1. Funzioni di più variabili I

Esercizio 1.1. 1) Scrivere l'equazione del piano tangente al paraboloide $f(x,y) = x^2 + y^2$ in un generico punto $(x_0, y_0) \in \mathbb{R}^2$. Fare lo stesso con l'iperboloide di rotazione $f(x,y) = \sqrt{1 + x^2 + y^2}$, con $(x,y) \in \mathbb{R}^2$. Disegnare infine i grafici in \mathbb{R}^3 delle funzioni date.

2) Si consideri l'ellissoide $\{(x,y,z)\in\mathbb{R}^3: 2x^2+4y^2+z^2=1\}$. Calcolare il piano tangente all'ellissoide in un suo generico punto esprimendo una sua porzione come grafico di funzione.

Esercizio 1.2. Siano $A = \{(x, y, z) \in \mathbb{R}^3 : x \neq 0\}$ ed $f : A \longrightarrow \mathbb{R}$,

$$f(x, y, z) = x^5 \sin\left(\frac{y^2 + z^2}{x^2}\right).$$

- i) Stabilire se esiste $k \in \mathbb{R}$ tale che f verifica l'equazione alle derivate parziali $xf_x + yf_y + zf_z = kf$ in tutti i punti di A.
- ii) Stabilire se f può essere estesa con continuità su tutto \mathbb{R}^3 .
- iii) Stabilire se f può essere estesa su tutto \mathbb{R}^3 ad una funzione $C^1(\mathbb{R}^3)$.

Esercizio 1.3. Sia $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ la funzione

$$f(x) = \frac{1}{|x|}, \quad |x| \neq 0,$$

dove $|x|=(x_1^2+\ldots+x_n^2)^{1/2}$. Calcolare in un generico punto $x\neq 0$ la derivata direzionale di f lungo il $versore\ v=\frac{\nabla f(x)}{|\nabla f(x)|}$.

Esercizio 1.4. Siano $E = \{(x,y) \in \mathbb{R}^2 : x^2 + 9y^2 < 9\}$ ed $f : \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} x^2 + 9y^2 & (x,y) \in E \\ 9 & (x,y) \notin E. \end{cases}$$

Quali delle seguenti affermazioni sono vere e quali false?

- (A) f_x è continua in (0,1) e f_y lo è in (3,0).
- (B) f_x ed f_y esistono in tutti i punti dell'ellisse $\partial E = \{(x,y) \in \mathbb{R}^2 : x^2 + 9y^2 = 9\}$. [Incidentalmente, dimostrare che ∂E è la frontiera di E.]
- (C) f è differenziabile in (0,1) e (3,0).

[Risposta: (A) è vera; (B) e (C) sono false].

Esercizio 1.5 (*). Per ogni $\alpha \in \mathbb{R}$ sia $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ la funzione sotto definita. In ciascun caso, determinare α in modo che f sia differenziabile in ogni punto di \mathbb{R}^2 :

o, determinate
$$\alpha$$
 in modo che f sia differenzia (1)
$$f(x,y) = \begin{cases} \frac{e^{x^2 + 2y^2} - 1}{(2x^2 + y^2)^{\alpha}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases};$$
 [Risposta: $\alpha < \frac{1}{2}$]

(2)
$$f(x,y) = \begin{cases} \frac{\arctan(x^2+y^2)}{(x^4+y^4)^{\alpha}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
;

[Risposta:
$$\alpha < \frac{1}{2}$$
]

(2) $f(x,y) = \begin{cases} \frac{\arctan(x^2+y^2)}{(x^4+y^4)^{\alpha}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$;

[Risposta: $\alpha < \frac{1}{4}$]

(3) $f(x,y) = \begin{cases} \frac{|x|^2 + |y|^{2\alpha}}{(\log(1+(x^2+y^2)))^{\frac{1}{4}}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$; si assuma $\alpha > 0$.

[Risposta: $\alpha > \frac{3}{4}$].

Esercizio 1.6 (**).

(1) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la seguente funzione:

$$f(x,y) = \begin{cases} xy \sin\left(\frac{1}{xy}\right) & xy \neq 0, \\ 0 & xy = 0. \end{cases}$$

Provare che f è continua in \mathbb{R}^2 ma non è derivabile nel punto (1,0).

