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Exercise 1. Let (X,M, µ) be a measure space.

(i) For f ∈ L+(X) define the integral of f , and making use of this definition prove that
´

X f = 0
only if µ({f 6= 0}) = 0.

(ii) Prove that if f, g ∈ L1
µ(X,R) then f = g a.e. if and only if

´

E
f =

´

E
g for every E ∈ M (hint:

consider E = {f < g} . . . ).
(iii) Prove that if f, g ∈ L1

µ(X,C) then f = g a.e. if and only if
´

E
f =

´

E
g for every E ∈ M.

(iv) Define Dynkin classes and state Dynkin’s theorem.
(v) Let E ⊆ M be closed under intersection, assume that M(E) = M, and that X is covered by

a countable subset of E . Assume that f, g ∈ L1(µ) are such that
´

E f =
´

E g for every E ∈ E .
Prove that f = g a.e.

Solution. (i) Definition:
´

X f = sup{
´

X ϕ : 0 ≤ ϕ ≤ f, ϕ simple}. If
´

X f = 0 then
´

X ϕ = 0 for every
positive simple ϕ under f ; in particular, if E(n) = {f > 1/n} then (1/n)χE(n) is a simple function under

f , so that
´

X
(1/n)χE(n) = 0, that is (1/n)µ(E(n)) = 0, which implies µ(E(n)) = 0; since

{f 6= 0} = {f > 0} =

∞
⋃

n=1

E(n), we have µ({f > 0}) = 0.

(ii) From
´

E f =
´

E g we get
´

E(g − f) = 0; but we have g(x) − f(x) > 0 for every x ∈ E, so that
´

E
(g − f) = 0 implies µ(E) = 0. In the same way, if F = {f > g} we get µ(F ) = 0, so that f = g a.e. in

X .
(iii)

´

E f =
´

E g is equivalent to
´

E Re f =
´

E Re g and
´

E Im f =
´

E Im g. By (ii) this happens for
every measurable E iff Re f = Re g and Im f = Im g a.e., that is f = g a.e.

(iv) See Lecture Notes, 3.4.1
(v) The proof mimics the proof of LN, 3.4.3. Given a set E ∈ E consider the set EE = {F ∩ E : F ∈

E}(= {G ⊆ E : G ∈ E}), and the set CE = {A ∈ M : A ⊆ E,
´

A
f =

´

A
g}. This set is a Dynkin class

of parts of E, as is easy to check: closure under countable disjoint union is countable additivity of the
integral: if f ∈ L1(µ) and (A(n))n∈N is a countable disjoint sequence of elements ofM, then

∑∞
n=0 f χE(n)

is a normally convergent series in L1(µ), so
´

⋃
n
A(n) f χA(n) =

∑∞
n=0

´

X f χA(n) =
∑∞

n=0

´

A(n) f ; same for

g. And since
´

ErA
f =

´

E
f −

´

A
f for every measurable subset A of E, and the same for g, we also have

closure under complementation. Since this set CE contains EE , it contains the Dynkin class generated by
it, and since EE is closed under intersection, by Dynkin’ s theorem CE contains the σ−algebra generated
by EE , which is ME = {A ∈ M : A ⊆ E}. Now X can be written as a countable union of members

of E , say X =
⋃

k∈NEk; by the usual technique (Fk = Ek r
(

⋃k−1
j=0 Ej

)

) we can write X as a countable

disjoint union of members Fk of M(E) with Fk ⊆ Ek; given A ∈ M(E) we have A =
⋃∞

k=0 A ∩ Fk, a
countable disjoint union, and

´

A∩Fk
f =

´

A∩Fk
g for every k, since A ∩ Fk ∈ MEk

. �

Remark. Of course, considering h = f − g, (i),(iii),(iv), (v) may be stated as
´

E
h = 0 for every E ∈ . . . implies

h = 0 a.e.. The statement:

. If f, g ∈ L+(X) are such that
´

E
f =

´

E
g for every E ∈ M, then f = g a.e.

is FALSE unless some additional hypothesis is made on µ: take an uncountable set X with the σ−algebra of
countable or co–countable subsets, and the measure µ that is ∞ for co–countable, and 0 for countable sets: the
constants 1 and 2 have integral 0 on countable and ∞ on co–countable sets, but are never equal. We can prove
(but the proof is much more complicated than (ii) above, owing to possibly infinite integrals):

. If µ is semifinite, and f, g ∈ L+(X) are such that
´

E
f =

´

E
g for every E ∈ M, then f = g a.e.
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Proof. Let A = {f < g}; it is enough to prove that µ(A) = 0 (an analogous proof will work for B = {g < f}).
Given n ∈ N, let E(n) = {g ≤ n} ∩A. Then µ(E(n)) = 0; in fact, if not, by semifiniteness we get E ⊆ E(n) with
0 < µ(E) < ∞. Then

´

E
f =

´

E
g ≤

´

E
n = nµ(E) < ∞; it follows that

´

E
(g − f) = 0, but g(x) − f(x) > 0

for every x ∈ E, impossible if µ(E) > 0. Then µ(E(n)) = 0 for every n, so that µ({g < ∞} ∩ A) = 0 (since
{g < ∞} =

⋃
∞

n=1
{g ≤ n}). If µ({g = ∞} ∩ A) > 0 we still get a contradiction: notice that since f(x) < ∞ for

every x ∈ A we still have {g = ∞} ∩ A =
⋃

∞

n=1
{g = ∞} ∩ A ∩ {f ≤ n}; unless these sets have all measure zero

we can get E ⊆ {g = ∞} ∩ A ∩ {f ≤ n} with 0 < µ(E) < ∞; then
´

E
f ≤ nµ(E) < ∞, but

´

E
g = ∞. Then

µ(A) = µ(A ∩ {g < ∞}) + µ(A ∩ {g = ∞}) = 0. �

Exercise 2. (i) Let U be an open subset of Rn. Prove that U is a countable union of compact
intervals (or even compact cubes).

(ii) Prove that if X is an open subset of Rn then the σ−algebra of Borel subsets of X is generated
by the compact intervals contained in X .

From now on U and V are open subintervals of R and φ : U → V is a C1 diffeomorphism (a C1

bijective map with C1 inverse).

(iii) We define on the σ−algebra B of Borel subsets of U the set functions:

µ(E) = λ(φ(E)); ν(E) =

ˆ

E

|φ′(x)| dλ(x),

where of course λ = λ1 is the one dimensional Lebesgue measure. Prove that µ and ν are
measures, and that µ = ν on B.

(iv) The measure µ can be considered as an image measure, in which way? Using this fact prove that,
for every f ∈ L1

λ(V,K) we have the change of variable formula:
ˆ

V

f(y) dy =

ˆ

U

f(φ(x)) |φ′(x)| dx.

Solution. (i) Consider the set of all closed cubes Q(c, r] = {x ∈ Rn : ‖x − c‖∞ ≤ r} with centers
c ∈ Qn and half–sides r ∈ Q> which are contained in U : this is a countable set of compact cubes, whose
union is U . In fact, given a ∈ U , pick c ∈ Qn such that ‖a − c‖∞ < d = dist(a,Rn r U)/3, where
dist(a,Rn rU) = inf{‖a− y‖∞ : y ∈ Rn rU}. Picking a rational number r such that d < r < 2d we get
a ∈ Q(c, r] ⊆ U .

(ii) The compact intervals are Borel sets, so they generate a σ−algebra contained in the Borel sets
of X . But as shown in (i), every open set is a countable union of compact intervals, so the generators
of the Borel σ−algebra are all contained in the σ−algebra generated by compact intervals, and so these
σ−algebras coincide.

(iii) Answering now to part of (iii) we can observe that µ = λφ−1← is the image measure of the
Lebesgue measure on V , by means of the map φ−1 : V → U( see LN, 3.3.7.2). Anyway the direct
verification that µ is a measure (thanks to the fact that φ is a homeomorphism) is trivial. We know
that ν is a measure (the one with density |φ′| with respect to Lebesgue measure), owing to countable
additivity of integrals of positive functions (LN, 3.3.5.2). Remember now that a diffeomorphism between
intervals of R has necessarily a derivative always strictly positive or strictly negative: it cannot vanish,
and intervals are connected. If [a, b] is a compact subinterval of U we have φ([a, b]) = [φ(a), φ(b)] if φ is
increasing (φ′(x) > 0), and φ([a, b]) = [φ(b), φ(a)] if φ is decreasing (φ′(x) < 0). And we have

ˆ

[a,b]

|φ′(x)| dx = ±
ˆ b

a

φ′(x) dx = ±(φ(b)− φ(a)),

where + holds if φ is increasing, − in the other case. Then µ and ν coincide and are finite on compact
intervals, a class of sets closed under finite intersection which generates the σ−algebra B, with U also a
countable union of compact intervals; so the measures coincide on B (we are using the uniqueness result
in LN, 3.4.3).

