Analisi Matematica 2

Foglio 4

Curve 5 Aprile 2016

Esercizio 1. Sia $\gamma:[0,\pi]\to\mathbb{R}^3$ la curva $\gamma(t)=(\cos t,\sin t,t^2),\,t\in[0,\pi].$

1) Verificare che γ è regolare, calcolare il campo tangente unitario T e disegnare il supporto.

2) Data la funzione $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = \sqrt{|z|}$, calcolare l'integrale $\int_{\gamma} f \, ds$.

Risp. $[(1+4\pi^2)^{3/2}-1]/12$.

Esercizio 2. Siano L>0 ed $\alpha\geq 0$ due parametri fissati. Calcolare la lunghezza della curva $\gamma:[L,L]\to\mathbb{R}^3$

$$\gamma(t) = (\alpha \cosh t \cos t, \alpha \cosh t \sin t, \alpha t), \quad t \in [-L, L].$$

Disegnare il supporto di γ . Risp. $2\sqrt{2}\alpha \sinh L$.

Esercizio 3. Si consideri la curva piana $\gamma:(0,\infty)\to\mathbb{R}^2$

$$\gamma(t) = \left(\frac{t^3}{3} - t, (\log t)^2\right), \quad t > 0.$$

- i) Stabilire se γ è semplice e se è regolare.
- ii) Se possibile, calcolare il campo tangente unitario T(t) e poi calcolare i limiti

$$\lim_{t \to 1^{\pm}} T(t).$$

iii) Disegnare il supporto di γ .

Esercizio 4. Si consideri il tratto di cicloide $\gamma:[0,2\pi]\to\mathbb{R}^2$

$$\gamma(t) = (t - \sin t, 1 - \cos t), \quad t \in [0, 2\pi].$$

Posto $A = \{(x,y) \in \mathbb{R}^2 : y \geq 0\}$, si consideri la funzione $f : A \to \mathbb{R}$, $f(x,y) = x\sqrt{y}$. Calcolare l'integrale di f lungo γ

$$I = \int_{\gamma} f \, ds.$$

Esercizio 5. Sia $\gamma:[0,2\pi]\to\mathbb{R}^2$ la curva piana data dall'equazione polare $\varrho=1-\cos\vartheta,$ $\vartheta\in[0,2\pi].$ Disegnare il supporto di γ e calcolare la sua lunghezza.

Risp. L=8. La curva γ è la cardioide.

Esercizio 6. \bigstar Siano $f, F \in C^2([0,1])$ due funzioni convesse tali che $f \leq F$ in tutti i punti, f(0) = F(0) ed f(1) = F(1). Consideriamo le curve date in forma cartesiana $\gamma(t) = (t, f(t))$ e $\Gamma(t) = (t, F(t))$. Provare che $L(\Gamma) \leq L(\gamma)$.