Analisi 2

Roberto Monti

Appunti del Corso - Versione del 15 Aprile 2011

Indice

Capitolo 1. Teoria dell'integrale di Riemann. Integrali generalizzati	5
1. Integrali impropri su intervallo illimitato	5
2. Convergenza assoluta	7
3. Integrali oscillatori	8
4. Integrali impropri di funzioni non limitate	9
5. Esercizi	10
Capitolo 2. Introduzione alle equazioni differenziali ordinarie	13
1. Equazioni differenziali lineari del primo ordine	13
2. Equazione differenziali a variabili separabili	14
3 Fougzioni differenziali lineari del secondo ordine	16

CAPITOLO 1

Teoria dell'integrale di Riemann. Integrali generalizzati

1. Integrali impropri su intervallo illimitato

DEFINIZIONE 1.1. Siano $a \in \mathbb{R}$ ed $f: [a, \infty) \to \mathbb{R}$ una funzione tale che la restrizione $f: [a, M] \to \mathbb{R}$ sia (limitata e) Riemann-integrabile per ogni $a \leq M < \infty$. Diciamo che f è integrabile in senso improprio su $[a, \infty)$ se esiste finito il limite

(1.1)
$$I = \lim_{M \to \infty} \int_{a}^{M} f(x)dx.$$

In questo caso, chiamiamo il numero reale

$$\int_{a}^{\infty} f(x)dx = I$$

integrale improprio di f su $[a, \infty)$ ovvero diciamo che l'integrale improprio converge. Se il limite non esiste oppure esiste ma infinito diremo che l'integrale improprio di f diverge.

L'integrale improprio eredità dall'integrale di Riemann le proprietà di linearità, di monotonia e di decomposizione del dominio.

Esempio 1.2. Studiamo la convergenza del seguente integrale improprio al variare del parametro reale $\alpha>0$

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx.$$

Nel caso $\alpha \neq 1$ si ha

$$\int_{1}^{M} \frac{1}{x^{\alpha}} dx = \left[\frac{x^{-\alpha+1}}{-\alpha+1} \right]_{x=1}^{x=M} = \frac{M^{1-\alpha}-1}{1-\alpha}$$

e quindi:

a) Se $\alpha > 1$ l'integrale converge

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \lim_{M \to \infty} \frac{M^{1-\alpha} - 1}{1 - \alpha} = \frac{1}{\alpha - 1};$$

b) Se $0 < \alpha < 1$ l'integrale diverge

$$\int_1^\infty \frac{1}{x^\alpha} dx = \lim_{M \to \infty} \frac{M^{1-\alpha} - 1}{1 - \alpha} = \infty.$$

Nel caso $\alpha = 1$ si ha per ogni M > 1

$$\int_{1}^{M} \frac{1}{x} dx = \log M,$$

e quindi l'integrale diverge

$$\int_1^\infty \frac{1}{x} dx = \lim_{M \to \infty} \log M = \infty.$$

Osserviamo che se $f \geq 0$ è una funzione non negativa su $[0, \infty)$, allora il limite in (1.1) esiste finito oppure infinito. Infatti, la funzione

$$I(M) = \int_{a}^{M} f(x)dx$$

è monotona per $M \geq a$ e dunque ha limite per $M \to \infty$.

TEOREMA 1.3 (Criterio del confronto). Siano $f,g:[a,\infty)\to\mathbb{R},\ a\in\mathbb{R}$, due funzioni Riemann-integrabili su ogni intervallo $[a,M]\subset\mathbb{R}$ con $a\leq M<\infty$. Supponiamo che esista $\bar{x}\geq a$ tale che $0\leq f(x)\leq g(x)$ per ogni $x\geq \bar{x}$. Allora:

a)
$$\int_{a}^{\infty} g(x)dx < \infty \quad \Rightarrow \quad \int_{a}^{\infty} f(x)dx < \infty;$$

b) $\int_{a}^{\infty} f(x)dx = \infty \quad \Rightarrow \quad \int_{a}^{\infty} g(x)dx = \infty.$

Dim. Senza perdere di generalità si può supporre $\bar{x}=a$. Per la monotonia dell'integrale di Riemann, si ha per ogni $M \geq a$:

$$\int_{a}^{M} f(x)dx \le \int_{a}^{M} g(x)dx.$$

Le affermazioni a) e b) seguono passando al limite per $M \to \infty$.

