February 14, 2022

NUMBER THEORY I, 14/2/2022

3h. Each question is 4 points (total 32 points).

- **Exercise 1.** (1) Find an integral basis and the discriminant of $K = \mathbb{Q}[\sqrt{13}]$, where by *integral basis* we mean a \mathbb{Z} -basis of the ring of algebraic integers \mathcal{O}_K of K.
 - (2) Let p be an odd prime and $\mathbb{Q}(\zeta_p)$ the p-th cyclotomic field, where ζ_p is a primitive p-th root of unity. Since $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \simeq \mathbb{Z}/(p-1)\mathbb{Z}$, the fixed field of the subgroup $2\mathbb{Z}/(p-1)\mathbb{Z} \subseteq \mathbb{Z}/(p-1)\mathbb{Z}$ corresponds, by Galois theory, to a quadratic subfield $\mathbb{Q}(\sqrt{p^*}) \subseteq \mathbb{Q}(\zeta_p)$. Using that, for number fields $K \subseteq L$, we have $d_K \mid d_L$ (where d_K and d_L are the discriminants of K and L, respectively) and the explicit formulas for $d_{\mathbb{Q}(\zeta_p)}$ and $d_{\mathbb{Q}(\sqrt{p^*})}$, prove that $p^* = p$ if $p \equiv 1 \pmod{4}$ and $p^* = -p$ if $p \equiv 3 \pmod{4}$.
- **Exercise 2.** (1) Find the units of the ring of integers \mathcal{O}_K of the field $K = \mathbb{Q}[i]$ and the isomorphism class of the group \mathcal{O}_K^{\times} , where $i^2 = -1$.
 - (2) Find the fundamental unit of the field $K = \mathbb{Q}[\sqrt{2}]$.

Exercise 3. (1) Show that $\mathbb{Q}[\sqrt{5}]$ has class number equal to 1.

- (2) Let K/\mathbb{Q} be a number field. Assume that p is a prime number which does not divide the class number of K, and let \mathfrak{a} be an integral ideal of \mathcal{O}_K . Show that if \mathfrak{a}^p is principal, then \mathfrak{a} is principal.
- **Exercise 4.** (1) Find a prime number number ℓ_1 which is split and a prime number ℓ_2 which is inert in the quadratic field $\mathbb{Q}[\sqrt{5}]$
 - (2) Let ℓ be an odd prime and $\mathbb{Q}[\zeta_{\ell}]$ the ℓ -th cyclotomic field, where ζ_{ℓ} is a primitive *p*-th root of unity. Put $\lambda = 1 \zeta_{\ell}$. Show that the principal ideal (λ) of $\mathbb{Z}[\zeta_{\ell}]$ satisfies the equality of ideals $(\lambda)^{\ell-1} = (\ell)$ in the ring of integers $\mathbb{Z}[\zeta_{\ell}]$ of $\mathbb{Q}[\zeta_{\ell}]$, and show that there is only one prime ideal of $\mathbb{Z}[\zeta_{\ell}]$ which divides (ℓ) .