(2) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la seguente funzione:

$$f(x,y) = \begin{cases} x^2 y^2 \sin\left(\frac{1}{xy}\right) & xy \neq 0, \\ 0 & xy = 0. \end{cases}$$

Provare che f è differenziabile in ogni punto di \mathbb{R}^2 ma non è di classe $\mathbf{C}^1(\mathbb{R}^2)$.

Esercizio 1.7. Sia $f(x,y) = \log(\exp(x) + \exp(y))$, con $(x,y) \in \mathbb{R}^2$. Calcolare l'espressione

$$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2.$$

Soluzione Esercizio 1.1.(2). Per determinare il dominio di f, si dovrà evidentemente risolvere la disuguaglianza

$$(1) xe^y - ye^x \ge 0$$

per $(x,y) \in \mathbb{R}^2$. Conviene ora studiare la funzione di una variabile reale $g(t) = \frac{t}{e^t}$. Il motivo è che dividendo ambo i membri della disuguaglianza per la funzione (sempre $\neq 0$) e^{x+y} si ottiene la disuguaglianza equivalente

$$\frac{x}{e^x} \ge \frac{y}{e^y}$$
.

La derivata di g vale $g'(t) = \frac{1-t}{e^t}$. Perciò g è crescente a sinistra di 1 (cioè in $]-\infty,1[$), decrescente a destra di 1 (cioè in $]1,+\infty[$) e g'(1)=0. Inoltre $g(t)\longrightarrow 0$ se $t\to +\infty$. Notare infine che t=1 è un massimo assoluto (e $g(t)=\frac{1}{e}$) e che se t>0 il grafico di g,

$$graf(g) = \{(t, y) \in \mathbb{R}^2 : y = g(t)\},\$$

intercetta la retta y=a in esattamente due punti per ogni $a\in \left]0,\frac{1}{e}\right[$. Siano essi t e \bar{t} . Si osservi che ciò equivale a dire che se t>0, \bar{t} è definito dalla relazione $\bar{t}e^{\bar{t}}=te^t$, che è soddisfatta da un solo $\bar{t}\neq t,\bar{t}>0$.

Perciò, se $y \leq 0$ la disuguaglianza (1) vale se $x \geq y$. Se y > 0, dividiamo due casi. Se $0 < y \leq 1$, la disuguaglianza vale se $y \leq x \leq \overline{y}$. Infine, se y > 1 si deve avere $\overline{y} \leq x \leq y$.

Soluzione Esercizio 1.3.(2). Si tratta di verificare che

$$\lim_{(x,y)\to(0,1)} f(x,y) = -1 = f(0,1),$$

ossia la continuità di f in (0,1). Data $f(x,y) = \frac{x+y}{x-y}$, si deve pertanto mostrare che

$$\forall \epsilon > 0 \ \exists \delta_{\epsilon} > 0 \ \text{tale che} \ \left(\|(x,y) - (0,1)\| \le \delta_{\epsilon} \Rightarrow \left| \frac{x+y}{x-y} + 1 \right| \le \epsilon \right).$$

Si ha

$$\left| \frac{x+y}{x-y} + 1 \right| = \left| \frac{2x}{x-y} \right|.$$

Scegliamo δ in modo che la palla $B((0,1),\delta)$ centrata in (0,1) non intersechi la bisettrice del primo e terzo quadrante di \mathbb{R}^2 . Ad esempio, porre $\delta < \frac{1}{4}$. Se $(x,y) \in B((0,1),\delta)$ allora, in particolare, si ha $|x| < \delta$, $|y-1| < \delta$ e y > x. Ne segue che per tali (x,y) vale

$$|x - y| > 1 - 2\delta > \frac{1}{2},$$

e quindi

$$\left| \frac{2x}{x - y} \right| < \frac{2\delta}{1 - 2\delta} < 4\delta.$$

Ponendo quest' ultima quantità minore di ϵ , la tesi segue con $\delta < \min \left\{ \frac{1}{4}, \frac{\epsilon}{4} \right\}$.