TEOREMA 1.4 (Criterio del confronto asintotico). Siano $f, g : [a, \infty) \to \mathbb{R}, a \in \mathbb{R}$, due funzioni Riemann-integrabili su ogni intervallo $[a, M], M \geq a$. Supponiamo che risulti g(x) > 0 per ogni $x \geq a$ e che esista finito e diverso da zero il limite

$$L = \lim_{x \to \infty} \frac{f(x)}{g(x)} \neq 0.$$

Allora:

$$\int_a^\infty f(x)dx \quad \text{converge} \quad \text{se e solo se} \quad \int_a^\infty g(x)dx \quad \text{converge}.$$

Dim. Supponiamo ad esempio $0 < L < \infty$. Allora, per il Teorema della permanenza del segno esiste $\bar{x} \geq a$ tale che per ogni $x \geq \bar{x}$ si ha

$$\frac{L}{2} \le \frac{f(x)}{g(x)} \le 2L.$$

Siccome g > 0, si può riordinare la disuguaglianza ottenendo $\frac{L}{2}g(x) \le f(x) \le 2Lg(x)$ per ogni $x \ge \bar{x}$. La tesi segue dal Teorema del confronto.

Esempio 1.5. Studiamo la convergenza dell'integrale improprio

$$I_{\alpha} = \int_{1}^{\infty} \frac{x^{\alpha+1}}{x+1} \log\left(1 + \frac{1}{x}\right) dx$$

al variare del parametro reale $\alpha \in \mathbb{R}$. Ricordiamo lo sviluppo infinitesimale del logaritmo

$$\log\left(1 + \frac{1}{x}\right) = \frac{1}{x} + o\left(\frac{1}{x}\right)$$

per $x \to \infty$, dove o(1/x) è un errore che converge a zero più velocemente di 1/x quando $x \to \infty$. Allora la funzione integranda è

$$f(x) = \frac{x^{\alpha}}{1 + 1/x} \log\left(1 + \frac{1}{x}\right) = \frac{1}{x^{1-\alpha}} (1 + o(1)).$$

Scelta la funzione di confronto $g(x) = \frac{1}{x^{1-\alpha}}$, risulta g(x) > 0 per x > 0 e inoltre

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \neq 0.$$

Siccome l'integrale

$$\int_{1}^{\infty} \frac{1}{x^{1-\alpha}} dx$$

converge se e solo se $\alpha<0$, l'integrale in esame pure converge se e solo se $\alpha<0$. Ad esempio, nel caso $\alpha=-2$ con un conto lasciato come esercizio si può calcolare esplicitamente

$$\int_{1}^{\infty} \frac{1}{x^2 + x} \log\left(1 + \frac{1}{x}\right) dx = \log 2.$$

2. Convergenza assoluta

DEFINIZIONE 2.1. Siano $a \in \mathbb{R}$ ed $f: [a, \infty) \to \mathbb{R}$ una funzione tale che la restrizione $f: [a, M] \to \mathbb{R}$ sia (limitata e) Riemann-integrabile per ogni $a \leq M < \infty$. Diciamo che f è assolutamente integrabile su $[a, \infty)$ se converge l'integrale improprio

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty.$$

In questo caso, diciamo che l'integrale improprio $\int_a^\infty f(x)dx$ converge assolutamente.

TEOREMA 2.2. Sia $f:[a,\infty)\to\mathbb{R}$ una funzione (limitata e) Riemann–integrabile su ogni intervallo della forma $[a,M],\ M\geq a$. Se f è assolutamente integrabile su $[a,\infty)$ allora è integrabile in senso improprio su $[a,\infty)$ e inoltre

(2.2)
$$\left| \int_{a}^{\infty} f(x) dx \right| \le \int_{a}^{\infty} |f(x)| dx.$$

Dim. Definiamo le funzioni $f^+,f^-:[a,\infty)\to\mathbb{R}$

$$f^+(x) = \max\{f(x), 0\}$$
 e $f^-(x) = \min\{f(x), 0\}, x \ge a.$

Chiaramente $f(x) = f^+(x) + f^-(x)$ e $|f(x)| = f^+(x) - f^-(x)$ per ogni $x \ge a$. È noto, inoltre, che le funzioni f^+, f^- sono Riemann–integrabili su ogni intervallo [a, M]. Per il Teorema del confronto gli integrali impropri