(iv) We have seen that µ = λφ−1←; then for g ∈ L+(λφ−1←) we have
ˆ

U

g(x) dλφ−1←(x) =

ˆ

V

g ◦ φ−1(y) dλ(y);

on the other hand, since dλφ−1← = |φ′| dλ we have also (see LN, 3.3.5.2):
ˆ

U

g(x) dλφ−1←(x) =

ˆ

U

g(x) |φ′(x)| dλ(x),
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so that, equating the right–hand sides of the two preceding equations:
ˆ

V

g ◦ φ−1(y) dλ(y) =
ˆ

U

g(x) |φ′(x)| dλ(x),

for every g ∈ L+(U); and setting f(y) = g ◦ φ−1(y) we get g(x) = f ◦ φ(x), and we conclude. �

Exercise 3. Let (X,M, µ) be a measure space.

(i) State the dominated convergence theorem.
(ii) Prove that if f, g ∈ L+, then (g − f)+ ≤ g.
(iii) Let fn in L+(X) converge a.e. to f ∈ L+(X), and assume that all integrals are finite and

´

X
fn →

´

X
f < ∞. Prove that then fn converges to f in L1(µ), i.e. ‖f − fn‖1 → 0 (by (ii) we

have (f − fn)
+ ≤ . . . , then apply (i) . . . ).

(iv) We now assume that fn in L+(X) converge a.e. to f ∈ L+(X), that fn ≤ f for every n, and that
all integrals are finite. Is it true that fn converges to f in L1(µ)?

Solution. (i) See the Lecture Notes, 3.3.2. (ii) If (g − f)+(x) = 0 the assertion is trivial, since g(x) ≥ 0
for every x ∈ X . If (g − f)+(x) > 0, then (g − f)+(x) = g(x) − f(x) > 0; and since f(x) ≥ 0 by the
hypothesis f ∈ L+(X), we conclude that (g − f)+(x) = g(x)− f(x) ≤ g(x).

(iii) If all integrals are finite then all functions are in L1(µ), being all positive. Then (f − fn)
+ ≤ f is

a sequence which converges to 0 a.e and is dominated by f ∈ L1(µ). By dominated convergence we have
limn

´

X
(f − fn)

+ = 0. But then, since (f − fn)
− = (f − fn)

+ − (f − fn) we get

lim
n

ˆ

X

(f − fn)
− = lim

n

(
ˆ

X

(f − fn)
+ −

ˆ

X

(f − fn)

)

= lim
n

ˆ

X

(f − fn)
+ −

ˆ

X

f + lim
n

ˆ

X

fn = 0;

hence also

lim
n

ˆ

X

|f − fn| = lim
n

(
ˆ

X

(f − fn)
+ +

ˆ

X

(f − fn)
−

)

= 0.

(iv) Since all integrals, including that of f , are finite, we have that f ∈ L1(µ); since 0 ≤ fn ≤ f ,
dominated convergence is applicable (one–sided limits, 3.3.17.6), hence we have convergence in L1(µ).

Remark. Of course (iii) can also be obtained from the generalized dominated convergence theorem; in
fact, the proof suggested here follows essentially the same route as the proof of that result (LN, 3.3.17.7).

�

Analisi Reale per Matematica– Primo Compitino, 26 novembre 2011

Exercise 4. Let (X,M, µ) be a measure space.

(i) State Fatou’s lemma.
(ii) Using Fatou’s lemma prove the monotone convergence theorem for functions in L+(X).
(iii) Let g : [0,∞[→ [0,∞[ be continuous. Given a > 0 let

Ma = {f ∈ L1(µ) : ‖g(|f |)‖1 ≤ a}.
Prove that Ma is closed in L1(µ) (if fn ∈ Ma converges to f in L1(µ), then some subsequence
converges to f also . . . ).

Solution. (i) LN, 3.3.6.
(ii) If fn ∈ L+(X) and fn ↑ f , Fatou’s lemma says that

´

X
f ≤ lim infn

´

X
fn. But the sequence fn

is increasing, hence also the sequence
´

X
fn is increasing, so that limn

´

X
fn = supn

´

X
fn exists. Then

the preceding assertion implies
´

X f ≤ limn

´

X fn; and since
´

X fn ≤
´

X f for every n, we have also

limn

´

X fn ≤
´

X f , and hence equality, limn

´

X fn =
´

X f .

(iii) If fn ∈Ma converges to f in L1(µ), then some subsequence converges to f also a.e.; let’s assume
that the entire sequence converges a.e. to f . Then |fn| converges a.e. to |f |, and by continuity of g on
[0,∞[ we have that g(|fn(x)|) converges to g(|f(x)|) if |fn(x)| converges to |f(x)|. Then Fatou’s lemma
says that

ˆ

X

g ◦ |f | ≤ lim inf
n

ˆ

X

g ◦ |fn| ≤ a,

so that f ∈Ma, and Ma is closed in L1(µ).
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Remark. (ii) Many have proved monotone convergence by applying Fatou’s lemma to the sequence
f − fn to get the inequality lim supn

´

X
fn ≤

´

X
f ; this not only makes the proof uselessly longer, it is

strictly speaking an incomplete proof, because it excludes the case
´

X
fn = ∞.

�

Exercise 5. Let (X,M, µ) be a measure space.

(i) Prove that if f ∈ L1(µ) then for every α > 0 we have ‖f‖1 ≥
´

{|f |≥α}
|f |, and prove that

limα→∞

´

{|f |≥α}
|f | = 0 (i.e. prove that for every sequence αn → ∞ we have limn

´

{|f |≥αn}
|f | =

0).
(ii) If f ∈ L∞(µ), given ε > 0 there is δ > 0 such that µ(E) ≤ δ implies

∣

∣

´

E f
∣

∣ ≤ ε (trivial, 1 point).

Prove that the same is true if f ∈ L1(µ): given ε > 0 and α > 0 write
∣

∣

∣

∣

ˆ

E

f

∣

∣

∣

∣

≤
ˆ

E

|f | =
ˆ

E∩{|f |≥α}

|f |+
ˆ

E∩{|f |<α}

|f |,

and estimate separately the two terms.
(iii) State and prove Čebičeff’s inequality: µ({|f | ≥ α}) ≤ . . . , and use it to prove that if fn is a

sequence in L1(µ) converging to f in L1(µ) then, for every α > 0:

lim
n→∞

µ({|f − fn| ≥ α}) = 0.

Solution. (i) Clearly |f | ≥ |f |χα, if χα is the characteristic function of the set {|f | ≥ α}. Then
ˆ

{|f |≥α}

|f | =
ˆ

X

|f |χα =

ˆ

{|f |≥α}

|f | ≤
ˆ

X

|f | = ‖f‖1.

If α(n) tends to ∞, then |f |χα(n) → 0 everywhere, and |f |χα(n) ≤ |f | for every n, so that dominated

convergence implies limn

´

{|f |≥α(n)} |f | = 0.

(ii) Clearly we have
∣

∣

∣

∣

ˆ

E

f

∣

∣

∣

∣

≤
ˆ

E

|f | ≤
ˆ

E

‖f‖∞ = ‖f‖∞ µ(E) for every E ∈ M of finite measure,

so that given ε we simply take δ = ε/‖f‖∞. Following the hint, we write
∣

∣

∣

∣

ˆ

E

f

∣

∣

∣

∣

≤
ˆ

E∩{|f |≥α}

|f |+
ˆ

E∩{|f |<α}

|f |;

given ε > 0 we first pick α > 0 so that
´

{|f |≥α}
|f | ≤ ε/2. Then we have also

ˆ

E∩{|f |≥α}

|f | ≤
ˆ

{|f |≥α}

|f | ≤ ε/2 for every E ∈ M.

Keeping now α fixed we have, if µ(E) ≤ δ
ˆ

E∩{|f |<α}

|f | ≤ αµ(E ∩ {|f | < α}) ≤ αµ(E) ≤ αδ,

so that we need only to pick δ = ε/(2α) to conclude.
(iii) The inequality is µ({|f | ≥ α} ≤ (1/α)‖f‖1, and the proof is immediate, the first part already

done in (i):

‖f‖1 =
ˆ

X

|f | ≥
ˆ

{|f |≥α}

|f | ≥
ˆ

{|f |≥α}

α = αµ({|f | ≥ α}).

Then we have

µ({|f − fn| ≥ α}) ≤ 1

α
‖f − fn‖1 → 0 for n→ ∞.

Remark. (i) Many wanted to use monotone convergence, or the fact that E 7→
´

E |f | is a measure; this
is possible if αn ↑ ∞. Now this can be assumed without loss of generality. In fact we have:

. Let ϕ : D → R be a function, and assume that c ∈ R̃ is an accumulation point for D∩] −∞, c[. Then

limx→c− ϕ(x) exists and is ℓ if and only if limn→∞ ϕ(xn) = ℓ for every increasing sequence xn ∈ D with

xn ↑ c.
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In fact we know that limx→c− ϕ(x) exists and is ℓ if and only if limn→∞ ϕ(xn) = ℓ for every sequence
xn ∈ D with xn → c; now every real valued sequence has a monotone subsequence, and if xn < c and
xn → c this subsequence must be increasing, since it has c as limit.

This fact, applied to ϕ(α) =
´

{|f |≥α} |f | shows that we can assume αn ↑ ∞. But a proof ought to be

given.
It is however impossible to prove (i) using Čebičeff’s inequality, or vague arguments such as

lim
n

ˆ

{|f |≥αn}

|f | =
ˆ

{|f |=∞}

|f |

stated without proof. In this respect also notice that, by definition, functions in L1(µ) are finite valued,
so that {|f | = ∞} is empty for f ∈ L1(µ), and not only of measure zero: this is a minor point, but is
worth noticing.

