Foglio di esercizi impegnativi.

Esercizio 1 Sia (X, \mathcal{A}, μ) uno spazio di misura finito, $\mu(X) < \infty$. Dato $1 \leq p < \infty$, provare che ogni funzione $f: X \to \mathbb{R}$ verifica

$$f \in L^p(X) \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} k^p \mu(A_k) < \infty,$$

dove $A_k = \{x \in X : k - 1 \le |f(x)| < k\}.$

Esercizio 2 Sia $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni in $L^p([0,1])$, $1 \leq p < \infty$, uniformemente limitata $||f_n||_p \leq C < \infty$ per ogni $n \in \mathbb{N}$ e supponiamo che $f_n(x) \to f(x)$ per q.o. $x \in [0,1]$.

- i) Provare che $f \in L^p([0,1])$.
- ii) Se $1 , provare che <math>f_n \to f$ in $L^q([0,1])$ per ogni $1 \le q < p$.

Sugg. ii) Hölder \rightarrow uniforme integrabilità.

Esercizio 3 Sia $1 . Provare che esiste una costante <math>C_p > 0$ tale che per ogni funzione $f \in C^2([0,1])$ tale che f(0) = f(1) = 0 si ha

$$\int_0^1 |f'(x)|^2 dx \le C_p \left(\int_0^1 |f(x)|^p dx \right)^{1/p} \left(\int_0^1 |f''(x)|^q dx \right)^{1/q},$$

dove 1/p + 1/q = 1 sono esponenti Hölder coniugati. Calcolare la costante ottimale C_p quando p = 2 e le funzioni che la realizzano.

Sugg. $f'^2 = f'f'$, integrare per parti e poi Hölder; con p = 2, integrare $f'' = \lambda f$ e discutere $\lambda \in \mathbb{R}$.

Esercizio 4 \star Provare che ogni funzione $f \in C^1([0,1])$ tale che f(0) = f(1) = 0 verifica

$$\left(\int_{0}^{1} f(x)dx\right)^{2} \leqslant \frac{1}{12} \int_{0}^{1} f'(x)^{2} dx.$$

Determinare tutte le funzioni per cui si ha uguaglianza.

Esercizio 5 Per ogni $n \in \mathbb{N}$, sia χ_n la funzione caratteristica dell'intervallo $[\log n, \log(n + 1)]$. Stabilire per quali $1 \leq p < \infty$ la successione di funzioni $\varphi_n = \sqrt{n}\chi_n$:

- i) converge fortemente in $L^p(0,\infty)$.
- ii) converge debolmente in $L^p(0,\infty)$. $\star\star$