$$\int_{a}^{\infty} f^{+}(x)dx \quad e \quad \int_{a}^{\infty} f^{-}(x)dx$$

convergono. Passando al limite per $M \to \infty$ nell'identità

$$\int_{a}^{M} f(x)dx = \int_{a}^{M} \left(f^{+}(x) + f^{-}(x) \right) dx = \int_{a}^{M} f^{+}(x)dx + \int_{a}^{M} f^{-}(x)dx$$

si ottiene la convergenza dell'integrale improprio di f su $[a, \infty)$. Passando al limite nella disuguaglianza

$$\left| \int_{a}^{M} f(x)dx \right| = \left| \int_{a}^{M} f^{+}(x)dx + \int_{a}^{M} f^{-}(x)dx \right|$$

$$\leq \int_{a}^{M} |f^{+}(x)|dx + \int_{a}^{M} |f^{-}(x)|dx = \int_{a}^{M} |f(x)|dx$$

si ottiene la (2.2).

Esempio 2.3. L'integrale improprio $\int_0^\infty \frac{\sin x}{x} dx$ non converge assolutamente, ovvero

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx = \infty.$$

Infatti, sul generico intervallo $[k\pi + \pi/4, k\pi + 3\pi/4], k = 0, 1, 2, ...,$ risulta

$$|\sin x| \ge \frac{\sqrt{2}}{2}$$
 e $\frac{1}{x} \ge \frac{1}{k\pi + 3\pi/4}$,

e dunque

$$\int_{k\pi}^{(k+1)\pi} \left| \frac{\sin x}{x} \right| dx \ge \frac{\sqrt{2}\pi}{8(k\pi + 3\pi/4)}.$$

Si deduce che

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx \ge \frac{\sqrt{2}\pi}{8} \sum_{k=0}^\infty \frac{1}{k\pi + 3\pi/4} = \infty.$$

3. Integrali oscillatori

Tipici esempi di integrali oscillatori sono

$$\int_0^\infty f(x)\sin x dx, \quad \int_0^\infty f(x)\cos x dx,$$

ovvero l'integrale a valori complessi

$$\int_0^\infty f(x)e^{ix}dx = \int_0^\infty f(x)\cos x dx + i \int_0^\infty f(x)\sin x dx,$$

dove $f:[0,\infty)\to\mathbb{R}$ è una funzione non negativa, $f\geq 0$.

Il seguente teorema fornisce condizioni sufficiente per la convergenza di integrali di questo tipo.

TEOREMA 3.1 (Criterio per integrali oscillatori). Siano $f \in C([a, \infty))$ e $g \in C^1([a, \infty))$, $a \in \mathbb{R}$, due funzioni con le seguenti proprietà:

- i) f = F' con primitiva $F \in C^1([a, \infty))$ limitata;
- ii) $g' \le 0 \ e \lim_{x \to \infty} g(x) = 0.$

Allora l'integrale improprio

$$\int_{a}^{\infty} f(x)g(x)dx$$

converge.

Dim. Per ogni M > a si ottiene con un'integrazione per parti:

$$\int_{a}^{M} f(x)g(x)dx = \left[F(x)g(x)\right]_{x=a}^{x=M} - \int_{a}^{M} F(x)g'(x)dx$$
$$= F(M)g(M) - F(a)g(a) - \int_{a}^{M} F(x)g'(x)dx.$$

Siccome F è limitata e g è infinitesima per $M \to \infty$, si ha

$$\lim_{M \to \infty} F(M)g(M) = 0.$$

D'altra parte, siccome $g' \leq 0$ si trova

$$\int_{a}^{M} |F(x)g'(x)| dx \le \sup_{x \in [a,\infty)} |F(x)| \int_{a}^{M} |g'(x)| dx = -\sup_{x \in [a,\infty)} |F(x)| \int_{a}^{M} g'(x) dx$$
$$= (g(a) - g(M)) \sup_{x \in [a,\infty)} |F(x)|,$$

e dunque, usando nuovamente il fatto che g è infinitesima

$$\int_{a}^{\infty} |F(x)g'(x)| dx \le g(a) \sup_{x \in [a,\infty)} |F(x)| < \infty.$$

Dal momento che la funzione Fg' è assolutamente integrabile su $[a, \infty)$, per il Criterio della convergenza assoluta esiste finito anche il limite

$$\lim_{M \to \infty} \int_{a}^{M} F(x)g'(x)dx.$$

Questo termina la prova del teorema.

