TOPOLOGIA 5 FEBBRAIO 2018

MATTEO LONGO

Esercizio 1. Sia $O = (0,0,0) \in \mathbb{R}^3$ e sia $X = \mathbb{R}^3 - \{O\}$. E' vero o falso che la sfera $\mathbb{S}^2 \subseteq \mathbb{R}^3$ è un retratto di deformazione di X? Giustificare la risposta.

Esercizio 2. Calcolare il gruppo fondametnale del toro a cui è stato tolto un punto.

Esercizio 3. Calcolare tutti i ricoprimenti di $\mathbb{S}^1 \times \mathbb{P}^2_{\mathbb{R}}$ dove \mathbb{S}^1 è il cerchio di \mathbb{R}^2 e $\mathbb{P}^2_{\mathbb{R}}$ è il piano proiettivo reale.

Esercizio 4. Sia X la sfera in \mathbb{R}^3 a cui sono stati tolti due punti, sia $Y = \mathbb{R} \times \mathbb{S}^1$ un cilindro di \mathbb{R}^3 (dove $\mathbb{S}^1 = \{(x, y, 0) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ e supponiamo che $X \cap Y = \{P\}$ dove P è un punto di \mathbb{R}^3 . Calcolare il gruppo fondamentale di X.

Esercizio 5. Una sezione di un ricoprimento $p: Y \to X$ è una mappa continua $s: X \to Y$ tale che $p \circ s$ sia l'identità di X. Supponiamo che G sia un gruppo che agisce in modo propriamente discontinuo da simistra su Y, definiamo $X = G \setminus Y$ e sia $p: Y \to X$ la proiezione canonica. Dimostrare che se p ha una sezione, allora p è il ricoprimento banale, i.e. Y è omeomorfo a $G \times X$ e l'azione di G su Y è data dalla moltiplicazione per G a sinistra: $g \cdot (g', x) = (gg', x)$ per ogni $g, g' \in G$ e $x \in X$.