è generato da (1,1,1,2). Pertanto una base di $U + W \in \{(1, 1, 1, 2), (1, 1, 0, 1), (0, 1, 0, 1)\}.$

Esercizio 5 (4 punti). Al variare del parametro $a \in \mathbb{R}$, sia $\varphi_a : \mathbb{R}^2 \to \operatorname{Mat}_{2\times 2}(\mathbb{R})$ la funzione lineare determinata dalle condizioni

$$\varphi_a(1,1,0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \quad \varphi_a(0,1,1) = \begin{pmatrix} 1 & a \\ 1 & a-1 \end{pmatrix}; \quad \varphi_a(0,0,1) = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}.$$

(Ricordo che con il simbolo $\mathrm{Mat}_{2\times 2}(\mathbb{R})$ indichiamo lo spazio vettoriale delle matrici a due righe e due colonne a coefficienti in R.)

- (a) Scrivere la matrice di φ_a rispetto alle basi canoniche $\{(1,0,0),(0,1,0),(0,0,1)\}$ e $\{\begin{pmatrix} 1&0\\0&0\end{pmatrix},\begin{pmatrix} 0&1\\0&0\end{pmatrix},\begin{pmatrix} 0&0\\0&0\end{pmatrix},\begin{pmatrix} 0&0\\0&1\end{pmatrix}$ di \mathbb{R}^3 e $\mathrm{Mat}_{2\times 2}(\mathbb{R})$. (b) Dire per quali valori di a la funzione lineare φ_a non è iniettiva e per tali valori deter-
- minare la dimensione ed una base del nucleo e dell'immagine di φ_a .

Svolgimento. La matrice è

$$\begin{pmatrix} 2 & -1 & 2 \\ -a+1 & a-1 & 1 \\ 0 & 0 & 1 \\ -1-a & a & -1 \end{pmatrix}$$

Il determinante della sottomatrice 3×3 ottenuta dalle prime 3 righe e 3 colonne risulta a-1, da cui la matrice ha rango minore di 3 se e solo se a=1, ed in questo caso risulta avere rango 2. Pertanto il nucleo ha dimensione 1, generato da (1,2,1), e l'immagine ha dimensione 2, generata da $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$.

Esercizio 6 (8 punti). Sia r la retta passante per il punto (0,1,0) e parallela al vettore (1,1,1). Sia inoltre s la retta di equazione cartesiana

$$s: \begin{cases} x+z=1\\ y+z=0 \end{cases}.$$

- (a) Dimostrare che le rette r ed s sono sghembe; calcolare la retta ed in punti di minima distanza tra r ed s.
- (b) Trovare la retta t che interseca sia r che s ed è parallela al vettore (1, -1, 1). Trovare i punti $P = r \cap t$ e $Q = s \cap t$.
- (c) Sia π il piano contenente r e t. Trovare i quadrati contenuti in π di lato PQ.

Svolgimento. $s:(1,0,0) + \langle (1,1,-1) \rangle;$

$$r: \begin{cases} x - z = 0 \\ x - y = -1 \end{cases} ;$$

il sistema $r \cap s$ non ha soluzioni, quindi le rette, non essendo parallele, sono sghembe. Un punto di r è (t,1+t,t), un punto di s è (1+q,q,-q), la differenza tra questi due punti è (t-1-q,1+t-q,t+q) ed imponendo che il prodotto scalare di questo vettore con (1,1,1) e (1,1,-1) sia nullo ottengo t=q=0 da cui i punti di minima distanza $(0,1,0)\in r$ e $(1,0,0)\in s$. La retta di minima distanza è $(0,1,0)+\langle (1,-1,0)\rangle$ e la distanza è $\sqrt{2}$.

La retta t è contenuta nel piano

$$\pi: (0,1,0) + \langle (1,1,1), (1,-1,1) \rangle = (0,1,0) + \langle (1,1,1), (0,1,0) \rangle = \langle (1,1,1), (0,1,0) \rangle$$

di equazione

$$\pi: x - z = 0.$$

Intersecando con s ottengo il punto Q = (1/2, -1/2, 1/2). La retta t è quindi

$$t: Q + \langle (1, -1, 1) \rangle = \langle (1, -1, 1) \rangle$$

di equazione

$$t: \begin{cases} x+y=0\\ y+z=0 \end{cases}$$

Intersecando $t \cap r$ ottengo il punto P = (= 1/2, 1/2, -1/2). La norma di P - Q è quindi $\sqrt{3}$. I vettori ortogonali alla direzione di t che siano contenuti nel sottospazio direttore di π soddisfano l'equazione:

$$(a, a + b, a) \cdot (1, -1, 1) = a - a - b + a = a - b = 0$$

quindi a = b ed ottengo il vettore (1, 2, 1). Un suo multiplo di norma $\sqrt{3}$ è

$$v_0 := \frac{\sqrt{3}}{\sqrt{6}}(1, 2, 1) = (1/\sqrt{2}, 2/\sqrt{2}, 1/\sqrt{2})$$

(utilizzare che la norma di (1,2,1) è $\sqrt{6}$). I restanti vertici del quadrato cercato sono $P \pm v_0$ e $Q \pm v_0$.

Esercizio 7. Scrivere (nella forma $a_3X^3 + a_2X^2 + a_1X + a_0$, con $a_i \in \mathbb{R}$) il polinomio caratteristico di un endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ sapendo che la dimensione del nucleo di f è 1 e che una delle soluzioni dell'equazione P(X) = 0 è il numero complesso 2 - 3i.

Svolgimento. Visto che il nucleo ha dimensione 1, X divide esattamente P(X), polinomio caratteristico di f. D'altra parte, P(X) ha coefficienti reali, e se 2-3i è una sua radice, anche 2+3i lo è. Risulta quindi:

$$P(X) = -X(X - (2+3i))(X - (2-3i)) = -X((X-2)^2 + 9) = -X^3 + 4X^2 - 13X.$$

FALG 5