ESEMPIO 3.2. Usando il Teorema 3.1 sugli integrali oscillatori, si vede che per ogni scelta del parametro $\alpha>0$ l'integrale improprio

$$\int_{1}^{\infty} \frac{\sin x}{x^{\alpha}} dx$$

converge. Infatti, la funzione $f(x) = \sin x$ ha primitiva limitata $F(x) = -\cos x$ e la funzione $g(x) = 1/x^{\alpha}$ ha derivata negativa per x > 0 ed è infinitesima per $x \to \infty$.

4. Integrali impropri di funzioni non limitate

DEFINIZIONE 4.1. Sia $f:(a,b] \to \mathbb{R}$, $-\infty < a < b < \infty$, una funzione (limitata e) Riemann–integrabile su ogni intervallo della forma $[a+\varepsilon,b]$ con $0 < \varepsilon < b-a$. Diciamo che f è integrabile in senso improprio su (a,b] se esiste finito il limite

$$I = \lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx.$$

In questo caso, diciamo che l'integrale improprio di f su (a,b] converge e poniamo

$$\int_{a}^{b} f(x)dx = I.$$

Lo studio degli integrali impropri di funzioni come nella definizione precedente si può ricondurre allo studio di integrali impropri su intervallo illimitato tramite il cambiamento di variabile $y = \frac{b-a}{r-a}$ che porta alla trasformazione formale di integrali

$$\int_{a}^{b} f(x)dx = (b-a) \int_{1}^{\infty} f\left(a + \frac{b-a}{y}\right) \frac{dy}{y^{2}}.$$

ESEMPIO 4.2. Con una discussione analoga a quella svolta nell'Esempio 1.2 si deduce che, al variare del parametro reale $\alpha > 0$, l'integrale improprio

$$\int_0^1 \frac{1}{x^{\alpha}} dx$$

converge se e solo se $\alpha < 1$.

Enunciamo, senza dimostrazione, un Teorema del confronto asintotico per integrali di funzioni non limitate.

TEOREMA 4.3 (Criterio del confronto asintotico). Siano $f, g:(a, b] \to \mathbb{R}, -\infty < a < b < \infty$, due funzioni (limitate e) Riemann-integrabili su ogni intervallo della forma $[a + \varepsilon, b], 0 < \varepsilon < b - a$. Supponiamo che:

- i) $\lim_{x \to a^+} g(x) = \infty;$
- ii) il seguente limite esiste finito e diverso da zero

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} \neq 0.$$

Allora:

$$\int_a^b f(x)dx \quad \text{converge} \quad \Leftrightarrow \quad \int_a^b g(x)dx \quad \text{converge}.$$

5. Esercizi

ESERCIZIO 1. Al variare del parametro $\alpha \geq 0$, studiare la convergenza e la convergenza assoluta dell'integrale improprio

$$\int_{1}^{\infty} \frac{\sin x \log x}{x^{\alpha}} dx.$$

Questo esercizio è stato risolto in classe. La risposta è la seguente: per $\alpha > 1$ si ha convergenza assoluta (e quindi anche semplice); per $0 < \alpha \le 1$ non si ha convergenza assoluta ma c'è convergenza semplice; per $\alpha = 0$ non c'è convergenza semplice.

Esercizio 2. Calcolare i seguenti integrali impropri

1)
$$\int_0^\infty \frac{\log x}{(x+1)^2} dx$$
; 2) $\int_0^\infty x^{-2} e^{-\frac{1}{x}} dx$; 3) $\int_0^\infty e^{-\beta x} \cos(\alpha x) dx$, $\beta > 0$, $\alpha \in \mathbb{R}$.

5. ESERCIZI

11

Esercizio 3. Stabilire se convergono i seguenti integrali impropri

1)
$$\int_0^\infty \sin^2 x \, dx$$
; 2) $\int_0^\pi \frac{1}{\sqrt{1 - \sin(x)}} \, dx$; 3) $\int_0^1 \frac{\sqrt[3]{1 - x}}{\sqrt{1 - x^2}} \, dx$.

Esercizio 4. Stabilire se convergono assolutamente i seguenti integrali impropri

1)
$$\int_0^\infty \frac{\sin x}{1+x^2} dx$$
; 2) $\int_0^\infty x^2 e^{-\sqrt{x}} \cos x \, dx$; 3) $\int_1^\infty \left(\frac{1}{x} - \tan \frac{1}{x}\right) \sin x \, dx$.

