Funzioni C^1 e C^2 . Insiemi compatti.

Maggio 2017

Esercizio 1. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la seguente funzione:

$$f(x,y) = \begin{cases} x^2 y^2 \sin\left(\frac{1}{xy}\right) & xy \neq 0, \\ 0 & xy = 0. \end{cases}$$

Provare che f è differenziabile in ogni punto di \mathbb{R}^2 ma non è di classe $C^1(\mathbb{R}^2)$.

Esercizio 2. Una funzione $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ si dice (positivamente) omogenea di grado $\alpha \in \mathbb{R}$ se $f(tx) = t^{\alpha}f(x)$ per ogni $x \neq 0$ e t > 0.

Provare che se $f \in C^1(\mathbb{R}^n \setminus \{0\})$ è omogenea di grado α allora le sue derivate parziali sono omogenee di grado $\alpha - 1$. Verificare inoltre la formula di Eulero, per $x \neq 0$,

$$\langle \nabla f(x), x \rangle = \alpha f(x).$$

Esercizio 3. Sia $f: A \to \mathbb{R}$, $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$, la funzione

$$f(x,y) = \begin{cases} xy(-\log(x^2 + y^2))^{1/2}, & 0 < x^2 + y^2 < 1, \\ 0 & (x,y) = (0,0). \end{cases}$$

- i) Provare che $f \in C^1(A)$;
- ii) Provare che esistono $f_{xx}, f_{yy} \in C(A)$;
- iii) Stabilire se $f \in C^2(A)$.

Esercizio 4. Sia (X,d) uno spazio metrico e siano $K_1, \ldots, K_n \subset X$ insiemi compatti. Provare che $K_1 \cup \ldots \cup K_n$ e $K_1 \cap \ldots \cap K_n$ sono ancora compatti. È vero che l'unione numerabile di compatti è ancora un insieme compatto? È vero che l'intersezione numerabile di compatti è ancora un insieme compatto?

Esercizio 5. Stabilire se i seguenti sottoinsiemi $H, K \subset \mathbb{R}^2$ sono compatti:

$$K = \{(x, y) \in \mathbb{R}^2 : x^8 + y^8 - x^4 + y^4 \le 1\},$$

$$H = \{(x, y) \in \mathbb{R}^2 : -1 \le x^3 + xy + y^3 \le 1\}.$$