GALOIS STRUCTURE ON INTEGRAL VALUED POLYNOMIALS

BAHAR HEIDARYAN, MATTEO LONGO, AND GIULIO PERUGINELLI

ABSTRACT. We characterize finite Galois extensions K of the field of rational numbers in terms of the rings $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$, recently introduced by Loper and Werner, consisting of those polynomials which have coefficients in \mathbf{Q} and such that $f(\mathcal{O}_K) \subseteq \mathcal{O}_K$. We also address the problem of constructing a basis for $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ as a \mathbf{Z} -module.

1. Introduction

The main object of this paper is to study the class of rings

$$\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K) := \operatorname{Int}(\mathcal{O}_K) \cap \mathbf{Q}[X]$$

where K varies among the set of finite Galois extensions of \mathbf{Q} ; here \mathcal{O}_K is the ring of algebraic integer of K and $\mathrm{Int}(\mathcal{O}_K)$ is the ring of polynomials $f \in K[X]$ such that $f(\mathcal{O}_K) \subseteq \mathcal{O}_K$.

The rings $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ have been introduced in [LW12] and studied also in [Per14]. Among the other things, the authors of [LW12] proved that $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ is a Prüfer domain. It is immediate to see that $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ is contained in

$$Int(\mathbf{Z}) = \{ f \in \mathbf{Q}[X] \mid f(\mathbf{Z}) \subseteq \mathbf{Z} \},\$$

the classical ring of integer-valued polynomials. Moreover, if K is a proper field extension of \mathbf{Q} , then $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ is properly contained in $\operatorname{Int}(\mathbf{Z})$: in fact, let $p \in \mathbf{Z}$ be a prime which is not totally split in \mathcal{O}_K ; then it is not difficult to see that the polynomial

$$f(X) = \frac{X(X-1)\dots(X-(p-1))}{p}$$

is in $\operatorname{Int}(\mathbf{Z}) \setminus \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$. This is an evidence of the fact that, for the class of finite Galois extension K/\mathbf{Q} , the ring $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ is completely determined by the set of prime $p \in \mathbf{Z}$ which are totally split in \mathcal{O}_K , and therefore by the field K itself. Our main result is a characterization of finite Galois extension of \mathbf{Q} in terms of these rings $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$. More precisely, as a corollary of our main result Theorem 2.7, we prove the following:

Theorem 1.1. Let K and K' be finite Galois extensions of \mathbf{Q} . Then $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K) = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K'})$ if and only if K = K'.

The statement is false if we consider finite extensions of \mathbf{Q} which are not Galois. In fact, if K/\mathbf{Q} is a finite non-Galois extension and K' is any conjugate field of K over \mathbf{Q} different from K, then it is easy to see that $\mathrm{Int}_{\mathbf{Q}}(\mathcal{O}_K) = \mathrm{Int}_{\mathbf{Q}}(\mathcal{O}_{K'})$.

We can reformulate the main result in more abstract terms as follows. Denote \mathcal{G} the category whose objects are ring of integers \mathcal{O}_K of finite Galois extensions K/\mathbf{Q} with homomorphism given by inclusions, and by \mathcal{C} the category of subrings of $\mathbf{Q}[X]$ in which morphisms are again inclusions. Then the functor

$$\operatorname{Int}_{\mathbf{O}}:\mathcal{G}\longrightarrow\mathcal{C}$$

Date: November 2, 2015.

²⁰¹⁰ Mathematics Subject Classification. 13F20, 11R32, 11S20, 11C08.

Key words and phrases. Characteristic ideal; Finite Galois extension; Integer-valued polynomial; Regular basis.

which takes an object \mathcal{O}_K of \mathcal{G} to $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ and the inclusion $\mathcal{O}_K \subseteq \mathcal{O}_{K'}$ to the inclusion $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K'}) \subseteq \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$, is a faithful contravariant functor.

We next address the problem of constructing a regular basis of $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ as a **Z**-module. In particular, we discuss the value of the p-adic valuation of the leading term of the element of degree n in regular basis, for each prime number p. We show that this is equivalent to understand the analogue local question of determine the p-adic valuation of

$$\operatorname{Int}_{\mathbf{Q}_p}(K) := \operatorname{Int}(\mathcal{O}_K) \cap \mathbf{Q}_p[X]$$

for each finite extension K/\mathbb{Q}_p , where $\operatorname{Int}(\mathcal{O}_K)$ is the ring of $f \in K[X]$ such that $f(\mathcal{O}_K) \subseteq \mathcal{O}_K$, and \mathcal{O}_K is the valuation ring of K. We completely determine these values in Theorem 3.2, in the case of tame ramification. As a consequence, we obtain the second main result of this paper. To state the theorem, let K/\mathbb{Q} be a Galois extension and, for any prime p of \mathbb{Z} , let q_p and e_p be the cardinality of the residue field of any prime ideal of \mathcal{O}_K above p and the ramification index of p, respectively. We also set

$$w_{q_p}(n) = \sum_{j \ge 1} \left\lfloor \frac{n}{q_p^j} \right\rfloor$$

and define for every integer $n \geq 1$,

$$\omega_p(n) = \omega_{K,p}(n) := \left\lfloor \frac{w_{q_p}(n)}{e_p} \right\rfloor.$$

Theorem 1.2. Suppose that K/\mathbf{Q} is a Galois extension which is tamely ramified at each prime. Let $\{f_n(X)\}_{n\geq 0}$ be a \mathbf{Z} -basis of $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ such that $\deg(f_n)=n$, for each $n\in\mathbf{N}$. Then we can write

$$f_n(X) = \frac{g_n(X)}{\prod_p p^{\omega_p(n)}}$$

for some monic polynomial $g_n(X)$ in $\mathbf{Z}[X]$, where the product is over all primes p of \mathbf{Z} .

The proof of the above theorem is constructive: first, we construct a basis of $\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_{K_v})$, for any prime $v \mid p$ of K, from the knowledge of local basis of $\operatorname{Int}(\mathcal{O}_{K_v})$; then, we use the Chinese Remainder Theorem to construct a global basis of $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$.