Esercizio 5. Calcolare tutti gli $\alpha > 0$ tali che converga ciascuno dei seguenti integrali impropri

1)
$$\int_0^1 \frac{(1-\cos x)^\alpha}{\tan x - x} dx$$
; 2) $\int_0^1 \frac{\sin(x^\alpha)}{\log(1+x)} dx$;

3)
$$\int_0^\infty \frac{\arctan\sqrt{x} - \pi/2}{x^\alpha} dx; \quad 4) \int_2^\infty \frac{\sin\frac{1}{x}}{\log^\alpha x} dx.$$

Esercizio 6. Studiare la convergenza dei seguenti integrali oscillatori

1)
$$\int_2^\infty \frac{\sin x}{\log x} dx$$
; 2) $\int_1^\infty \sin x \arcsin \frac{1}{x} dx$; 3) $\int_0^\infty x \sin(x^4) dx$.

Esercizio 7. i) Determinare tutti i parametri $\alpha, \beta \in \mathbb{R}$ tali che il seguente integrale improprio converga

$$\int_0^\infty \frac{1+x^\beta}{x^\alpha(1+x^2)} dx.$$

ii) Rappresentare i parametri ammissibili nel piano cartesiano $\alpha\beta$.

CAPITOLO 2

Introduzione alle equazioni differenziali ordinarie

1. Equazioni differenziali lineari del primo ordine

Sia $I \subset \mathbb{R}$ un intervallo aperto e siano $a,b \in C(I)$ due funzioni continue. Un'equazione differenziale della forma

$$(1.3) y' + a(x)y = b(x), \quad x \in I,$$

si dice equazione lineare del primo ordine. Fissati $x_0 \in I$ e $y_0 \in \mathbb{R}$, possiamo prescrivere il valore della soluzione nel punto x_0 :

$$(1.4) y(x_0) = y_0.$$

Il problema di risolvere l'equazione differenziale (1.3) con la condizione iniziale (1.4) si chiama Problema di Cauchy. L'incognita del problema è una funzione $y \in C^1(I)$.

Dedurremo la formula risolutiva dell'equazione differenziale, e più in generale del Problema di Cauchy, con un argomento euristico. Consideriamo preliminarmente il caso b=0:

$$(1.5) y' + a(x)y = 0, \quad x \in I.$$

In questo caso, l'equazione differenziale si dice *omogenea*. Supponendo $y \neq 0$, ad esempio y > 0, l'equazione differenziale (1.5) si può riscrivere nella forma y'/y = -a(x). Una primitiva della funzione y'/y è $\log y$. Dunque, indicando con A una primitiva di a, ovvero A'(x) = a(x) per ogni $x \in I$, abbiamo

$$-A = \log y + d$$

per qualche costante $d \in \mathbb{R}$. Segue che $y = \exp(-d - A)$ e ponendo $c = e^{-d}$ troviamo la soluzione

(1.6)
$$y(x) = ce^{-A(x)}, \quad x \in I.$$

Questa funzione risolve l'equazione omogenea per ogni $c \in \mathbb{R}$ (in altri termini la limitazione y > 0 può essere lasciata cadere).

Ora cerchiamo una soluzione della forma (1.6) per l'equazione non omogenea (1.3), dove ora $c \in C^1(I)$ è una funzione incognita che deve essere determinata. Questo metodo si chiama "variazione della costante". Inserendo $y' = c'e^{-A} - ace^{-A}$ nell'equazione (1.3) otteniamo

$$c'e^{-A} = b$$
, ovvero $c' = be^{A}$.

Integrando tale equazione su un intervallo $(x_0, x) \subset I$ otteniamo

$$c(x) = c(x_0) + \int_{x_0}^x b(t)e^{A(t)}dt,$$

e dunque troviamo

(1.7)
$$y(x) = \left(c(x_0) + \int_{x_0}^x b(t)e^{A(t)}dt\right)e^{-A(x)}, \quad x \in I,$$

dove $c(x_0) \in \mathbb{R}$ è un numero reale. Per ogni scelta di tale numero, la funzione (1.8) verifica l'equazione differenziale (1.3).

Il numero $c(x_0)$ si può determinare imponendo che l'integrale generale y verifichi la condizione iniziale $y(x_0) = y_0$. Si ottiene $c(x_0) = y_0 e^{A(x_0)}$. Dunque otteniamo la formula di rappresentazione per la soluzione del Problema di Cauchy:

(1.8)
$$y(x) = \left(y_0 e^{A(x_0)} + \int_{x_0}^x b(t) e^{A(t)} dt\right) e^{-A(x)}, \quad x \in I,$$

Nel prossimo teorema proviamo che il metedo seguito rileva in effetti l'*unica* soluzione del problema di Cauchy.