�

Exercise 6. Let F, G : R → R be increasing and right continuous; recall that we have the formula of
integration by parts, if a, b ∈ R and a < b then

(*)

ˆ

]a,b]

F (x−) dG(x) +

ˆ

]a,b]

G(x) dF (x) = F (b)G(b)− F (a)G(a).

In the sequel we assume also F (−∞) = G(−∞) = 0.

(i) Prove that
ˆ

R

F (x−) dG(x) +

ˆ

R

G(x) dF (x) = F (∞)G(∞)

(infinite values are possible),
(a): directly using Tonelli’s theorem
(b): using formula (*) and passing to the limit with a ↓ . . . and b ↑ . . . .

(ii) Prove that if F and G do not have a common point of discontinuity then we may replace F (x−)
with F (x) in the preceding formula.

(iii) Assuming F bounded and continuous prove that
ˆ

R

F (x) dF (x) =
1

2
(F (∞))2.

Now we take F (x) = χ[0,∞[ the Heaviside step, and

G(x) =

{

ex x < 0

3− e−x x ≥ 0
,

(iv) Plot the graph of G and compute
ˆ

R

F (x−) dG(x);

ˆ

R

F (x) dG(x).

(v) Compute (dG−dF )(]a, b]) for every a, b ∈ R with a < b. Prove that there is a function ρ ∈ L+
λ (R)

such that (dG− dF )(E) =
´

E ρ dλ for every Borel E ⊆ R, and find it.

Solution. (i) (a) We compute dF ⊗ dG(T ), where T = {(x, y) ∈ R2 : x ≤ y}. Since all measures are
σ−finite, and T is a Borel subset of R2, hence measurable, Tonelli’s theorem is applicable and gives
(Tx = {y ∈ R : (x, y) ∈ T } =]−∞, x])

dF ⊗ dG(T ) =

ˆ

R

(
ˆ

Tx

dG

)

dF (x) =

ˆ

R

(

ˆ

]−∞,x]

dG

)

dF (x) =

ˆ

R

G(x) dF (x);

reversing the order of integration (T y = [x,+∞[):

dF ⊗ dG(T ) =

ˆ

R

(
ˆ

Ty

dF

)

dG(y) =

ˆ

R

(F (∞)− F (x−))dG(x),

so that
ˆ

R

G(x) dF (x) =

ˆ

R

(F (∞) − F (x−))dG(x).
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Caution: we cannot say that
´

R
(F (∞) − F (x−))dG(x) = F (∞)G(∞) −

´

R
F (x−) dG(x) because of

possible infinities. Adding to both sides
´

R
F (x−) dG(x), which certainly exists since x 7→ F (x−) is

positive measurable, we get that
ˆ

R

F (x−) dG(x) +

ˆ

R

G(x) dF (x) =

ˆ

R

F (x−) dG(x) +

ˆ

R

(F (∞)− F (x−))dG(x) =

ˆ

R

F (∞) dG(x) =

F (∞)G(∞).

(b) Let an ↓ −∞ and bn ↑ ∞. Then fn(x) = F (x−)χ]ana,bn] and gn = G(x)χ]ana,bn] are increasing

sequences of positive functions such that fn(x) ↑ F (x−) and gn(x) ↑ G(x), for every x ∈ R. Then
monotone convergence implies that

ˆ

R

fn dG+

ˆ

R

gn dF ↑
ˆ

R

F (x−) dG(x) +

ˆ

R

G(x) dF (x),

and since
ˆ

R

fn dG+

ˆ

R

gn dF =

ˆ

]an,bn]

F (x−) dG(x) +

ˆ

]an,bn]

G(x) dF (x) = F (bn)G(bn) ↑ F (∞)G(∞)

we conclude.
(ii) Clear: discontinuities of F are a countable set of dG measure 0, so that F (x) and F (x−) are

dG−almost equal.
(iii) Is a trivial application of the second formula, given continuity of F .

1

2

3

Figure 1. Plot of G

(iv) Notice that x 7→ F (x−) = χ]0,∞[. Then
ˆ

R

F (x−) dG(x) =

ˆ

]0,∞[

dG(x) = dG(]0,∞[) = G(∞) −G(0) = 3− 2 = 1.

And
ˆ

R

F (x) dG(x) =

ˆ

[0,∞[

dG = G(∞)−G(0−) = 3− 1 = 2.

(v) We have

(dG− dF )(]a, b]) = dG(]a, b])− dF (]a, b]) = G(b)−G(a)− (F (b)− F (a) = (G− F )(b)− (G− F )(a)

for every pair a, b ∈ R with a < b. Observe that H = G− F is still an increasing function: we have

H(x) =

{

ex for x < 0

2− e−x for x ≥ 0
;

then dG− dF = dH is the Radon–Stieltjes measure associated to H . And we have

(dG− dF )(]a, b]) = H(b)−H(a) =











e−a − e−b for 0 ≤ a < b

2− e−b − e−a for a < 0 < b

eb − ea for 0 < b ≤ 0

.

It is clear that H is a C1 function: it is continuous, and its derivative is ex for x < 0, while H ′(x) = e−x

for x > 0, so that H ′(0) = 1 also exists; we have that H ′(x) = e−|x| for every x ∈ R, so the density
function is ρ(x) = e−|x|.
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1

2

Figure 2. Plot of H = G− F , a function of class C1.

Remark. (i), part (a): A more elegant solution has been found by a student: write the first term of the
formula to be proved as

´

R
F (y−) dG(y); then, since F (y−) = dF (]−∞, y[) =

´

]−∞,y[ dF (x) we have

ˆ

R

F (y−) dG(y) =

ˆ

R

(

ˆ

]−∞,y[

dF (x)

)

dG(y) =

ˆ

S

dF ⊗ dG(x, y) where S = {(x, y) ∈ R2 : x < y}.

For the second term we get
ˆ

R

G(x) dF (x) =

ˆ

R

(

ˆ

]−∞,x]

dG(y)

)

dF (x) =

ˆ

T

dF ⊗ dG(x, y) where T = {(x, y) ∈ R2 : y ≤ x},

so that, observing that R2 = S ∪ T , disjoint union of the two half–planes S, T
ˆ

R

F (x−) dG(x) +

ˆ

R

G(x) dF (x) =

ˆ

S

dF ⊗ dG(x, y) +

ˆ

T

dF ⊗ dG(x, y) =

ˆ

R2

dF ⊗ dG(x, y) =

(F (∞)− F (−∞)) (G(∞) −G(−∞)) = F (∞)G(∞).

�

1. Analisi Reale per Matematica–Secondo Precompitino 18 gennaio 2012

Exercise 7. (i) Define a signed measure ν : M → R̃. If ν(A) is not finite, and B ⊇ A, is ν(B) also
not finite? and if B ⊆ A is ν(B) also not finite? or what else can be said ?(of course A,B ∈ M)

(ii) Prove that a signed measure can assume only one of the values ±∞.
(iii) Prove that if A0 ⊆ A1 ⊆ . . . is an increasing sequence in M, and A =

⋃∞
n=0An, then

lim
n→∞

ν(An) = ν(A).

Is there an analogous proposition for decreasing sequences? if so, state and prove it.
(iv) Assume that ν(X) ∈ R. Is it true that ν(M) has a maximum? and a minimum?

Solution. (i) Let (X,M) be a measurable space. A signed measure is a function ν : M → [−∞,∞] such
that ν(∅) = 0, and which is countably additive, that is, for every disjoint sequence (An)n∈N of M we
have

ν

(

∞
⋃

n=0

An

)

=

∞
∑

n=0

ν(An).

If B ⊇ A we have ν(B) = ν(A)+ ν(B rA); if ν(A) = ±∞, any meaningful addition ν(A)+ c, with c ∈ R̃
has ν(A) as the resulting sum, so ν(B) = ν(A). Similarly, if B ⊆ A we have ν(A) = ν(B) + ν(A r B);
ν(B) may be finite, but then we have ν(ArB) = ν(A) = ±∞.

(ii) Since X ⊇ A and X ∈ M, as seen above we have ν(X) = ν(A) when ν(A) = ±∞.
(iii) We can write A =

⋃∞
n=1(An − An−1), disjoint union, so that by countable additivity we get,

setting A−1 = ∅:

ν(A) =
∞
∑

n=0

ν(An rAn−1) := lim
m→∞

m
∑

n=0

ν(An rAn−1) =

(by finite additivity, since
⋃m

n=0(An rAn−1) = Am)

lim
m→∞

ν(Am).

The statement for decreasing sequences requires the additional hypothesis that ν(Am) be finite for some
m (hence, by (i), also for all n > m):
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. Let A0 ⊇ A1 ⊇ A2 ⊇ . . . be a decreasing sequence in M, with intersection A. If for some m ∈ N the

measure ν(Am) is finite, we have ν(A) = limn→∞ ν(An).