2. A CHARACTERIZATION OF GALOIS EXTENSION

We introduce the following general notation, extending that of the introduction. Let D be an integral domain with quotient field K and let A be a torsion-free D-algebra. Let $B := A \otimes_D K$; we have a canonical embedding $A \hookrightarrow B$ and $K \hookrightarrow B$. For $a \in A$ and $f \in K[X]$, the value f(a) belongs to B, and the following definition makes sense (see also [PW14]):

$$\operatorname{Int}_K(A) := \{ f \in K[X] : f(a) \in A, \forall a \in A \}.$$

Clearly, $\operatorname{Int}_K(A)$ is a D-algebra. It is easy to see that $\operatorname{Int}_K(A)$ is contained in the classical ring of integer-valued polynomials $\operatorname{Int}(D) = \{ f \in K[X] \mid f(D) \subseteq D \}$ if and only if $A \cap K = D$, and this will be the case henceforth.

A sequence of polynomials $\{f_n(X)\}_{n\in\mathbb{N}}\subset \operatorname{Int}_K(A)$ which form a basis of $\operatorname{Int}_K(A)$ as a D-module and such that $\deg(f_n)=n$ for each $n\in\mathbb{N}$, is called regular basis of $\operatorname{Int}_K(A)$. We define $\mathfrak{I}_n(\operatorname{Int}_K(A))$ to be the D-module generated by the leading coefficients of all the polynomials $f\in\operatorname{Int}_K(A)$ of degree exactly n; we call these D-modules characteristic ideals. For each $n\in\mathbb{N}$, by the above assumption and [CC97, Proposition II.1.1], $\mathfrak{I}_n(\operatorname{Int}_K(A))$ is a fractional ideal of D. Moreover, the set of characteristic ideals forms an ascending sequence:

$$D \subseteq \mathfrak{I}_0(\operatorname{Int}_K(A)) \subseteq \ldots \subseteq \mathfrak{I}_n(\operatorname{Int}_K(A)) \subseteq \mathfrak{I}_{n+1}(\operatorname{Int}_K(A)) \subseteq \ldots \subseteq K.$$

The link between regular bases and characteristic ideals is given by [CC97, Proposition II.1.4], which says that a sequence of polynomials $\{f_n(X)\}_{n\in\mathbb{N}}$ of $\operatorname{Int}_K(A)$ is a regular basis if and

only if, for each $n \in \mathbf{N}$, $f_n(X)$ is a polynomial of degree n whose leading coefficient generates $\mathfrak{I}_n(\operatorname{Int}_K(A))$ as a D-module. In particular, note that $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ and $\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$ (for K/\mathbf{Q} and K/\mathbf{Q}_p finite field extensions) admit regular basis.

We fix from now on to the end of this Section a number field K and denote by \mathcal{O}_K its ring of algebraic integers. For any prime ideal \mathfrak{p} of \mathcal{O}_K , we denote $\mathcal{O}_{K,(\mathfrak{p})}$ the localization of \mathcal{O}_K at \mathfrak{p} , *i.e.*, the localization at the multiplicative set $\mathcal{O}_K \setminus \mathfrak{p}$. Moreover, for any **Z**-module M and any prime number p, we denote $M_{(p)}$ the localization at p, *i.e.*, the localization at the multiplicative set $\mathbf{Z} \setminus p\mathbf{Z}$. We also denote $K_{\mathfrak{p}}$ the completion of K at \mathfrak{p} and $\mathcal{O}_{K,\mathfrak{p}}$ the valuation ring of \mathcal{O}_K .

Proposition 2.1. $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K) = \bigcap_{\mathfrak{p}} \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})})$ and

$$\mathfrak{I}_n(\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)) = \bigcap_{\mathfrak{p}} \mathfrak{I}_n(\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})})$$

where the intersection is over all prime ideals of K.

Proof. We first observe that $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K) = \bigcap_p \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)_{(p)}$; here the intersection is over all primes of \mathbf{Z} . Then one observes that $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)_{(p)} = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)})$ (see for example [Wer14]). We conclude that $\mathfrak{I}_n(\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,\mathfrak{p}})_{(p)})$ is equal to $\mathfrak{I}_n(\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)}),$ showing the second part. Further, $\mathcal{O}_{K,(p)} = \bigcap_{\mathfrak{p}|p} \mathcal{O}_{K,(\mathfrak{p})},$ where $\mathcal{O}_{K,(\mathfrak{p})}$ is the localization of \mathcal{O}_K at \mathfrak{p} , and the intersection is over all prime ideals \mathfrak{p} of K which lie above p. Therefore

(1)
$$\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)}) = \bigcap_{\mathfrak{p}|p} \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})})$$

and the result follows.

Remark 2.2. Note that, if K/\mathbf{Q} is Galois, then $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})})$, for $\mathfrak{p} \mid p$, are all equal because $\operatorname{Gal}(K/\mathbf{Q})$ acts transitively on the set of rings $\{\mathcal{O}_{K,(\mathfrak{p})}: \mathfrak{p} \mid p\}$. Therefore (1) reads as

$$\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)}) = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)})$$

for each $\mathfrak{p} \mid p$.

In order to determine some relation of containments between the rings $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})})$, we introduce the following notation: given an extension of commutative rings $R \subseteq S$, we consider the null ideal of S over R: $N_R(S) = \{g \in R[X] \mid g(S) = 0\} \subseteq R[X]$.