TEOREMA 1.1. Siano $I \subset \mathbb{R}$ un intervallo aperto, $x_0 \in I$, $a, b \in C(I)$ e $y_0 \in \mathbb{R}$. Allora la funzione (1.8) risolve in modo unico il Problema di Cauchy (1.3)+(1.4).

Dim. Che la funzione (1.8) risolva il problema è un conto che ripercorre a ritroso l'argomento euristico. Proviamo che questa soluzione è l'unica.

Sia $z \in C^1(I)$ una soluzione dell'equazione differenziale (1.3) e consideriamo la funzione ausiliaria

$$w(x) = e^{A(x)}z(x) - \int_{x_0}^x b(t)e^{A(t)}dt,$$

dove A è una primitiva di a. Dal momento che sull'intervallo I risulta

$$w' = (az + z')e^A - be^A = 0,$$

per il Teorema di Lagrange la funzione w è costante su I, ovvero esiste $k \in \mathbb{R}$ tale che $w(x) = k \in \mathbb{R}$ per ogni $x \in I$. Dunque, si ha

$$z(x) = \left(k + \int_{x_0}^x b(t)e^{A(t)}dt\right)e^{-A(x)}.$$

D'altra parte, se z risolve anche la condizione iniziale $z(x_0) = y_0$ deve essere $k = y_0 e^{A(x_0)}$ e quindi z coincide con la funzione in (1.8).

2. Equazione differenziali a variabili separabili

Siano $I, J \subset \mathbb{R}$ due intervalli aperti e siano $f \in C(I)$ e $g \in C(J)$ due funzioni continue. Cerchiamo le soluzioni dell'equazione differenziale del primo ordine

$$(2.9) y' = f(x)g(y), \quad x \in I$$

per qualche intervallo $I_1 \subset I$. Una simile equazione si dice a variabili separabili. Eventualmente, fissati un punto $x_0 \in I$ e un valore $y_0 \in J$ possiamo prescrivere la condizione iniziale

$$(2.10) y(x_0) = y_0.$$

Il problema (2.9)+(2.10) si chiama Problema di Cauchy.

Osserviamo preliminarmente che se $g(y_0) = 0$ allora la funzione costante $y(x) = y_0$, $x \in I$, è certamente una soluzione dell'equazione differenziale (2.9) che verifica la condizione iniziale.

Siccome vogliamo dividere per g, supponiamo che $g(y_0) \neq 0$. Allora risulta $g \neq 0$ in un intervallo aperto $J_1 \subset J$ che contiene y_0 . Possiamo allora dividere e separare le variabili. L'equazione differenziale si riscrive nel seguente modo:

(2.11)
$$\frac{y'(x)}{g(y(x))} = f(x),$$

dove x varia in un intorno $I_1 \subset I$ del punto x_0 tale che $y(x) \in J_1$ per ogni $x \in I_1$.

Sia $G \in C^1(J_1)$ una primitiva di 1/g(y) (nella variabile y), definita nell'intervallo J_1 e dove risulta $g \neq 0$. La funzione G è strettamente monotona, perchè $G'(y) \neq 0$, e pertanto G è invertibile.

Sia poi $F \in C^1(I)$ una primitiva di f. Integrando l'equazione differenziale (2.11) si ottiene

(2.12)
$$G(y(x)) = F(x) + C, \quad x \in I_1.$$

Qui, $C \in \mathbb{R}$ è una costante che può essere determinata tramite la condizione iniziale, e precisamente $C = G(y_0) - F(x_0)$.

La soluzione del Problam di Cauchy è dunque

$$(2.13) y(x) = G^{-1}(F(x) - F(x_0) + G(y_0)), x \in I_1,$$

dove $G^{-1}:G(J_1)\to J_1$ è la funzione inversa di G. L'intervallo $I_1\subset I$ è in generale più piccolo di I.

Il precedente argomento rileva due tipi di soluzione dell'equazione differenziale (2.9): le soluzioni costanti e le soluzioni per cui $g(y) \neq 0$. Potrebbero, tuttavia, esserci altre soluzioni. Se $g \neq 0$ su J, l'argomento prova che la soluzione è necessariamente della forma (2.13).

