Analisi Matematica 1 – Matematica

Esercizi vari

Giovedì 5 Dicembre - Foglio 7

1. Criterio del Confronto asintotico

Esercizio 1 Al variare di $\alpha, \beta > 0$ studiare la convergenza delle serie

1)
$$\sum_{n=1}^{\infty} \left(\sqrt[3]{1 + \frac{\alpha}{n}} - \sqrt{1 + \frac{\beta}{n}} \right);$$
 2) $\sum_{n=1}^{\infty} \frac{1 - \cos(1/n^{\alpha})}{[1 - \cos(1/n)]^{\beta}}.$

2. Sottosuccessioni e punti di accumulazione

Esercizio 2 1) Costruire una successione di numeri reali $(a_n)_{n\in\mathbb{N}}$ con la seguente proprietà. Per ogni $L\in\mathbb{R}$ esiste una sottosuccessione $(a_{n_k})_{k\in\mathbb{N}}$ tale che $\lim_{k\to\infty}a_{n_k}=L$.

2) Stabilire se esiste una successione di numeri reali $(a_n)_{n\in\mathbb{N}}$ tale che per ogni $L\in\mathbb{R}, L\neq 0$, ci sia una sottosuccessione $(a_{n_k})_{k\in\mathbb{N}}$ tale che $\lim_{k\to\infty}a_{n_k}=L$, ma non per L=0.

Esercizio 3 Dato un insieme $A \subset \mathbb{R}$ indichiamo con D(A) ("derivato di A") l'insieme dei punti di accumulazione di A. Costruire un insieme $A \subset [0,1]$ tale che D(A) sia numerabile.

Esercizio 4 Calcolare tutti i punti di accumulazione dell'insieme $A \subset \mathbb{R}$

$$A = \left\{ \sqrt{n} - \sqrt{m} \in \mathbb{R} : m, n \in \mathbb{N} \right\}.$$

3. Rappresentazione binaria/decimale e corollari.

Esercizio 5 Esiste una funzione $f:[0,1]\to [0,1]$ tale che per ogni $y\in [0,1]$ si ha $\operatorname{Card}(f^{-1}(\{y\}))=\operatorname{Card}(\mathbb{R})$. Vero o falso?

Esercizio 6 Per ogni numero reale $x \in \mathbb{R}$ non negativo calcolare la somma della serie

$$\sum_{n=1}^{\infty} \frac{(-1)^{[2^n x]}}{2^n}.$$

Risposta: $1-2\{x\}$. Sopra [x] e $\{x\}$ sono la parte intera e la parte frazionaria di x. Lavorare in rappresentazione binaria

$$x = \sum_{k \in \mathbb{Z}} \frac{a_k}{2^k}, \quad a_k \in \{0, 1\}.$$