Proof. It is not restrictive to assume ν(A0) finite, re–indexing if necessary. Then, by (i), every An and
A have finite ν−measure; the sequence A0 rAn is increasing and has B = A0 rA as its union, so that,
by the result on increasing sequences we get ν(A0 rA) = limn→∞ ν(A0 rAn). Since every set involved
has finite ν−measure we get ν(A0 rA) = ν(A0)− ν(A) and ν(A0 rAn) = ν(A0)− ν(An); then we have:

ν(A0)− ν(A) = lim
n→∞

(ν(A0)− ν(An)) = ν(A0)− lim
n→∞

ν(An) =⇒ ν(A) = lim
n→∞

ν(An).

�

(iv) If ν(X) is finite, by (i) every A ∈ M has finite ν−measure. If we consider a Hahn decomposition
for ν, let’s say X = P ∪ Q, with P positive and Q negative, ν(P ) and ν(Q) are both finite and they
are respectively max ν(M) and min ν(M): ν(A) = ν(A ∩ P ) + ν(A ∩ Q) ≤ ν(A ∩ P ) ≤ ν(P ) (because
ν(A ∩ Q) ≤ 0 and ν(P r A) ≥ 0); and also ν(A) = ν(A ∩ P ) + ν(A ∩ Q) ≥ ν(A ∩ Q) ≥ ν(Q) (because
ν(A ∩ P ) ≥ 0, and ν(QrA) ≤ 0).

�

Exercise 8. (12) Let (X,M, µ) be a measure space.

(i) [1] Assume that g : X → C is measurable and such that ‖g‖q < ∞ for some q > 0. Then
limp→∞ ‖g‖p = . . . (no proof required, simply state the result).

(ii) [7] Let f ∈ L+(X) be such that
´

X
fn is finite for n ∈ N large, and

lim
n→∞

ˆ

X

fn = a ∈ R.

Prove that then f ∈ L∞(µ), find the possible values of ‖f‖∞, and prove that fn(x) converges
a.e. in X to a function g to be described. Is this convergence also in L1(µ)?

(iii) [1] In R with Lebesgue measure give an example of an f for which the preceding limit is a given
a > 0.

(iv) [3] In (ii) we remove the assumption that f ≥ 0, we assume f real–valued but of arbitrary sign,
leaving the other hypotheses intact. What can you say about f and the sequence fn?

Solution. (i) limp→∞ ‖g‖p = ‖g‖∞.
(ii) If cn = ‖f‖n, we gave that cn < ∞ for large n, so that cn → ‖f‖∞. But by hypothesis cnn

has a finite limit a ∈ R. This implies that either ‖f‖∞ = 0 or ‖f‖∞ = 1. In fact, if ‖f‖∞ > 1, and
1 < α < ‖f‖∞, then α < cn for n large, and then αn < cnn for n large, implying that cnn → ∞, against the
hypothesis. Then ‖f‖∞ ≤ 1. Then we have 0 ≤ f(x) ≤ 1 for a.e. x ∈ X , implying that for a.e. x ∈ X
we have either fn(x) → 0 (if f(x) < 1) or fn(x) = f(x) = 1 for all n. In other words

fn(x) converges pointwise a.e. in X to χC , where C = {f = 1}.
Morever the sequence is decreasing, f0 ≥ f1 ≥ f2 ≥ f3 ≥ . . . ; if m ∈ N is such that fm ∈ L1(µ) then
dominated convergence (or decreasing monotone convergence) says that fn converges to its pointwise
limit χC also in L1(µ). In particular we have

a = lim
n

ˆ

X

fn =

ˆ

X

χC = µ(C) = µ(f←{1});

Notice that if ‖f‖∞ < 1 then µ(C) = 0 and hence a = 0.
(iii) Simply take for f the characteristic function of any set of measure a, e.g, χ[0,a]. The sequence fn

is constantly f , then also
´

X fn = a is constant.

(iv) We have that f2n = (f2)n verifies the hypotheses of (i), then ‖f2‖∞ ≤ 1, hence also ‖f‖∞ ≤ 1, and
f2n converges decreasing and in L1(µ) to the characteristic function of {f2 = 1} = {f = 1} ∪ {f = −1}.
If this set has measure 0 then ‖f‖∞ < 1, and the entire sequence fn converges to 0, pointwise and in
L1(µ). Otherwise this set has a positive measure a = limk→∞

´

X f2k. We claim that the limit limn

´

X fn

exists and is a iff µ({f = −1}) = 0. In fact, if f = f+ − f− we have, for k ≥ 1:

f2k = (f+)2k + (f−)2k; f2k−1 = (f+)2k−1 − (f−)2k−1;

now the sequences (f+)n and (f−)n are exactly in the situation of f in the hypotheses in (i): that is,
they are in L1(µ) for n large enough and converge decreasing to χ{f=1} and χ{f=−1} respectively; then
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lim
k

ˆ

X

f2k−1 = lim
k

(
ˆ

X

(f+)2k−1 −
ˆ

X

(f−)2k−1
)

= lim
k

ˆ

X

(f+)2k−1 − lim
k

ˆ

X

(f−)2k−1 =

µ({f = 1})− µ({f = −1});
and analogously

lim
k

ˆ

X

f2k = lim
k

ˆ

X

(f+)2k + lim
k

ˆ

X

(f−)2k = µ({f = 1}) + µ({f = −1}),

and the two limits coincide if and only if µ({f = −1}) = 0.
Summing up: the limit limn

´

X fn exists finite for f real measurable of arbitrary sign if and only

if |f(x)| ≤ 1 for a.e x ∈ X , fn ∈ L1(µ) for n large, and moreover µ({f = −1}) = 0; the limit a is
µ({f = 1}), the limit function is a.e. χ{f=1}, and convergence to this function is also in L1(µ). �

Exercise 9. Let F : R → R be defined as follows:

F (x) =











−ex if x < 0√
1− x2 if 0 ≤ x < 1

1− e−x if 1 ≤ x

(i) Find T (x) = V F (]−∞, x]) and plot it.
(ii) Plot T±(x) = (T (x)± F (x))/2.
(iii) Find a Hahn decomposition for the measure µ = dF .
(iv) Find the absolutely continuous and the singular parts of µ = dF .
(iv) Let G(x) = x be the identity of R. For every integer k > 0 compute the integral

ˆ

]−k,k]

G(x) dF (x),

both directly and with the partial integration formula:
ˆ

]a,b]

G(x−) dF (x) = G(b)F (b)−G(a)F (a) −
ˆ

]a,b]

F (x) dG(x).

(v) Find
ˆ

R

G(x) dF (x).

Solution. We plot also a graph of F :

1

1

1-
1

ã

Figure 3. Graph of F .

(i) Since F is decreasing in ] −∞, 0[ we have T (x) = ex in this interval. The jump of F at 0 is 2, so

T (0) = T (0−) + 2 = 3. Again F is decreasing in [0, 1[ so that V F ([0, x] = F (0) − F (x) = 1 −
√
1− x2

in this interval, hence T (x) = T (0) + 1 −
√
1− x2 = 4 −

√
1− x2 for x ∈ [0, 1[. Next we get T (1) =

T (1−)+1−1/e = 5−1/e (the jump at 1 is 1−1/e). Finally V F ([1, x]) = 1−e−x− (1−1/e) = 1/e−e−x,
so that T (x) = 5− e−x for x ≥ 1.

(ii) We get

T+(x) =











0 if x < 0

2 if 0 ≤ x < 1

3− e−x if 1 ≤ x

; T−(x) =











ex if x < 0

2−
√
1− x2 if 0 ≤ x < 1

2 if 1 ≤ x

.

(iii) A positive set for µ is P = {0} ∪ {1}∪]0,∞[, its complement is a negative set.
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1

1

2

5

Figure 4. Graph of T .

1

1

2

3

1

1

2

Figure 5. From left to right: graphs of T+, T−.

(iv) The absolutely continuous part is of course F ′(x) dx, where F ′ is the derivative of F , which clearly
exists in R r {0, 1} and is

F ′(x) =











−ex if x < 0

−x/
√
1− x2 if 0 ≤ x < 1

e−x if 1 ≤ x

.

The singular part is 2 δ0 + (1− 1/e) δ1.
(v) We have directly, using the Radon–Nikodym decomposition

ˆ

]−k,k]

G(x) dF (x) =

ˆ k

−k

G(x)F ′(x) dx +

ˆ

]−k,k]

G(x) d(2 δ0 + (1 − 1/e) δ1) =

ˆ 0

−k

x(−ex) dx+

ˆ 1

0

x
−x√
1− x2

dx+

ˆ k

1

x e−x dx+ 1− e−1 =

(in the first integral we put t = −x, in the last t = x)

ˆ k

0

t e−t dt+

ˆ 1

0

1− x2 − 1√
1− x2

dx +

ˆ k

1

te−t dt+ 1− 1/e =

1− 1/e+

ˆ 1

0

t e−t dt+ 2

ˆ k

1

t e−t dt+

ˆ 1

0

√

1− x2 dx−
ˆ 1

0

dx√
1− x2

=

(una primitiva di t e−t è −(1 + t) e−t)

1− 1/e+
[

−(1 + t) e−t
]1

0
+ 2

[

−(1 + t) e−t
]k

1
+
π

4
− π

2
=

1− e−1 − 2(1 + k)e−k + 2 e−1 + 1 +
π

4
= 2 +

1

e
− 2(1 + k)e−k − π

4
.