TEOREMA 2.1. Siano $I, J \subset \mathbb{R}$ due intervalli aperti, $x_0 \in I$ e $y_0 \in J$, e siano $f \in C(I)$, $g \in C(J)$ tali che $g \neq 0$ su J. Allora il Problema di Cauchy (2.9)+(2.10) ha una soluzione unica $y \in C^1(I_1)$ data dalla formula (2.13), per qualche intervallo aperto $I_1 \subset I$ contenente x_0 .

La dimostrazione del teorema è contenuta nell'argomento precedente.

Esempio 2.2. Cerchiamo la soluzione del Problema di Cauchy seguente

(2.14)
$$\begin{cases} y' = \frac{1+2x}{\cos y} \\ y(0) = \pi. \end{cases}$$

L'equazione differenziale è a variabili separabili y' = f(x)g(y) con f(x) = 1 + 2x e $g(y) = 1/\cos y$. In particolare, g è definita per $\cos y \neq 0$, ovvero per $y \neq \pi/2 + k\pi$ con $k \in \mathbb{Z}$. Siccome vogliamo che g sia definita su un intervallo, tenuto conto della condizione iniziale dovremo considerare $g: (\pi/2, 3\pi/2) \to \mathbb{R}$. Chiaramente $g \neq 0$.

Separando le variabili otteniamo $y'\cos y = 1 + 2x$, e integrando troviamo la soluzione generale in forma implicita dell'equazione differenziale

$$\sin y = x + x^2 + C,$$

dove $C \in \mathbb{R}$ è una costante che si determina con la condizione iniziale $y(0) = \pi$, ovvero $C = \sin y(0) = 0$.

Ora dobbiamo invertire la relazione $\sin y = x + x^2$. Osserviamo che l'inversione "meccanica"

$$z(x) = \arcsin(x + x^2)$$

non fornisce la soluzione del problema (2.14) perchè $z(0) = \arcsin(0) = 0$ e la condizione iniziale non è verificata.

Per determinare la soluzione corretta osserviamo che la funzione arcsin è l'inversa della funzione sin ristretta all'intervallo $[-\pi/2,\pi/2]$. Nel nostro caso, tuttavia, y prende valori in un intorno di π . Allora procediamo in questo modo. Ponendo $w(x) = y(x) - \pi$, abbiamo $w(0) = y(0) - \pi = 0$ e sin $w = \sin(y - \pi) = -\sin y = -(x + x^2)$. Siccome w assume valori in un intorno di 0, è ora lecito invertire la funzione seno e otteniamo $w = -\arcsin(x + x^2)$ e quindi

$$y(x) = \pi - \arcsin(x + x^2).$$

Questa è la soluzione del problema, che è definita nell'intervallo aperto

$$I_1 = \{x \in \mathbb{R} : x + x^2 < 1\}.$$

3. Equazioni differenziali lineari del secondo ordine

Sia $I \subset \mathbb{R}$ un intervallo aperto e siano $a, b, f \in C(I)$ funzioni continue. In questa sezione studiamo l'equazione differenziale lineare del secondo ordine:

$$y'' + a(x)y' + b(x)y = f(x), \quad x \in I.$$

L'incognita è una funzione $y \in C^2(I)$. L'equazione differenziale si dice lineare perchè l'operatore differenziale $\mathcal{L}: C^2(I) \to C(I)$

$$\mathcal{L}(y) = y'' + a(x)y' + b(x)y$$

è un operatore lineare.

Il seguente teorema di esistenza e unicità della soluzione per il relativo problema di Cauchy è il corollario di un teorema più generale che sarà visto e provato nel corso di Analisi 3.

TEOREMA 3.1. Siano $I \subset \mathbb{R}$ un intervallo aperto, $x_0 \in I$ e $y_0, y_0' \in \mathbb{R}$, e siano $a, b, f \in C(I)$ funzioni continue. Allora il Problema di Cauchy

(3.15)
$$\begin{cases} y'' + a(x)y' + b(x)y = f(x), & x \in I, \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \end{cases}$$

ha un'unica soluzione $y \in C^2(I)$.

Studiamo ora il caso omogeneo f=0. Consideriamo l'insieme delle soluzioni dell'equazione omogenea

$$S = \{ y \in C^2(I) : y'' + a(x)y' + b(x)y = 0 \text{ su } I \}.$$

Dal teorema precedente segue il seguente fatto.

Proposizione 3.2. L'insieme S delle soluzioni dell'equazione omogenea è uno spazio vettoriale reale di dimensione 2.