Proposition 2.3. Let K be a number field and let $p \in \mathbf{Z}$ be a prime. Let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime ideal above p with ramification index e and residue class degree f. Then

$$N_{\mathbb{F}_p}(\mathcal{O}_K/\mathfrak{p}^e) = ((X^{p^f} - X)^e)$$

Proof. Since $\pi: \mathcal{O}_K/\mathfrak{p}^e \to \mathcal{O}_K/P^{e-1} \to \ldots \to \mathcal{O}_K/\mathfrak{p} \cong \mathbb{F}_{p^f}$ and \mathbb{F}_p embeds in all of these rings (because $\mathfrak{p}^i \cap \mathbf{Z} = p\mathbf{Z} = \mathfrak{p} \cap \mathbf{Z}$, for all $i = 1, \ldots, e$) we have

$$\mathcal{O}_K/\mathfrak{p}^e$$
 \longrightarrow $\mathcal{O}_K/\mathfrak{p}^{e-1}$ \longrightarrow \cdots \longrightarrow $\mathcal{O}_K/\mathfrak{p}$

so, in particular, we have the following chain of containments between these ideals of $\mathbb{F}_p[X]$:

$$N_{\mathbb{F}_p}(\mathcal{O}_K/\mathfrak{p}^e) \subseteq N_{\mathbb{F}_p}(\mathcal{O}_K/\mathfrak{p}^{e-1}) \subseteq \ldots \subseteq N_{\mathbb{F}_p}(\mathcal{O}_K/\mathfrak{p}).$$

Since $\mathcal{O}_K/\mathfrak{p}$ is a finite field with p^f elements, the ideal $N_{\mathbb{F}_p}(\mathcal{O}_K/\mathfrak{p})$ is generated by $X^{p^f} - X$. The proof proceeds by induction on e. Suppose that $N_{\mathbb{F}_p}(\mathcal{O}_K/\mathfrak{p}^{e-1})$ is generated by $(X^{p^f} - X)^{e-1}$. It is easy to see that $(X^{p^f} - X)^e$ is contained in $N_{\mathbb{F}_p}(\mathcal{O}_K/\mathfrak{p}^e)$. Therefore, the latter ideal is generated by a polynomial $g \in \mathbb{F}_p[X]$ which is zero on all the elements of $\mathcal{O}_K/\mathfrak{p}^e$ of the form

$$g(X) = (X^{p^f} - X)^{e-1}h(X) = F_q(X)^{e-1} \prod_{\gamma \in S} (X - \gamma)$$

for some $S \subseteq \mathbb{F}_{p^f} = \mathbb{F}_q$. Suppose that S is strictly contained in \mathbb{F}_q and let $\overline{\gamma} \in \mathbb{F}_q \setminus S$. Without loss of generality, we may assume that $\overline{\gamma} = 0$ (apply the automorphism $X \mapsto X - \gamma$, if necessary; this is an automorphism for \mathbb{F}_{p^f} and $\mathcal{O}_K/\mathfrak{p}^e$).

Let $t \in P/P^e \subset \mathcal{O}_K/\mathfrak{p}^e$ such that its index of nilpotency is e (that is, $t^e = 0$ but $t^{e-1} \neq 0$). Then $F_q(t)^{e-1} = t^{e-1} \cdot (t^{q-1} - 1)^{e-1}$ is not zero in O_K/\mathfrak{p}^e , because $t^{q-1} - 1$ is a unit of O_K/\mathfrak{p}^e (because $\mathfrak{p}/\mathfrak{p}^e$ is the Jacobson radical of O_K/\mathfrak{p}^e).

In the same way, $h(t) = \prod_{\gamma \in S} (t - \gamma)$ is not in the kernel of $\pi : \mathcal{O}_K/\mathfrak{p}^e \twoheadrightarrow \mathcal{O}_K/\mathfrak{p}^{e-1}$, which is $\mathfrak{p}/\mathfrak{p}^e$, because modulo \mathfrak{p} , h(t) is not zero $(\pi(h(t)) = h(\pi(t)) = h(0) \neq 0$, because $0 \notin S$). Hence, h(t) is invertible, so that $g(t) = F_q(t)^{e-1} \cdot h(t)$ is not zero, contradiction. \square

Proposition 2.4. Let K, K' be number fields, with prime ideals $\mathfrak{p}, \mathfrak{p}'$, respectively, with ramification index/residue class degree equal to e, f and e', f', respectively. Suppose that

$$\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K',(\mathfrak{p}')}) \subseteq \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})})$$

Then $\mathfrak{p} \cap \mathbf{Z} = p\mathbf{Z} = \mathfrak{p}' \cap \mathbf{Z}$, f|f' and $e \leq e'$. In particular, if the above containment is an equality, we have that $\mathfrak{p} \cap \mathbf{Z} = p\mathbf{Z} = \mathfrak{p}' \cap \mathbf{Z}$, f = f' and e = e'.

Proof. Suppose that $\mathfrak{p} \cap \mathbf{Z} = p\mathbf{Z}$ and $\mathfrak{p}' \cap \mathbf{Z} = p'\mathbf{Z}$. Observe that

$$\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})}) \cap \mathbf{Q} = (\operatorname{Int}(\mathcal{O}_{K,(\mathfrak{p})}) \cap K) \cap \mathbf{Q} = \mathcal{O}_{K,(\mathfrak{p})} \cap \mathbf{Q} = \mathbf{Z}_{(p)}$$

and analogously for \mathfrak{p}' and p'. Therefore

$$\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K',(\mathfrak{p}')}) \cap \mathbf{Q} = \mathbf{Z}_{(p')} \subseteq \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})}) \cap \mathbf{Q} = \mathbf{Z}_{(p)}.$$

Hence, p = p'.

By Proposition 2.3, the containment of the hypothesis implies that

(2)
$$\frac{(X^{p^{f'}} - X)^{e'}}{p} \in \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})}).$$

In particular, modulo p, we have

$$(X^{p^{f'}} - X)^{e'} \in N_{\mathbb{F}_p}(\mathcal{O}_K/\mathfrak{p}^e) = ((X^{p^f} - X)^e),$$

again by Proposition 2.3. It follows that $(X^{p^{f'}}-X)^{e'}\in (X^{p^f}-X)$ and since the latter is a radical ideal (because $X^{p^f}-X$ is a separable polynomial), this means that $X^{p^{f'}}-X\in (X^{p^f}-X)$ which is equivalent to $\mathbb{F}_{p^f}\subseteq \mathbb{F}_{p^{f'}}$ which holds if and only if f|f', as claimed.

In the same way, since $X^{p^{f'}} - X$ is a separable polynomial (every irreducible factor appears with multiplicity 1 in the factorization of $X^{p^{f'}} - X$ over \mathbb{F}_p), we deduce that $e \leq e'$.