With the partial integration formula we get, calling for simplicity I(k) the required integral

I(k) = k F (k)− (−k)F (−k)−
ˆ k

−k

F (x) dx = k
(

1− e−k − e−k
)

−
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−
ˆ 0

−k

(−ex) dx−
ˆ 1

0

√

1− x2 dx−
ˆ k

1

(1− e−x) dx =

k
(

1− 2e−k
)

+ [ex]
0
−k −

π

4
−
[

x+ e−x
]k

1
= k

(

1− 2e−k
)

+ 1− e−k − π

4
− k − e−k + 1 +

1

e
=

2 +
1

e
− 2(1 + k)e−k − π

4
.

(vi) We have that Gk = Gχ]−k,k] converges to G on R. And G ∈ L1(µ), because x e−|x| ∈ L1(m)
(more on this below). Then by dominated convergence we can we just take the limit:

ˆ

R

G(x) dF (x) = lim
k→∞

ˆ

]−k,k]

G(x) dF (x) = 2 +
1

e
− π

4
.

The function G is a continuous function, hence Borel measurable and bounded on compact subsets of
R; the measure µ is finite on compacta, hence for every compact subset K of R we have that G ∈ L1

µ(K).

We need to prove that G ∈ L1
µ(Rr [−a, a]), where a > 0, say a = 2. On the open set ]−∞,−a[∪]a,∞[ the

measure |µ| = dT is absolutely continuous, with d|µ|(x) = e−|x| dx, as is easy to see. Then G ∈ L1(|µ|) if
and only if |x| e−|x| ∈ L1

m(]−∞,−a[∪]a,∞[), where m is Lebesgue measure. And this is immediate. �

Analisi Reale per Matematica– Secondo compitino–28 gennaio 2012

Exercise 10. Let (X,M) be a measurable space, and let ν : M → R̃ be a signed measure; as usual ν±

and |ν| are the positive/negative parts and the total variation of ν.

(i) Define the notion of positive/negative set for ν, and prove that positive sets form a σ−ideal of
M (closed under countable union and formation of subsets).

(ii) Assume that A ∈ M contains no negative subset of strictly negative measure. Is it true that
then A is a positive subset?

(iii) For A ∈ M we have ν(A) ∈ R ⇐⇒ |ν|(A) <∞. True or false? Is the fact that X is covered by
a sequence of sets in M of finite ν−measure equivalent to σ−finiteness of |ν|?

(iv) Assume that µ : M → R̃ is another signed measure. Define mutual singularity of µ and ν. Is it
equivalent to mutual singularity of |µ| and |ν|?

(v) Let λ : M → R̃ be a third signed measure; assume that λ≪ |µ| and λ≪ |ν|, and that µ ⊥ ν. Is
it true that λ = 0?

Solution. (i) A ∈ M is said to be positive/negative for ν if for every B ∈ M contained in A we have
ν(B) ≥ 0/ν(B) ≤ 0. Given this definition, trivially the set P of positive sets is closed under the formation
of measurable subsets. And if (An)n∈N is a sequence of positive sets, making the union A of these sets

a disjoint union of sets (Bn)n∈N with the usual trick, Bn = An r
⋃n−1

k=0 Ak, each Bn is positive, being a
subset of the positive set An, and if B ⊆ A then B =

⋃∞
n=0(B ∩Bn), a disjoint union, so that

ν(B) =
∞
∑

n=0

ν(B ∩Bn) ≥ 0 because ν(B ∩Bn) ≥ 0 for every n ∈ N.

(ii) Let P∪Q be a Hahn decomposition for ν; considerA∩Q; then we have ν(A∩Q)(= −ν−(A∩Q)) = 0,
since otherwise A ∩ Q would be a negative set of strictly negative measure contained in A. Then A =
(A ∩ P ) ∪ (A ∩Q), the union of the positive set A ∩ P and the null set A ∩Q, is a positive set.

Remark. We have proved a lemma, preparatory to the Hahn decomposition theorem, which says that
if ∞ /∈ ν(M) then a set which does not contain positive sets of strictly positive measure is a negative
set. One can apply this result in the opposite direction, but we need to know that −∞ is not a value
assumed by ν. It is simpler to apply the Hahn decomposition: strictly speaking there is a circularity of
arguments in the case −∞ /∈ ν(M), which needs however not concern us.

(iii) We know that if ν(A) ∈ R then every measurable subset of A has finite measure, in particular
ν(A ∩ P ) and ν(A ∩ Q) are finite, so that ν±(A) are both finite, hence |ν|(A) = ν+(A) + ν−(A) < ∞;
since |ν(A)| ≤ |ν|(A) the converse is trivial. This of course immediately implies that the answer to the
second question is yes.

(iv) We say that µ and ν are mutually singular if there is a partition X =M ∪N , M, N ∈ M, with N
null for µ and M null for ν. Since a set null for a signed measure is clearly null also for its total variation
as we show immediately after, the two conditions are clearly equivalent.
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IfM is null for ν then it is also null for |ν|; in fact (always assuming that P ∪Q is a Hahn decomposition
for ν) we have ν+(M) = ν(M ∩ P ) = 0 and −ν−(M) = −ν(M ∩Q) = 0, so that ν±(M) = 0, hence also
|ν|(M) = 0.

(v) Clearly true: |µ|(N) = 0 implies that N is null for λ, and |ν|(M) = 0 implies that M is null for λ.
Then X =M ∪N is null for λ. �

Exercise 11. Let f, g : Rn → K be Borel measurable functions, with f ∈ L1(Rn) and g ∈ L∞(Rn) (we
consider Lebesgue measure on all spaces Rn).

(i) Prove that the formula

(*) f ∗ g(x) =
ˆ

Rn

f(x− y) g(y) dy

defines a function f ∗ g : Rn → K, and prove that ‖f ∗ g‖∞ ≤ ‖f‖1 ‖g‖∞. Prove also that

f ∗ g(x) = g ∗ f(x) =
ˆ

Rn

f(t) g(x− t) dt.

(ii) Assume that g ∈ C1(Rn) ∩ L∞(Rn) and that also all derivatives ∂kg belong to L∞(Rn), for
k = 1, . . . , n. Prove that then f ∗ g ∈ C1(Rn) and that ∂k(f ∗ g) = f ∗ (∂kg).

We now assume f ∈ Lp(Rn) and g ∈ Lq(Rn), with p, q > 1 conjugate exponents, i.e. 1/p+ 1/q = 1.

(iii) Prove that formula (*) defines a function f ∗ g : Rn → C, and prove that ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q.
(use Hölder’s inequality . . . ).

Finally assume that f, g ∈ L1(Rn).

(iv) Prove that the formula (*) now defines a.e. on Rn a function f∗g that is Borel measurable, belongs
to L1(Rn), and ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1 (consider F : Rn×Rn → K given by F (x, y) = f(x− y) g(y)
and apply Fubini–Tonelli’s theorem . . . ).

Solution. (i) Trivially we have

|f ∗ g(x)| =
∣

∣

∣

∣

ˆ

Rn

(x− y) g(y) dy

∣

∣

∣

∣

≤
ˆ

Rn

|f(x− y) g(y)| dy ≤
ˆ

Rn

|f(x− y)| ‖g‖∞ dy;

Now the change of variables t = x− y says that
ˆ

Rn

|f(x− y)| dy =

ˆ

Rn

|f(t)| dt = ‖f‖1

(remember that we are in Rn, so the coordinate change is tk = xk − yk ⇐⇒ yk = xk − tk 1 ≤ k ≤ n,
an affine self diffeomorphism of Rn, with jacobian matrix −1n, opposite of the identity matrix, hence
determinant (−1)n, with absolute value 1). Then

|f ∗ g(x)| ≤
ˆ

Rn

|f(x− y)| ‖g‖∞ dy = ‖f‖1 ‖g‖∞ =⇒ ‖f ∗ g‖∞ ≤ ‖f‖1 ‖g‖∞.

The change of variables t = x− y above considered says also that
ˆ

Rn

f(x− y) g(y) dy =

ˆ

Rn

f(t) g(x− t) dt.

(ii) We use the second expression for f ∗ g:

f ∗ g(x) =
ˆ

Rn

f(y) g(x− y) dy;

we have
∂

∂xk
(f(y) g(x− y)) = f(y) ∂kg(x− y);

moreover |f(y) ∂kg(x− y)| ≤ ‖∂kg‖∞ |f(y)|; since y 7→ ‖∂kg‖∞ |f(y)| is in L1(Rn) the theorem of differ-
entiation under the integral sign applies to say that

∂k(f ∗ g) =
ˆ

Rn

f(y) ∂kg(x− y) dy = (f ∗ (∂kg))(x);

and the theorem on continuity of parameter depending integrals says that these derivatives are continuous.
(iii) We have. for every x ∈ Rn:

|f ∗ g(x)| =
∣

∣

∣

∣

ˆ

Rn

f(x− y) g(y) dy

∣

∣

∣

∣

≤
ˆ

Rn

|f(x− y) g(y)| dy ≤
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≤
(
ˆ

Rn

|f(x− y)|p dy
)1/p (ˆ

Rn

|g(y)|q dy
)1/q

= ‖f‖p ‖g‖q,

(the usual change of variables t = x − y says that
´

Rn |f(x − y)|p dy = ‖f‖pp) which immediately implies
the thesis.

