28 Novembre 2014

Esercizio 1. Usando la definizione, calcolare la derivata della funzione

$$f(x) = \frac{1}{(x+1)^2}$$

nei punti $x \neq -1$.

Esercizio 2. Usando la regola per la derivata della funzione composta, calcolare la derivata delle funzioni $f(x) = \arcsin(\log|\cos x|), g(x) = x^x$.

Risposta: $g'(x) = x^x \log x + x^x$.

Esercizio 3. Sia $f:[0,\infty)\to[0,\pi/2)$ la funzione $f(x)=\arctan(x2^x)$.

i) Verificare che f è invertibile su $[0, \infty)$.

ii) Detta $f^{-1}:[0,\pi/2)\to[0,\infty)$ la funzione inversa, calcolare la derivata di f^{-1} nel punto $y_0=\arctan(2)$.

Risposta: $Df^{-1}(y_0) = \frac{5}{2 + \log 4}$.

Esercizio 4. Sia $\alpha \in \mathbb{R}$ un parametro e sia $f : \mathbb{R} \to \mathbb{R}$ la funzione

$$f(x) = \begin{cases} |x|^{\alpha} \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0. \end{cases}$$

- i) Determinare tutti gli $\alpha \in \mathbb{R}$ tali che f sia continua in x = 0;
- ii) Determinare tutti gli $\alpha \in \mathbb{R}$ tali che f sia derivabile in x = 0.

Risposte: i) $\alpha > 0$; ii) $\alpha > 1$.

Esercizio 5. Sia $f: [-\pi, \pi] \to \mathbb{R}$ la funzione $f(x) = |x| \sin x + \cos x$.

- i) Stabilire se f è derivabile in tutti i punti dell'intervallo $(-\pi, \pi)$;
- ii) Studiare i punti di max e min (relativo e assoluto) di f nell'intervallo $[-\pi, \pi]$. Non è richiesto calcolare esplicitamente i punti di max e min. [relativo=locale]

Esercizio 6. i) Calcolare i punti di minimo e di massimo e i valori massimo e minimo (relativo e assoluto) della funzione $f(x) = \arctan x - \log(1 + x^2)$ sull'intervallo [0, 1].

ii) Calcolare i punti di minimo e di massimo e i valori massimo e minimo (relativo e assoluto) della funzione $g(x) = x^2 - 4|x| + 4$ sull'intervallo [-3, 3].

Esercizio 7. Sia $f:(0,\infty)\to\mathbb{R}$ la funzione $f(x)=x\log x$.

- i) Disegnare un grafico approssimativo di f;
- ii) Calcolare l'equazione della retta tangente al grafico di f nel punto di coordinate (1,0);
- iii) Verificare che per ogni x > 0 vale la disuguaglianza

$$\log x \ge 1 - \frac{1}{x}.$$

Esercizio 8. i) Determinare tutti gli $\alpha \in \mathbb{R}$ tali che la disequazione

$$\alpha x^2 - \log(1 + x^2) \ge 0$$

sia verificata per tutti gli $x \in \mathbb{R}$.

ii) Determinare tutti gli $\alpha \in \mathbb{R}$ tali che la disequazione

$$\frac{1}{2}x^2 - \log(1+x^2) \ge \alpha$$

sia verificata per tutti gli $x \in \mathbb{R}$.

Risposte: i) $\alpha \ge 1$; ii) $\alpha \le \frac{1}{2} - \log 2$.