We recall that, by a result of Gerboud (see [Ger93] and also [CC97, Prop. IV.3.3]) we have

(3)
$$\operatorname{Int}(\mathbf{Z}_{(p)}, \mathcal{O}_{K,(\mathfrak{p})}) = \{ f \in K[X] \mid f(\mathbf{Z}_{(p)}) \subseteq \mathcal{O}_{K,(\mathfrak{p})} \} = \operatorname{Int}(\mathbf{Z}_{(p)}) \cdot \mathcal{O}_{K,(\mathfrak{p})}$$

Lemma 2.5. Let K be a number field and let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime ideal which lies above a prime $p \in \mathbf{Z}$. Let $e = e(\mathfrak{p}|p)$ and $f = f(\mathfrak{p}|p)$ be the ramification index and residue class degree, respectively. Then the following conditions are equivalent:

- i) $\operatorname{Int}(\mathbf{Z}_{(p)}) \subseteq \operatorname{Int}(\mathcal{O}_{K,(\mathfrak{p})}).$
- ii) $\operatorname{Int}(\mathbf{Z}_{(p)}, \mathcal{O}_{K,(\mathfrak{p})}) = \operatorname{Int}(\mathcal{O}_{K,(\mathfrak{p})})$
- iii) $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})}) = \operatorname{Int}(\mathbf{Z}_{(p)}).$

iv)
$$e = f = 1$$
.

If any of this equivalent conditions holds, then

$$\operatorname{Int}(\mathbf{Z}_{(p)}) \cdot \mathcal{O}_{K,(\mathfrak{p})} = \operatorname{Int}(\mathcal{O}_{K,(\mathfrak{p})}).$$

Proof. Obviously, conditions i) and iii) are equivalent, since we always have $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,\mathfrak{p}}) \subseteq$ $\operatorname{Int}(\mathbf{Z}_{(p)}).$

If i) holds, then by (3) above we have $\operatorname{Int}(\mathbf{Z}_{(p)}, \mathcal{O}_{K,\mathfrak{p}}) \subseteq \operatorname{Int}(\mathcal{O}_{K,\mathfrak{p}})$, which is the condition ii), since we always have the containment $\operatorname{Int}(\mathbf{Z}_{(p)},\mathcal{O}_{K,\mathfrak{p}}) \supseteq \operatorname{Int}(\mathcal{O}_{K,\mathfrak{p}})$. Conversely, if condition ii) holds, then again by (3) above we have $\operatorname{Int}(\mathbf{Z}_{(p)}) \subseteq \operatorname{Int}(\mathcal{O}_{K,\mathfrak{p}})$.

The equivalence between iii) and iv) follows immediately from Proposition 2.4.

Corollary 2.6. Let K be a number field and let $p \in \mathbb{Z}$ be a prime. Then the following conditions are equivalent:

- i) $\operatorname{Int}(\mathbf{Z}_{(p)}) = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)}).$
- ii) p is totally split in \mathcal{O}_K . iii) $\frac{X^p X}{p} \in \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$.

Proof. The proof of the equivalence i) \Leftrightarrow ii) follows immediately from (1) and Lemma 2.5. Indeed, if p is totally split in \mathcal{O}_K then, for each prime ideal \mathfrak{p} of \mathcal{O}_K above p, we have $\operatorname{Int}(\mathbf{Z}_{(p)}) = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)}), \text{ so that by (1) we have the equality } \operatorname{Int}(\mathbf{Z}_{(p)}) = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)}).$ Conversely, if the last equality holds, then by (1), for each prime ideal \mathfrak{p} of \mathcal{O}_K above p, we have $\operatorname{Int}(\mathbf{Z}_{(p)}) \subseteq \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(\mathfrak{p})}) \subseteq \operatorname{Int}(\mathbf{Z}_{(p)}),$ so equality holds throughout and p is totally split in

We show now that ii) \Rightarrow iii). Suppose that p is totally split in \mathcal{O}_K , so that, by the Chinese Remainder Theorem we have

$$\mathcal{O}_K/p\mathcal{O}_K \cong \mathbb{F}_p^n$$

where $n = [K : \mathbf{Q}]$. Hence, $X^p - X$ is zero on $\mathcal{O}_K/p\mathcal{O}_K$, so that $f(X) = \frac{X^p - X}{p}$ is in $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$. Conversely, suppose that f(X) is in $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$. Then $X^p - X$ is zero on $\mathcal{O}_K/p\mathcal{O}_K \cong$ $\prod_{i=1}^g \mathcal{O}_K/\mathfrak{p}_i^{e_i}$, where $\mathfrak{p}_1,\ldots,\mathfrak{p}_g$ are the prime ideals of O_K above p, with ramification index $e_i = e(\mathfrak{p}_i|p)$ and residue class degree $f_i = f(\mathfrak{p}_i|p)$. Consequently, $X^p - X$ is zero on each factor ring $\mathcal{O}_K/\mathfrak{p}_i^{e_i}$, for $i=1,\ldots,g$. Let $\overline{\alpha}$ be in the Jacobson ideal of $\mathcal{O}_K/\mathfrak{p}_i^{e_i}$, that is, $\overline{\alpha}$ is in $\mathfrak{p}_i/\mathfrak{p}_i^{e_i}$ (the unique maximal ideal of $\mathcal{O}_K/\mathfrak{p}_i^{e_i}$). Then $1-\overline{\alpha}^{p-1}$ is a unit in $\mathcal{O}_K/\mathfrak{p}_i^{e_i}$. But by assumption $\overline{\alpha}^p - \overline{\alpha} = \overline{\alpha}(\overline{\alpha}^{p-1} - 1) = 0$, so that $\overline{\alpha} = 0$. Therefore, $\mathcal{O}_K/\mathfrak{p}_i^{e_i}$ has trivial Jacobson ideal, which happens precisely when $e_i = 1$. If $f_i > 1$, then $\mathcal{O}_K/\mathfrak{p}_i$ is a proper finite field extension of \mathbb{F}_p , so if we take an element $\overline{\gamma}$ of $\mathcal{O}_K/\mathfrak{p}_i \setminus \mathbb{F}_p$, $\overline{\gamma}$ will be a zero of a monic irreducible polynomial q(X) over \mathbb{F}_p of degree strictly larger than 1. Since $X^p - X$ is zero on $\overline{\gamma}$, we would have that q(X) divide $X^p - X$ over \mathbb{F}_p , which is clearly not possible because $X^p - X$ splits over \mathbb{F}_p . This shows that $iii) \Rightarrow ii$).