(iv) Let us prove that F belongs to L1(Rn × Rn). Clearly F is Borel measurable, since so are f and
g. And the iterated integral:
ˆ

Rn

(
ˆ

Rn

|f(x− y)| |g(y)| dx
)

=

ˆ

Rn

|g(y)|
(
ˆ

Rn

|f(x− y)| dx
)

dy =

ˆ

Rn

|g(y)| ‖f‖1 dy = ‖f‖1 ‖g‖1,

is finite. By Tonelli’s theorem F ∈ L1(Rn × Rn). Then Fubini’s theorem says that for a.e x ∈ Rn the
integral

f ∗ g(x) =
ˆ

Rn

f(x− y) g(y) dy

is finite, the resulting a.e. defined function is Borel measurable, and moreover, since

|f ∗ g(x)| =
∣

∣

∣

∣

ˆ

Rn

f(x− y) g(y) dy

∣

∣

∣

∣

≤
ˆ

Rn

|f(x− y) g(y)| dy

we have

‖f ∗ g‖1 =

ˆ

Rn

|f ∗ g(x)| dx ≤
ˆ

Rn

(
ˆ

Rn

|f(x− y) g(y)| dy
)

dx;

and since |F | : (x, y) 7→ |f(x−y) g(y)| belongs to L1(Rn×Rn) this iterated integral is the double integral
over Rn × Rn of |F |, just computed above, with value ‖f‖1 ‖g‖1. �

Exercise 12. Let F : R → R be defined as follows:

F (x) =











ex+1 if x < −1

−x if − 1 ≤ x < 1

e−(x−1) if 1 ≤ x

(i) Plot the graph of F ; find T (x) = V F (]−∞, x]) and plot it.
(ii) Plot T±(x) = (T (x)± F (x))/2. What are µ+(R) and µ−(R)?
(iii) Find a Hahn decomposition for the measure µ = dF .
(iv) Find the absolutely continuous and the singular parts of µ = dF .
(iv) Let G(x) = cos(αx), where α > 0 is a constant. For every a > 1 compute the integral

ˆ

]−a,a]

G(x) dF (x) =

ˆ

]−a,a]

G(x) dµ+ −
ˆ

]−a,a]

G(x) dµ−,

(compute both integrals) , and also by the partial integration formula
ˆ

]a,b]

G(x−) dF (x) = G(b)F (b)−G(a)F (a) −
ˆ

]a,b]

F (x) dG(x).

(v) Prove that G ∈ L1(µ) and find
ˆ

R

G(x) dF (x).

Solution. (i) Graph of F is easy; note that there is only one jump at 1, F (1+)− F (1−) = 2.

-1 1

-1

1

Figure 6. Plot of F .
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We have (notice that F is increasing in ]−∞,−1], and that T (−∞) = 0 so that T (x) = F (x) in this
interval; T is decreasing in [−1, 1[ so that V F ([−1, x]) = F (−1) − F (x) = 1 + x for x ∈ [−1, 1[, and
T (1) = T (1−) + (F (1+)− F (1−)), etc):

T (x) =











ex+1 for x < −1

2 + x for − 1 ≤ x < 1

6− e−(x−1) for 1 ≤ x

,

consequently

T+(x) =











ex+1 for x < −1

1 for − 1 ≤ x < 1

3 for 1 ≤ x

T−(x) =











0 for x < −1

1 + x for − 1 ≤ x < 1

3− e−(x−1) for 1 ≤ x

.

-1 1

1

3

5

Figure 7. Plot of T .

-1 1

1

3

-1 1

1

2

Figure 8. Plot of T±

�

Since T±(∞)− T±(−∞) = 3− 0 we have µ±(R) = 3, hence |µ|(R) = 6.
(iii) A Hahn decomposition is P =]−∞,−1] ∪ {1}, Q = [−1, 1[∪]1,∞[.
(iv) The derivative F ′(x) exists for every x ∈ Rr {−1, 1} and we have

F ′(x) =











ex+1 for x < −1

−1 for − 1 ≤ x < 1

−e−(x−1) for 1 ≤ x

;

The singular part is clearly 2 δ1 so that dF = F ′ dm+ 2 δ1.



REAL ANALYSIS EXAMS A.A 2011–12 15

(v) Clearly dµ+ = χ−]∞,−1] e
x+1 dx+ 2 δ1 so that

ˆ

]−a,a]

G(x) dµ+(x) =

ˆ −1

−a

cos(αx) ex+1 dx + 2G(1) = 2 cosα+ e

ˆ a

1

cos(αt) e−t dt;

A primitive of e−t cos(αt) is e−t(α sin(αt)− cos(αt))/(1 + α2) so that

ˆ a

1

cos(αt) e−t dt =

[

e−t

1 + α2
(α sin(αt)− cos(αt))

]t=a

t=1

=(*)

e−a

1 + α2
(α sin(αa)− cos(αa)) − e−1

1 + α2
(α sin(α)− cos(α)),

and
ˆ

]−a,a]

G(x) dµ+(x) =
e1−a

1 + α2
(α sin(αa)− cos(αa)) − 1

1 + α2
(α sin(α)− cos(α)) + 2 cosα.

We have next, since dµ− = (χ]−1,1[ + e−(x−1) χ]1,∞[) dx:

ˆ

]−a,a]

G(x) dµ− =

ˆ 1

−1

cos(αx) dx +

ˆ a

1

cos(αx) e−(x−1) dx = 2
sinα

α
+

ˆ a

1

cos(αx) e−(x−1) dx;

the last integral has already been computed (see (*)). Taking the difference:
ˆ

]−a,a]

G(x) dF (x) =

ˆ

]−a,a]

G(x) dµ+ −
ˆ

]−a,a]

G(x) dµ− = 2 cosα− 2
sinα

α
.

By partial integration:
ˆ

]−a,a]

G(x) dF =G(a)F (a) −G(−a)F (−a)−
ˆ

]−a,a]

F (x)α sin(αx) dx =

ˆ −1

−a

ex+1 α sin(αx) dx +

ˆ 1

−1

(−x)α sin(αx) dx +

ˆ a

1

e1−x α sin(αx) dx;

the first integral and the third cancel; we are left with:
ˆ 1

−1

(−x)α sin(αx) dx = 2

ˆ 1

0

x(−α sin(αx)) dx = 2 [x cos(αx)]
1
0 − 2

ˆ 1

0

cos(αx) dx = 2 cosα− 2
sinα

α
.

(vi) The entire space has finite measure, |µ|(R) = 6. Every bounded measurable function is then in
L1(µ) = L1(|µ|), in particular G ∈ L1(µ). Clearly we have

ˆ

R

GdF =

ˆ

[−1,1]

GdF = 2 cosα− 2
sinα

α

(the integrals over ]−∞,−1[ and ]1,∞[ are finite, and cancel with each other).

Analisi Reale–Primo appello–7 febbraio 2012

Exercise 13. Let (X,M, µ) be a measure space, and let L+ = L+(X,M) denote the set of all M−
measurable functions from X to [0,∞] (as usual).

(i) Prove that if f ∈ L+ and
´

X f < ∞, then µ({f = ∞}) = 0. If
´

X f = 0, what can we say about
{f > 0}?

(ii) State Fatou’s lemma.

From now on fn is a sequence in L+ that converges pointwise everywhere to f ∈ L+.

(iii) Assume that {f = ∞} has strictly positive measure. Then limn→∞

´

X fn = ∞: true or false?
(iv) Suppose that there exists g ∈ L+, with finite integral, such that fn(x) ≤ g(x) for every x ∈ X .

Then
´

X
f = limn→∞

´

X
fn.

(iv) Assume now that there is a constant a ∈ [0,∞[ such that, for every n ∈ N
ˆ

X

f0 ∨ · · · ∨ fn ≤ a; prove that then lim
n→∞

ˆ

X

fn =

ˆ

X

f.
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Solution. (i) if E = {f = ∞}, then for every n > 0 we have nχE ≤ f so that nµ(E) =
´

X nχE ≤
´

X f ,

which clearly implies µ(E) = 0 (otherwise we may choose n >
´

X
f/µ(E)). If the integral of a positive

f is zero, then µ({f > 0}) = 0: in fact nf is an increasing sequence of functions in L+, all with zero
integral, whose pointwise limit is the function constantly ∞ on {f > 0}; by monotone convergence this
pointwise limit has integral 0, hence finite, and so its infinity set has zero measure. Otherwise, every
measurable positive simple function dominated by f has integral 0, hence {f > 1/n} has measure 0 for
all n ≥ 1, hence {f > 0} =

⋃

n≥1{f > 1/n} has measure 0.

(ii) See the Lecture Notes.
(iii) By Fatou’s lemma we get (recalling that lim infn→∞ fn(x) = limn→∞ fn(x) = f(x)):

ˆ

X

f ≤ lim inf
n→∞

ˆ

X

fn;

since {f = ∞} has strictly positive measure we have
´

X
f = ∞; then ∞ ≤ lim infn→∞

´

X
fn, clearly

equivalent to limn→∞

´

X
fn = ∞.