Dim. S è uno spazio vettoriale, perchè per ogni $\alpha, \beta \in \mathbb{R}$ e $y_1, y_2 \in S$, ovvero $\mathcal{L}(y_1) = \mathcal{L}(y_2) = 0$, risulta

$$\mathcal{L}(\alpha y_1 + \beta y_2) = \alpha \mathcal{L}(y_1) + \beta \mathcal{L}(y_2) = 0,$$

e quindi $\alpha y_1 + \beta y_2 \in S$.

Proviamo che S ha dimensione esattamente 2. Fissato un punto $x_0 \in I$, definiamo la trasformazione $T: S \to \mathbb{R}^2$ definita nel seguente modo

$$T(y) = (y(x_0), y'(x_0)).$$

La trasformazione T è lineare. Proviamo che T è iniettiva e suriettiva. Ne segue che S ed \mathbb{R}^2 sono linearmente isomorfi e dunque $\dim(S) = \dim(\mathbb{R}^2) = 2$.

Prova dell'iniettività: se T(y) = T(z) con $y, z \in S$ allora y e z risolvono lo stesso Problema di Cauchy (3.15) (con f = 0). Siccome per il Teorema 3.1 la soluzione del problema è unica, deve essere y = z.

Prova della suriettività: dato $(y_0, y_0') \in \mathbb{R}^2$, dal Teorema 3.1 segue l'esistenza di $y \in S$ tale che $T(y) = (y_0, y_0')$.

Dunque, lo spazio vettoriale S ha una base vettoriale composta da due soluzioni. Consideriamo due soluzioni $y_1, y_2 \in S$ (non necessariamente linearmente indipendenti). Formiamo la $matrice\ Wronskiana$

$$W_{y_1,y_2}(x) = \begin{pmatrix} y_1(x) & y_2(x) \\ y'_2(x) & y'_2(x) \end{pmatrix},$$

e il determinante Wronskiano

$$w(x) = \det \begin{pmatrix} y_1(x) & y_2(x) \\ y'_2(x) & y'_2(x) \end{pmatrix} = y_1(x)y'_2(x) - y_2(x)y'_1(x).$$

Chiaramente risulta $w \in C^1(I)$ e inoltre

$$w' = y_1'y_2' - y_2'y_1' + y_1y_2'' - y_2y_1''$$

= $y_1(-a(x)y_2' - b(x)y_2) - y_2(-a(x)y_1' - b(x)y_1)$
= $-a(x)w$.

Integrando l'equazione differenziale scopriamo che il determinante Wronskiano ha la forma

$$w(x) = w(x_0) \exp\left(-\int_{x_0}^x a(t)dt\right), \quad x \in I.$$

In particolare, se $w(x_0) = 0$ in un punto $x_0 \in I$ allora w = 0 in tutti i punti.

PROPOSIZIONE 3.3. Siano $y_1, y_2 \in S$ soluzioni dell'equazione omogenea e sia $w = \det W_{y_1,y_2}$ il corrispondente determinante Wronskiano. Allora:

- (A) y_1, y_2 sono linearmente dipendenti se e solo se esiste $x_0 \in I$ tale che $w(x_0) = 0$ (equivalentemente se e solo se w = 0 su I);
- (B) y_1, y_2 sono linearmente indipendenti se e solo se esiste $x_1 \in I$ tale che $w(x_1) \neq 0$ (equivalentemente se e solo so $w \neq 0$ su I).

Dim. Proviamo (A). Se y_1, y_2 sono linearmente dipendenti allora esistono $(\alpha, \beta) \neq (0,0), \alpha, \beta \in \mathbb{R}$, tali che $\alpha y_1 + \beta y_2 = 0$ su I. Derivando vale anche $\alpha y_1' + \beta y_2' = 0$ su I, e dunque

$$\left(\begin{array}{cc} y_1 & y_2 \\ y_2' & y_2' \end{array}\right) \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right).$$

Segue che w = 0 su tutto I.

Supponiamo ora che $w(x_0)=0$ in un punto $x_0\in I$. Allora, esistono $(\alpha,\beta)\neq (0,0)$ tali che

$$\left(\begin{array}{cc} y_1(x_0) & y_2(x_0) \\ y_2'(x_0) & y_2'(x_0) \end{array}\right) \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right).$$

La funzione $z = \alpha y_1 + \beta y_2$ è in S e verifica $z(x_0) = 0$ e $z'(x_0) = 0$. Dall'unicità della soluzione per il Problema di Cauchy segue che z = 0 e quindi y_1, y_2 sono linermente dipendenti.

L'affermazione (B) segue da (A) per negazione.