The next result characterizes the finite Galois extensions of \mathbf{Q} in terms of the rings $\mathrm{Int}_{\mathbf{Q}}(\mathcal{O}_K)$. In particular, we can recover \mathcal{O}_K from $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$, if K/\mathbf{Q} is Galois. Given a subring R of $\mathbf{Q}[X]$, for each $\alpha \in \overline{\mathbf{Z}}$ we consider the following subset of $\mathbf{Q}(\alpha)$:

$$R(\alpha) = \{ f(\alpha) \mid f \in R \}$$

Theorem 2.7. Let K/\mathbb{Q} be a finite extension and let $R = \operatorname{Int}_{\mathbb{Q}}(\mathcal{O}_K)$. Then

$$K/\mathbf{Q}$$
 is a Galois extension $\Leftrightarrow \{\alpha \in \overline{\mathbf{Z}} \mid R(\alpha) \subset \overline{\mathbf{Z}}\} = \mathcal{O}_K$.

In particular, if K and K' are two Galois extensions of \mathbf{Q} such that $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K) = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K'})$, then K = K'.

Note that the condition $R(\alpha) \subset \overline{\mathbf{Z}}$ is equivalent to $R(\alpha) \subseteq \mathcal{O}_{\mathbf{Q}(\alpha)}$.

Proof. The second statement about K and K' follows immediately from the first.

For the first statement, let $R = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ and suppose that $\{\alpha \in \overline{\mathbf{Z}} \mid R(\alpha) \subset \overline{\mathbf{Z}}\} = \mathcal{O}_K$. It is easily seen that the left-hand side is invariant under the action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. Hence, \mathcal{O}_K contains the ring of integers of all the conjugates of K over \mathbf{Q} , so K/\mathbf{Q} is Galois.

Conversely, suppose that K/\mathbf{Q} is a Galois extension. It is clear that we have the containment $\{\alpha \in \overline{\mathbf{Z}} \mid R(\alpha) \subset \overline{\mathbf{Z}}\} \supseteq \mathcal{O}_K$. Conversely, let $\alpha \in \overline{\mathbf{Z}}$, $\alpha \notin \mathcal{O}_K$. We have to show that there exists $f \in \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ such that $f(\alpha) \notin \overline{\mathbf{Z}}$. Let $K_{\alpha} = \mathbf{Q}(\alpha)$ and let N_{α} be the Galois closure of K_{α} over \mathbf{Q} (the compositum inside $\overline{\mathbf{Q}}$ of all the conjugates over \mathbf{Q} of K_{α}). We have that $\alpha \notin K \Leftrightarrow K_{\alpha} \not\subset K \Leftrightarrow N_{\alpha} \not\subset K$, where the last equivalence holds because by assumption K/\mathbf{Q} is Galois.

By Tchebotarev's Density Theorem, a Galois extension K of \mathbf{Q} is completely determined by the set of primes $S(K/\mathbf{Q})$ which are totally split in K (see [Neu99, Chapter VII, Corollary 13.10]). Hence, the condition $N_{\alpha} \not\subset K$ is equivalent to $S(K/\mathbf{Q}) \not\subset S(N_{\alpha}/\mathbf{Q})$, that is, the set of primes $p \in \mathbf{Z}$ which are totally split in K is not contained in the set of primes which are totally split in N_{α} . Let $p \in \mathbf{Z}$ be such a prime and suppose also that

- p is not ramified neither in K nor in N_{α} .
- p does not divide $[\mathcal{O}_{K_{\alpha}}: \mathbf{Z}[\alpha]]$

The above primes are always finite in number and since the above set is infinite, by removing the latter primes we still get a non-empty set. By Corollary 2.6, $f(X) = \frac{X^p - X}{p}$ is in $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ but not in $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{N_{\alpha}})$. Recall that a prime $p \in \mathbf{Z}$ splits completely in the normal closure N_{α} of K_{α} (over \mathbf{Q}) if and only if it splits completely in K_{α} ([Mar77, Chapt. 4, Corollary of Theorem 31]). Hence, there exists some prime ideal \mathfrak{p} of $\mathcal{O}_{K_{\alpha}}$ above p which has inertia degree strictly greater than 1. Since p does not divide $[\mathcal{O}_{K_{\alpha}}:\mathbf{Z}[\alpha]]$, it follows by Dedekind-Kummer's Theorem (see [Neu99, Chapter I, Proposition 8.3]) that the factorization in $\mathbb{F}_p[X]$ of the residue modulo p of the minimal polynomial $p_{\alpha}(X)$ of α over \mathbf{Z} has at least one irreducible polynomial over \mathbb{F}_p whose degree is strictly greater than 1; this factor corresponds to a prime ideal \mathfrak{p} of $\mathcal{O}_{K_{\alpha}}$ above p which is not inert, that is $\mathcal{O}_{K_{\alpha}}/\mathfrak{p} \supsetneq \mathbb{F}_p$. In particular, this means that modulo \mathfrak{p} , α is not in \mathbb{F}_p , and so it is not annihilated by $\overline{g}(X) = X^p - X$ (equivalently, modulo \mathfrak{p} , α is a zero of an irreducible polynomial over \mathbb{F}_p of degree strictly greater than 1). This implies that $f(\alpha)$ is not integral over \mathbf{Z} .

Remark 2.8. We also offer a shorter proof of the second statement in Theorem 2.7: If K and K' are two Galois extensions of \mathbf{Q} such that $\mathrm{Int}_{\mathbf{Q}}(\mathcal{O}_K) = \mathrm{Int}_{\mathbf{Q}}(\mathcal{O}_{K'})$, then K = K'.