(iv) This is essentially the dominated convergence theorem; the only difference is that fn and g might
be infinite valued, so we simply set all the fn, f and g to be 0 on the set {g = ∞}, which has measure 0
by (i): no integral has been modified, and all functions are now in L1(µ).

(v) Setting gn = f0 ∨ · · · ∨ fn, gn is an increasing sequence of functions in L+, with integrals all
dominated by a; then gn ↑ g, and

´

X g ≤ a <∞, by the monotone convergence theorem. We are now in
the hypotheses of (iv), since clearly fn ≤ gn ≤ g for every n. �

Exercise 14. Let (X,M, µ) be a measure space. Given q, with 1 < q < ∞ and a > 0 consider
a B̄ = {f ∈ Lq(µ) : ‖f‖q ≤ a} (the closed ball of center 0 and radius a > 0 in Lq(µ)).

(i) Prove that if the sequence fn ∈ a B̄ converges pointwise a.e. to f , then f ∈ a B̄ (Fatou’s lemma
. . . )

(ii) Let E ∈ M be a subset of X of finite measure. Prove that for every p ∈ [1, q[ and every f ∈ a B̄
we have:

(
ˆ

E

|f |p dµ
)1/p

≤ µ(E)α(p,q) a,

where the exponent α(p, q) is to be found (hint: consider |f |p and 1, with convenient conjugate
exponents . . . ).

(iii) Deduce from (ii) that for every ε > 0 there is δ = δ(ε) > 0 such that for every E ∈ M with
µ(E) ≤ δ, every f ∈ a B̄ and every p ∈ [1, q[ we have

(
ˆ

E

|f |p dµ
)1/p

≤ ε.

From now on X is assumed of finite measure, µ(X) <∞.

(iv) State the Severini–Egoroff’s theorem on almost uniform convergence. Assume that the sequence
fn ∈ a B̄ converges pointwise a.e. to f . Using this theorem and (iii) prove that fn converges to
f in Lp(µ), for every p ∈ [1, q[.

Solution. (i) If fn converges a.e. to f , then |fn|q converges a.e. to |f |q, and Fatou’s lemma says that:
ˆ

X

|f |q
(

=

ˆ

X

lim inf
n→∞

|fn|q
)

≤ lim inf
n→∞

ˆ

X

|fn|q ≤ aq.

(ii) We use q/p and (q/p)/(q/p−1) = q/(q−p) as conjugate exponents, and consider E as the ambient
space, obtaining
ˆ

E

|f |p ≤
(
ˆ

E

|f |q
)p/q (ˆ

E

1q/(q−p)
)(q−p)/q

= µ(E)1−p/q
(
ˆ

E

|f |q
)p/q

≤ µ(E)1−p/q
(
ˆ

X

|f |q
)p/q

;

taking pth−roots of both sides we get
(
ˆ

E

|f |p dµ
)1/p

≤ µ(E)1/p−1/q ‖f‖q ≤ µ(E)1/p−1/q a.

(iii) Immediate: since δ1/p−1/q a has to be smaller than ε we get δ ≤ (ε/a)pq/(q−p); any such δ will do.
(iv) For the statement we refer to the Lecture Notes. Next, by (i) we have f ∈ a B̄; considering f − fn

in place of f we can assume that f = 0, and we have to prove that ‖fn‖p has limit 0. Given ε > 0 we
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find δ such that µ(E) ≤ δ implies
(´

E
|fn|p

)1/p ≤ ε for every n ∈ N; since the convergence to 0 is almost
uniform we can find a set E such that µ(E) ≤ δ and on X r E the sequence converges uniformly to 0.
Then, if ‖fn‖XrE = sup{|fn(x)| : x ∈ X r E}:

ˆ

X

|fn|p =

ˆ

E

|fn|p +
ˆ

XrE

|fn|p ≤ εp + ‖fn‖pXrE µ(X r E) ≤ εp + ‖fn‖pXrE µ(X);

since limn→∞ ‖fn‖pXrE = 0, we conclude. �

Exercise 15. Assume that f ∈ Lp(Rn), with 1 ≤ p <∞.

(i) Prove that

lim
r→∞

ˆ

|x|>r

|f |p dm = 0.

We now define F : Rn → K by

F (x) =

ˆ

B(x,1[

f(y) dy where, as usual, B(x, 1[= {y ∈ Rn : |y − x| < 1}.

(ii) Prove that the preceding formula effectively defines a function F : Rn → K; prove that F is
continuous and bounded, and find an estimate for ‖F‖∞ involving ‖f‖p.

(iii) Prove that limx→∞ F (x) = 0 (use (i)).

Solution. (i) By definition of Lp(Rn) we have |f |p ∈ L1(Rn); clearly |f |p χRnrrB tends to 0 as r → ∞, and
is dominated by |f |p, so that the limit of integrals limr→∞

´

|x|>r |f |p dm = 0 by dominated convergence.

(ii) If p = 1 there is nothing to prove. If p > 1 the usual estimates for Lp spaces on sets of finite measure
give (we apply Hölder’s inequality to |f | and 1 of B(x, 1[, with conjugate exponents p and q = p/(p− 1)):

(*) |F (x)| ≤
ˆ

B(x,1[

|f(y)| ≤
(

ˆ

B(x,1[

|f(y)|p
)1/p

(m(B(x, 1[)
1/q ≤ v1/qn ‖f‖p,

which immediately implies

‖F‖∞ ≤ v1/qn ‖f‖p.
In other words, we have proved the well known fact that if f ∈ Lp(Rn) then f ∈ L1

loc(R
n). We know that

if xj tends to x in Rn then χB(xj ,1[ tends a.e. to χB(x,1[, and the sequence is dominated by χB(x,1+R]

with R = maxj{|x− xj |}. Then F is continuous, by the dominated convergence theorem.
(iii) By (i), given ε > 0 there is r(ε) such that

´

{|x|≥r(ε)}
|f |p ≤ εp. If |x| ≥ r(ε) + 1 we have that

B(x, 1[⊆ {|x| ≥ r(ε)} so that, for these x:

|F (x)| ≤
(

ˆ

B(x,1[

|f(y)|p
)1/p

(m(B(x, 1[)
1/q ≤ v1/qn

(

ˆ

{|x|≥r(ε)}

|f |p
)1/p

≤ v1/pn ε.

�

Exercise 16. For every n = 1, 2, 3, . . . and every x ∈ R define Fn(x) =
´ x

0
ntn−1 χ[0,1](t) dt.

(i) Plot some Fn and the limit function F (x) = limn→∞ Fn(x). What is the measure µ = µF ?
(ii) Setting µn = µFn

, compute

lim
n→∞

µn(]−∞, a]) (0 < a < 1); lim
n→∞

µn([0, 1[); lim
n→∞

µn([0, 1]).

(iii) Assume that f : R → R is bounded and Borel measurable. Prove that f ∈ L1(µn) for every n,
and moreover, if f is also left–continuous at 1 then:

lim
n→∞

ˆ

R

f dµn = f(1)

(

=

ˆ

R

f dµ

)

(prove first that if f(1) = 0 then the limit is 0; split the integral in
´

]−∞,a]
+
´

]a,1]
and use (ii)).

Solution. (i) We have Fn(x) = 0 for x < 0; Fn(x) = xn for 0 ≤ x < 1 and F (x) = 1 for x ≥ 1. Then
F (x) = 0 for x < 1, and F (x) = 1 for 1 ≤ x; F is the characteristic function of [1,∞[, and hence µ = δ1,
unit mass at 1. Notice that all these measures are supported by [0, 1].

(ii) Clearly, if 0 < a < 1

µn(]−∞, a]) = an − 0 = an so that lim
n→∞

µn(]−∞, a]) = 0;
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1

1

Figure 9. Plots of some Fn.

and we have µn([0, 1[) = µn([0, 1]) = 1, so that the limit is 1.
(iii) Since (R,BR, µn) is a finite measure space for every n, all bounded measurable functions are in

L1(µn) for every n. Next, if f is left continuous and 0 at 1, given ε > 0 find a ∈]0, 1[ such that |f(x)| ≤ ε
if x ∈ [a, 1] so that

∣

∣

∣

∣

ˆ

R

f dµn

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ˆ

[0,1]

f dµn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ˆ

[0,a[

f dµn +

ˆ

[a,1]

f dµn

∣

∣

∣

∣

∣

≤
ˆ

[0,a[

|f | dµn +

ˆ

[a,1]

|f | dµn ≤

≤ ‖f‖∞
ˆ

[0,a]

dµn +

ˆ

[a,1]

ε dµn = ‖f‖∞ an + ε (1− an),

since this expression has limit ε as n→ ∞, we conclude that

lim
n→∞

∣

∣

∣

∣

ˆ

R

f dµn

∣

∣

∣

∣

= 0,

for f bounded left continuous and zero at 1. For f bounded left continuous at 1 we simply write
f = f − f(1) + f(1) and note that

´

R
f(1) dµn = f(1) for every n, while by what just proved we have

lim
n→∞

ˆ

R

(f − f(1)) dµn = 0.

�

Analisi Reale– Secondo appello–28–02–2012

Exercise 17. (10) Let (X,M, µ) be a measure space

(i) [2] Assume that f, g : X → R are measurable, that E ∈ M, that f(x) < g(x) for every x ∈ E,
and that f, g ∈ L1

µ(E). Prove that if
´

E f <
´

E g iff µ(E) > 0.

