TOPOLOGIA 17 LUGLIO 2018

M. LONGO

Esercizio 1. Descrivere tutti i ricoprimenti del cerchio $\mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

Esercizio 2. Sia $X = \mathcal{C}_1 \cup \mathcal{C}_2$ l'unione dei due cerchi

 $C_1 = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 = 1\}, \qquad C_2 = \{(x,y) \in \mathbb{R}^2 : (x+1)^2 + y^2 = 1\}$ tangenti nel punto $x_0 = (0,0)$. Calcolare $\pi_1(X,x_0)$.

Esercizio 3. Sia $r = \{(0,0,z) \in \mathbb{R}^3\}$ l'asse $z, s = \{(0,y,0) \in \mathbb{R}^3\}$ l'asse y e indichiamo con $\mathcal{C} = \{(x,y,0) \in \mathbb{R}^3 : (x-3)^2 + y^2 = 1\}$ il cerchio di centro (3,0) e raggio 1 contenuto nel piano z = 0. Sia $X = \mathbb{R}^3 - (r \cup s \cup \mathcal{C})$. Calcolare $\pi_1(X, x_0)$.

Esercizio 4. Sia $n \geq 2$ un intero, $X = \mathbb{R}^n - \{(0,0,\ldots,0)\}$ e r > 1 un numero reale. Facciamo agire $G = \mathbb{Z}$ su X (da destra) tramite la formula $x \cdot m = r^m x$, dove $m \in G$ e $x \in X$. Mostrare che l'azione di G su X così definita è propriamente discontinua. Dimostrare che lo spazio quoziente X/G è omeomorfo a $\mathbb{S}^1 \times \mathbb{S}^{n-1}$ (dove al solito indichiamo con \mathbb{S}^i la sfera di \mathbb{R}^{i+1}). Calcolare infine il gruppo fondamentale di X/G.

Esercizio 5. Sia $p: X \to Y$ un ricoprimento e $q: X \to Z$ un ricoprimento. Sia infine $r: Y \to Z$ una mappa continua tale che $q = r \circ p$. Provare che r è un ricoprimento.