Suppose the above assumption is satisfied. In particular, for each prime $p \in \mathbf{Z}$, if we localize at $\mathbf{Z} \setminus p\mathbf{Z}$ we have the following equality:

(4)
$$\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K,(p)}) = \operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_{K',(p)})$$

Let now $p \in \mathbf{Z}$ be a prime which is totally split in \mathcal{O}_K . Then the left hand side of (4) is equal to $\operatorname{Int}(\mathbf{Z}_{(p)})$, by Corollary 2.6. By the same Corollary, p is totally split in $\mathcal{O}_{K'}$. Symmetrically, if p is totally split in K' we deduce in the same way that p is totally split in K. Therefore, the sets of primes $p \in \mathbf{Z}$ which are totally split in the Galois extensions K and K', respectively, coincide. By the Tchebotarev Density Theorem (see [Neu99, Chapt. VII, §13, Corollary 3.10]), a finite Galois extension K is uniquely determined by the set of primes $p \in \mathbf{Z}$ which are totally split in \mathcal{O}_K , so K = K'.

3. Characteristic ideals

Proposition 2.1 reduces the study of characteristic ideals of $\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)$ to the study of characteristic ideals in the local case. We will address a description of these ideals and apply the local results to the global context.

3.1. Local case. Fix a finite field extension K/\mathbf{Q}_p having residue class degree f and ramification degree e. Denote v_p the p-adic valuation of \mathbf{Q}_p , normalized such that $v_p(p) = 1$. Let:

$$w_p(n) := v_p(n!) = \sum_{j>1} \left\lfloor \frac{n}{p^j} \right\rfloor$$

and, if $q = p^f$ is the cardinality of the residue field of K, put

$$w_q(n) := \sum_{j>1} \left\lfloor \frac{n}{q^j} \right\rfloor.$$

The following equality follows from [CC97, Corollary II.2.9]:

$$-v_p\left(\mathfrak{I}_n\left(\operatorname{Int}(\mathbf{Z}_p)\right)\right) = w_p(n)$$

and, similarly, we have:

(5)
$$-v_{\pi}\left(\Im_{n}\left(\operatorname{Int}(\mathcal{O}_{K})\right)\right) = w_{q}(n)$$

where π is a uniformizer of K and v_{π} the associated valuation.

We define finally

$$w_{\mathcal{O}_K}^{\mathbf{Q}_p}(n) := -v_p\left(\mathfrak{I}_n\left(\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)\right)\right).$$

The following equality holds because of the next Lemma, noticing that $\left[-\frac{n}{e}\right] = -\left|\frac{n}{e}\right|$:

$$\mathfrak{I}_n(\operatorname{Int}(\mathcal{O}_K)) \cap \mathbf{Q}_p = p^{-\lfloor \frac{w_q(n)}{e} \rfloor} \mathbf{Z}_p$$

and since $\mathfrak{I}_n(\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)) \subseteq \mathfrak{I}_n(\operatorname{Int}(\mathcal{O}_K)) \cap \mathbf{Q}_p$, for every $n \in \mathbf{N}$ we have:

(6)
$$w_{\mathcal{O}_K}^{\mathbf{Q}_p}(n) \le \left| \frac{w_q(n)}{e} \right|$$

Lemma 3.1. Let $n \in \mathbb{Z}$ and $e = e(\mathfrak{p}|p)$, where \mathfrak{p} is the maximal ideal of \mathcal{O}_K . Then

$$\mathfrak{p}^n \cap \mathbf{Q}_p = p^{\lceil \frac{n}{e} \rceil} \mathbf{Z}_p$$

Proof. (\supseteq). Clearly, $p^{\lceil \frac{n}{e} \rceil} \in \mathfrak{p}^n \Leftrightarrow v_{\mathfrak{p}}(p^{\lceil \frac{n}{e} \rceil}) = e \cdot \lceil \frac{n}{e} \rceil \geq n$, which is true, so the containment follows, since clearly $\mathfrak{p}^n \cap \mathbf{Q}_p$ is a \mathbf{Z}_p -module.

(\subseteq). Let $\alpha \in \mathfrak{p}^n \cap \mathbf{Q}_p$, say $\alpha = p^m u$, where $u \in \mathbf{Z}_p^*$ and $m = v_p(\alpha)$. Then $v_{\mathfrak{p}}(\alpha) = me$ which has to be greater than or equal to n. Therefore, $m \geq \lceil \frac{n}{e} \rceil$, so $\alpha \in p^{\lceil \frac{n}{e} \rceil} \mathbf{Z}_p$.

The main result of this section shows the opposite inequality in (6) in the case of tame ramification for a finite Galois extension. By the above remarks, this corresponds to say that $\mathfrak{I}_n(\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)) = \mathfrak{I}_n(\operatorname{Int}(\mathcal{O}_K)) \cap \mathbf{Q}_p$, for each $n \in \mathbf{N}$. We show in Examples 3.6 that these two conditions, namely, Galois and tame ramification, cannot be relaxed.

Theorem 3.2. Let K/\mathbb{Q}_p be a finite tamely ramified Galois extension, with ramification index e and residue field of cardinality q. Then for all $n \in \mathbb{N}$ we have

$$w_{\mathcal{O}_K}^{\mathbf{Q}_p}(n) = \left\lfloor \frac{w_q(n)}{e} \right\rfloor.$$

In particular, $w_{\mathcal{O}_K}^{\mathbf{Q}_p}(n)$ only depends on n, q and e.

Proof. By (6) it is sufficient to show that $d = p^{-\lfloor \frac{w_q(n)}{e} \rfloor}$ is in $\mathfrak{I}_n(\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K))$.

We observe that if $f(X) = \sum_{i=0}^{n} a_i X^i$ belongs to $\operatorname{Int}(\mathcal{O}_K)$, then $f^{\sigma}(X) := \sum_{i=0}^{n} \sigma(a_i) X^i$ belongs to $\operatorname{Int}(\mathcal{O}_K)$ for all $\sigma \in G = \operatorname{Gal}(K/\mathbb{Q}_p)$ (here we use crucially the assumption that K/\mathbb{Q}_p

is Galois). As a consequence, if we denote $\operatorname{tr} = \operatorname{tr}_{K/\mathbb{Q}_p} : K \to \mathbb{Q}_p$ the trace homomorphism, we see that

$$Tr(f) := \sum_{\sigma \in G} f^{\sigma} = \sum_{i=0}^{n} tr(a_i) X^{i}$$

belongs to $\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$, if $f \in \operatorname{Int}(\mathcal{O}_K)$. Therefore, the trace homomorphisms between the function fields $\operatorname{Tr}: K(X) \to \mathbf{Q}_p(X)$ restricts to $\operatorname{Tr}: \operatorname{Int}(\mathcal{O}_K) \to \operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$.

