Analisi Matematica 1 – Matematica

Secondo Compitino - Simulazione

Mercoledì 18 Gennaio 2012

Esercizio 1 (8 punti) Sia $A\subset\mathbb{R}$ un insieme da determinare e consideriamo la funzione $f:A\to\mathbb{R}$

$$f(x) = \frac{1+|x|}{1-|x|}, \quad x \in A.$$

- i) Determinare il più grande insieme $A \subset \mathbb{R}$ su cui f è definita.
- ii) Utilizzando la definizione $\varepsilon \delta$, provare che f è continua su A (nella distanza standard).

Esercizio 2 (8 punti) Al variare del parametro reale $\alpha \geq 0$, si consideri la serie di potenze nella variabile complessa $z \in \mathbb{C}$

$$\sum_{n=1}^{\infty} \frac{nz^n}{n^{\alpha} + 1}.$$

- i) Calcolare il raggio di convergenza R della serie.
- ii) Discutere la convergenza della serie nei punti $z \in \mathbb{C}$ con |z| = R.
- iii) Discutere la convergenza totale e uniforme della serie.

Sia noto che la successione $n \mapsto n/(n^{\alpha}+1)$ è decrescente quando $\alpha > 1$.

Esercizio 3 (8 punti) Si consideri la funzione $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$

$$d((x_1, x_2), (y_1, y_2)) = \max\{|x_1 - y_1|, |x_2 - y_2|^{1/2}\}.$$

- i) Provare che (\mathbb{R}^2, d) è uno spazio metrico.
- ii) Disegnare l'insieme $B_r(0)$, $0 \in \mathbb{R}^2$, nel caso r = 1/2 ed r = 2.
- iii) Provare che la topologia di (\mathbb{R}^2, d) coincide con la topologia standard di \mathbb{R}^2 .

Esercizio 4 (8 punti) Provare che per ogni successione reale $(a_n)_{n\in\mathbb{N}}$ sono equivalenti le seguenti due affermazioni:

- (A) La successione $(a_n)_{n\in\mathbb{N}}$ converge (ad un limite finito);
- (B) Esiste un numero $L \in \mathbb{R}$ con questa proprietà: ogni sottosuccessione di $(a_n)_{n \in \mathbb{N}}$ ha una ulteriore sottosuccessione che converge ad L.

2 ore e 30 minuti a disposizione