TOPOLOGIA APPELLO, 20 GIUGNO 2016

MATTEO LONGO

- Esercizio 1. Calcolare il gruppo fondamentale di \mathbb{R}^3 a cui sono tolti i tre assi coordinati.
- Esercizio 2. Calcolare il gruppo fondamentale del piano proiettivo reale meno un punto.

Esercizio 3. Sia $C = \mathbb{S}^1 \times \mathbb{R}$ un cilindro e fissiamo p_1, p_2 due punti distinti di C. Definiamo $X = C - \{p_1, p_2\}$. Calcolare il gruppo fondamentale $\pi_1(X, p_0)$ di X in un suo punto p_0 .

Esercizio 4. Sia X lo spazio topologico formato da un piano proiettivo reale $\mathbb{P}^2_{\mathbb{R}}$ ed un cerchio \mathbb{S}^1 con un solo punto, denotato x_0 , in comune.

- (1) Calcolare $\pi_1(X, x_0)$.
- (2) Calcolare $H_1(X,\mathbb{Z}) = \pi_1(X,x_0)^{ab}$, il massimo quoziente abeliano di $\pi_1(X,x_0)$.
- (3) Trovare, se possibile, uno spazio topologico Z ed un ricoprimento $p: \tilde{Z} \to Z$ tale the $\operatorname{Aut}(\tilde{Z}/Z)$ sia isomorfo a $\pi_1(X, x_0)^{\operatorname{ab}}$.

Esercizio 5. Siano $X, Y \in Z$ tre spazi topologici. Siano $p: X \to Y \in r: Y \to Z$ mappe continue. Consideriamo la loro composizione $q = r \circ p: X \to Z$.

- (1) Dimostrare che se $p:X\to Y$ e $q:X\to Z$ sono ricoprimenti, allora $r:Y\to Z$ è un ricoprimento.
- (2) Dimostrare che se Z ammette ricoprimento universale e $p: X \to Y$ e $r: Y \to Z$ sono ricoprimenti, allora $q: X \to Z$ è un ricoprimento.