Since $p \nmid e$, the trace homomorphism tr is surjective (the converse is also true, see [Nar04, Chapter 5, Corollary, p. 227]). Fix $\alpha \in \mathcal{O}_K$ such that $\operatorname{tr}(\alpha) = 1$. Let $c = d\alpha \in K$. In particular, since the trace is a \mathbf{Q}_p -homomorphism, we have $\operatorname{tr}(c) = d$. Note that the v_{π} -value of c is greater than or equal to $-e\lfloor \frac{w_q(n)}{e} \rfloor \geq -w_q(n)$. By (5), c is in $\mathfrak{I}_n(\operatorname{Int}(\mathcal{O}_K))$, so there exists $f \in \operatorname{Int}(\mathcal{O}_K)$ of degree n whose leading coefficient is equal to c. Therefore, $\operatorname{Tr}(f)$ is a polynomial of degree n in $\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$ with leading coefficient equal to d, as we wanted to show.

Remark 3.3. We remark that, from the fact that $\operatorname{tr} = \operatorname{tr}_{K/\mathbb{Q}_p} : \mathcal{O}_K \to \mathbb{Z}_p$ is surjective (because the extension is tame), the proof of Theorem 3.2 also shows that the restriction of the trace homomorphism $\operatorname{Tr} : \operatorname{Int}(\mathcal{O}_K) \to \operatorname{Int}_{\mathbb{Q}_p}(\mathcal{O}_K)$ is surjective. In fact, for each $n \in \mathbb{N}$, the n-th element of a regular basis of $\operatorname{Int}_{\mathbb{Q}_p}(\mathcal{O}_K)$, whose leading coefficient has p-adic value $-\left\lfloor \frac{w_q(n)}{e} \right\rfloor$ by the above Theorem, is the image via the trace homomorphism of a polynomial of $\operatorname{Int}(\mathcal{O}_K)$.

Obviously, if Tr is surjective, it is easily seen that tr is surjective, because $\mathbf{Z}_p \subset \operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$. Finally, we have the following commutative diagram:

$$\operatorname{Int}(\mathcal{O}_K) \xrightarrow{\operatorname{Tr}} \operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_K \xrightarrow{\operatorname{tr}} \mathbf{Z}_p$$

The next corollary shows that Theorem 2.7 is false in the local case.

Corollary 3.4. Let K_1, K_2 be two finite tamely ramified Galois extensions of \mathbf{Q}_p . Then $\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_{K_1}) = \operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_{K_2})$ if and only if K_1 and K_2 have the same ramification index and residue field degree.

Proof. Suppose that K_1 and K_2 have the same ramification index and residue field degree. In particular, the functions $w_{\mathcal{O}_{K_i}}^{\mathbf{Q}_p}(n)$, for i=1,2, are the same, by Theorem 3.2. Hence, by definition, the set of characteristic ideals of the rings $\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_{K_i})$, i=1,2, coincide, so these rings have a common regular bases, and therefore they are equal.

Conversely, if the $\operatorname{Int}_{\mathbf{Q}_p}$ -rings are equal, a straightforward adaptation of Proposition 2.4 to the present setting shows that the ramification indexes and residue field degrees of K_1 and K_2 are the same. Note that this part of the proof holds also without the tameness assumption. \square

Remark 3.5. In the case K/\mathbf{Q}_p is a finite unramified extension (so, in particular, a Galois extension), we can given an explicit basis of $\mathrm{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$. Let $q=p^f$ be the cardinality of the residue field of \mathcal{O}_K . By Theorem 3.2, for all $n \in \mathbf{N}$ we have $w_{\mathcal{O}_K}^{\mathbf{Q}_p}(n) = w_q(n)$. Let

$$f(X) := \frac{X^q - X}{p}$$

which clearly belongs to $\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$. For $k \in \mathbf{N}$, we denote by $f^{\circ k}(X)$ the composition of f with itself k times, namely $f^{\circ k}(X) = f \circ \ldots \circ f(X)$. If k = 0 we put $f^0(X) := X$. For each positive integer $n \in \mathbf{N}$, we consider its q-adic expansion:

$$n = n_0 + n_1 q + \ldots + n_r q^r$$

where $n_i \in \{0, \dots, q-1\}$ for all $i = 0, \dots, r$. We define

$$f_n(X) := \prod_{i=0}^r (f^{\circ i}(X))^{n_i}$$

Notice that $f_n(X) = X^n$ for n = 0, ..., q - 1 and $f_q(X) = f(X)$. Moreover, $f_n \in \operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$ and has degree n, for every $n \in \mathbf{N}$. It is easy to prove by induction that $\operatorname{lc}(f^{\circ i}) = p^{-a_i}$, where $a_i = 1 + q + ... + q^{i-1} = w_q(q^{i!})$. By the same proof of [CC97, Chap. 2, Prop. II.2.12] one can show that $\operatorname{lc}(f_n) = p^{-w_q(n)}$ for every $n \in \mathbf{N}$, so, finally, the family of polynomials $\{f_n(X)\}_{n \in \mathbf{N}}$ is a regular basis of $\operatorname{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$.

Examples 3.6. In the next two examples we show the assumptions in Theorem 3.2 cannot be dropped.

(1) If K/\mathbf{Q}_p is not a Galois extension, then the restriction of the trace homomorphism to $\mathrm{Int}(\mathcal{O}_K)$ may give a polynomial in $\mathbf{Q}_p(X)$ which is not in $\mathrm{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)$. For example, let $K = \mathbf{Q}_2(\sqrt[3]{2})$, whose ring of integers is $\mathcal{O}_K = \mathbf{Z}_2[\sqrt[3]{2}]$. Then the polynomial

$$f(X) = \frac{X(X-1)(X-\sqrt[3]{2})(X-(1+\sqrt[3]{2}))}{2}$$

is in $\operatorname{Int}(\mathcal{O}_K)$ but its trace over $\mathbf{Q}_2(X)$ is equal to $g(X) = \frac{3X^2(X-1)^2}{2}$, which is not integer-valued over \mathcal{O}_K , since $g(\sqrt[3]{2}) \notin \mathcal{O}_K$. One can show by an explicit computation that in this example the equality $w_{\mathcal{O}_K}^{\mathbf{Q}_p}(n) = \left\lfloor \frac{w_q(n)}{e} \right\rfloor$ does not hold for n=4. Indeed, the first four elements of a \mathcal{O}_K -basis of $\operatorname{Int}(\mathcal{O}_K)$ are

$$f_1(X) = X;$$
 $f_2(X) = \frac{X(X-1)}{\sqrt[3]{2}};$ $f_3(X) = \frac{X(X-1)(X-\sqrt[3]{2})}{\sqrt[3]{2}};$ $f_4(X) = \frac{X(X-1)(X-\sqrt[3]{2})(X-(1+\sqrt[3]{2}))}{2};$

and considering all possible \mathcal{O}_K -combinations of these elements which lie in $\mathbf{Q}_2[X]$, we see that there is no element in $\mathrm{Int}_{\mathbf{Q}_2}(\mathcal{O}_K)$ of degree 4 whose leading coefficient has valuation $-1 = -\left|\frac{w_2(4)}{3}\right|$.

(2) We now discuss the tameness assumption. Consider the case of $K = \mathbf{Q}_2(i)$ with $i^2 = -1$ and let $\{f_n(X) : n \geq 0\}$ be a regular basis of $\mathrm{Int}(\mathcal{O}_K)$ obtained by means of compositions and product of the Fermat polynomial $\frac{X^2 - X}{1 + i}$ (in the same way as in the Example 3.5; see [CC97, Chapter II, p. 32]). We set $G(X) = X^2 - X$. One can check that

$$f_6 + if_4 = -\frac{G^3}{4} + \frac{G^2}{2} - \frac{G}{2}$$

and

$$f_{10} + 2f_8 - 2if_6 + (1 - 2i)f_4 = \frac{G^5}{16} + \frac{G^3}{8} - \frac{G^2}{4} + G$$

belong to $\operatorname{Int}_{\mathbf{Q}_2}(\mathcal{O}_K)$ and their leading coefficients have valuation equal to $-\left\lfloor \frac{w_2(6)}{2} \right\rfloor = -2$ and $-\left\lfloor \frac{w_2(10)}{2} \right\rfloor = -4$, respectively; one can also check that

$$-v_2\left(\Im_n\left(\operatorname{Int}_{\mathbf{Q}_2}(\mathcal{O}_K)\right)\right) = \left|\frac{w_2(n)}{2}\right|$$

for all $n \leq 11$. On the other hand, writing down a basis of $\operatorname{Int}(\mathcal{O}_K)$ up to degree 12, and considering all possible \mathcal{O}_K -combinations of these elements which lie in $\mathbb{Q}_2[X]$, we see that

$$-v_2\left(\Im_{12}\left(\mathrm{Int}_{\mathbf{Q}_2}(\mathcal{O}_K)\right)\right) = \left|\frac{w_2(12)}{2}\right| - 1.$$

It might be interesting to describe the values taken by $v_p\left(\mathfrak{I}_n\left(\mathrm{Int}_{\mathbf{Q}_p}(\mathcal{O}_K)\right)\right)$ in the case of wild ramification.

3.2. Global case. Let K/\mathbf{Q} be a finite Galois extension with absolute discriminant D and degree d over \mathbf{Q} . For each rational prime p, denote f_p the residue class degree and e_p its ramification degree. Let $q_p = p^{f_p}$ be the cardinality of the residue field of K_p . The following is a reformulation of Theorem 1.2 in the Introduction:

Theorem 3.7. If K/\mathbb{Q} is Galois such that for all rational primes $p, p \nmid e_p$. Then

$$\mathfrak{I}_n(\operatorname{Int}_{\mathbf{Q}}(\mathcal{O}_K)) = \left(\prod_p p^{-\left\lfloor \frac{wq_p(n)}{e_p} \right\rfloor}\right)$$

as fractional ideals of \mathbf{Z} , where the product is over all rational primes p and, for each prime p, we choose a prime ideal $\mathfrak{p} \mid p$.

Proof. Note that for a fixed n we have $w_q(n)$ for almost all prime powers q, and therefore the above product is well defined. The result follows immediately combining Proposition 2.1 and Theorem 3.2

References

- [CC97] P.J. Cahen and J.L. Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997. MR 1421321 (98a:13002)
- [Ger93] G. Gerboud, Substituabilité d'un anneau de Dedekind, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 1, 29–32. MR 1228959 (94e:13039)
- [LW12] K.A. Loper and N.J. Werner, Generalized rings of integer-valued polynomials, J. Number Theory 132 (2012), no. 11, 2481–2490. MR 2954985
- [Mar77] D.A. Marcus, Number fields, Springer-Verlag, New York-Heidelberg, 1977, Universitext. MR 0457396 (56 #15601)
- [Nar04] Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, third ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2078267 (2005c:11131)
- [Neu99] J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. MR 1697859 (2000m:11104)
- [Per14] Giulio Peruginelli, Integral-valued polynomials over sets of algebraic integers of bounded degree, J. Number Theory 137 (2014), 241–255. MR 3157790
- [PW14] Giulio Peruginelli and Nicholas J. Werner, Integral closure of rings of integer-valued polynomials on algebras, Commutative algebra, Springer, New York, 2014, pp. 293–305. MR 3330225
- [Wer14] N.J. Werner, Int-decomposable algebras, J. Pure Appl. Algebra 218 (2014), no. 10, 1806–1819. MR 3195410
- B. H. DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PADOVA, VIA TRIESTE 63, 35121 PADOVA, ITALY, AND DEPARTMENT OF MATHEMATICS, TARBIAT MODARES UNIVERSITY, 14115-134, TEHRAN, IRAN. E-mail address: b.heidaryan@modares.ac.ir
 - M.L. DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PADOVA, VIA TRIESTE 63, 35121 PADOVA, ITALY $E\text{-}mail\ address:\ mlongo@math.unipd.it}$
 - G. P. DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PADOVA, VIA TRIESTE 63, 35121 PADOVA, ITALY E-mail address: gperugin@math.unipd.it