(ii) [2] Let E ∈ M be such that 0 < µ(E) < ∞, and let f ∈ L1(µ) be real valued. Prove that there
exists x ∈ E such that

f(x) ≤
 

E

f dµ :=
1

µ(E)

ˆ

E

f dµ;

more precisely, prove that the set {x ∈ E : f(x) ≤
ffl

E f dµ} has strictly positive measure.

This expresses the intuitively obvious fact that not all values of f on E can be larger than its average on
E: not everybody can be above the mean!

(iii) [2] Let now f, g ∈ L1(µ) be real functions. Prove that f(x) ≤ g(x) for a.e. x ∈ X if and only if
´

E
f ≤

´

E
g for every E ∈ M (consider E = {f > g} . . . ).

(iv) [4] For f, g, h ∈ L+(X,M) assume that f2(x) ≤ g(x)h(x) for a.e. x ∈ X . Prove that then, for
every E ∈ M we have

(*)

(
ˆ

E

f

)2

≤
(
ˆ

E

g

) (
ˆ

E

h

)

( f2 ≤ g h is equivalent to f ≤ g1/2 h1/2; apply a convenient inequality . . . ).

Solution. (i) We have
ˆ

E

f <

ˆ

E

g ⇐⇒
ˆ

E

(g − f) > 0 ⇐⇒
ˆ

X

(g − f)χE > 0;

by hypothesis (g − f)(x) = g(x) − f(x) > 0 for every x ∈ E, so that Coz((g − f)χE = E; we know that
a positive measurable function has integral 0 if and only if its cozero set has measure 0, so we conclude.
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(ii) Setting for simplicity c =
ffl

E f , if there is no x ∈ E such that f(x) ≤ c, then c < f(x) for every

x ∈ E. Since µ(E) <∞, the constant c is in L1
µ(E), so that (i) is applicable and gives that

ˆ

E

c <

ˆ

E

f ⇐⇒ c µ(E) <

ˆ

E

f ⇐⇒ c <

 

E

f = c,

a contradiction. Since we can alter f on any subset of E of zero measure without altering the average c,
the set {x ∈ E : f(x) ≤ c} must be of strictly positive measure.

(iii) If f ≤ g a.e. then
´

E
f ≤

´

E
g, by isotony of the integral, as is well–known. And if it is not true

that f(x) ≤ g(x) for a.e. x ∈ X , then if E = {f − g > 0} has strictly positive measure; by (i)
ˆ

E

f >

ˆ

E

g,

contradicting the hypothesis.
(iv) Integrating over E the inequality f ≤ g1/2 h1/2 we get

ˆ

E

f ≤
ˆ

E

g1/2 h1/2;

By Cauchy–Schwarz inequality for integrals we have
ˆ

E

g1/2 h1/2 ≤
(
ˆ

E

g

)1/2 (ˆ

E

h

)1/2

,

so that
ˆ

E

f ≤
(
ˆ

E

g

)1/2 (ˆ

E

h

)1/2

,

and squaring both sides we conclude.
�

Exercise 18. (12)

(i) [2] State the Radon–Nikodym theorem.
(ii) [4] Let (X,M) be a measurable space, and let µ, ν : M → [0,∞] be positive measures, both

σ−finite. Prove that the following are equivalent:
(a) We have ν ≪ µ and µ≪ ν.
(b) µ and ν have the same null sets.
(c) There is ρ ∈ L+(X,M) such that ρ(x) > 0 for every x ∈ X and

ν(E) =

ˆ

E

ρ dµ for every E ∈ M.

Let now (X,M, µ) be a measure space.

(iii) [4] Assume that there exists f ∈ L1(µ) such that f(x) 6= 0 for every x ∈ X . Prove that then X
has σ−finite measure. Conversely, if X has σ−finite measure then there is f ∈ L1(µ) such that
f(x) > 0 for every x ∈ X , and

´

X f dµ = 1.
(iv) [2] Prove that if (X,M, µ) is σ−finite there exists a measure ν : M → [0,∞[ such that ν(X) = 1,

ν ≪ µ and µ≪ ν.

Solution. (i) OK
(ii):(a) ⇐⇒ (b) is by definition of absolute continuity. And by Radon–Nikodym theorem, since all

measures are σ−finite we have that (a), more precisely the hypothesis ν ≪ µ, implies the existence of
ρ ∈ L+(X,M) such that

ν(E) =

ˆ

E

ρ dµ for every E ∈ M.

But since ν(E) = 0 implies also µ(E) = 0, the set Z = {ρ = 0}, having ν−measure 0, has also µ−measure
0; we can the alter ρ on this set, e.g. set ρ(x) = 1 for x ∈ Z, and make ρ(x) > 0 everywhere.

(iii) Any f ∈ L1(µ) has the cozero set of σ−finite measure (Coz(f) =
⋃

n>1{|f | > 1/n}, and µ({|f | >
1/n}) ≤ n

´

X
|f |). And if a measurable set A ∈ M has σ−finite measure then it is the cozero set of a

positive measurable function with integral 1; simply write A as a disjoint union of a sequence of sets of
finite nonzero measure, A =

⋃∞
n=0An, and consider f : X → R defined by

f =

∞
∑

n=0

1

2n µ(An)
χAn

.
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(iv) is now obvious: take dν = ρ dµ where ρ ∈ L1(µ) is everywhere positive with integral 1; ρ exists
by (iii), by (i) we have µ≪ ν. �

Exercise 19. (11) Let (X,M, µ) be a measure space.

(i) [2] Compute

lim
n→∞

n log(1 + (t/n)α),

for t > 0 and α > 0. Hint:

n log(1 + (t/n)α) = n(t/n)α
log(1 + (t/n)α)

(t/n)α
; remember that lim

u→0

log(1 + u)

u
= . . .

What is the limit for t = 0?

Let now f be a positive function in L1(µ), and assume that c =
´

X f > 0. We want to compute

(*) lim
n→∞

ˆ

X

fn dµ

for various values of α > 0, here fn(x)(= fα,n(x)) = n log(1 + (f(x)/n)α) for n = 1, 2, 3, . . . and x ∈ X .

(ii) [1] Compute g(x) = (gα(x) =) limn→∞ fn(x) (distinguish the cases 0 < α < 1, α = 1, α > 1).
(iii) [3] Suppose that 0 < α < 1. Prove that in this case Fatou’s lemma is applicable and gives (*).
(iv) [2] Prove that log(1+ tα) < α t for every α ≥ 1, t > 0 (consider α t− log(1+ tα) and differentiate

. . . ).
(v) [3] Compute the limit (*) for α = 1 and for α > 1.

Solution. (i) Recall that limu→0 log(1 + u)/u = 1; then:

lim
n→∞

n log(1 + (t/n)α) = lim
n→∞

n (t/n)α
log(1 + (t/n)α)

(t/n)α
= lim

n→∞
n1−α tα

log(1 + (t/n)α)

(t/n)α
;

since limn→∞ log(1 + (t/n)α)/(t/n)α = 1 we get

lim
n→∞

n log(1 + (t/n)α) =











∞ for 0 < α < 1

t for α = 1

0 for α > 1

.

For t = 0 all the terms are 0, so the limit is 0.
(ii) By (i) we have, for 0 < α < 1 that g(x) = lim infn→∞ fn(x) = limn→∞ fn(x) = ∞ if f(x) > 0,

and 0 if f(x) = 0. Then gα = ∞χCoz(f), for 0 < α < 1. For α = 1 we have g1 = f . For α > 1 we have
gα = 0.

(iii) By Fatou’s lemma (notice that all functions fn are positive, since 1 + (f(x)/n)α ≥ 1)
ˆ

X

g ≤ lim inf
n→∞

ˆ

X

fn.

Since
´

X
f > 0 by hypothesis, we have that µ(Coz(f)) > 0, and hence

´

X
g = ∞, so that lim infn→∞

´

X
fn =

∞, which implies limn→∞

´

X fn = ∞.
(iv) Differentiating we get

α− α tα−1

1 + tα
> 0 ⇐⇒ 1 >

tα−1

1 + tα
,

clearly true if t > 0 and α ≥ 1 because 0 < tα−1 ≤ tα < 1 + tα if t ≥ 1, while if 0 < t < 1 then
tα−1 ≤ 1 < 1 + tα. Then the function α t − log(1 + tα) is zero at 0, continuous in [0,∞[, and strictly
increasing on ]0,∞[, so that α t− log(1 + tα) > 0 for t > 0( if α ≥ 1).

(v) By (iii) we have 0 ≤ fn(x) ≤ n(α(f(x)/n)) = αf(x), so that dominated convergence may be
applied. For α = 1 we have, by (ii):

f(x) = lim
n→∞

fn(x),

so that limn→∞

´

X fn =
´

X f = c. For α > 1 we have limn→∞ fn(x) = 0, so that the required limit is
0. �

Exercise 20. (12) Let µ : B1 → [0,∞] be defined by µ = (e− 1)
∑∞

n=1 e
−n δn, where δn is the unit mass

at n, and B1 is the σ−algebra of Borel subsets of R.
(i) [2] Find µ(R) and the smallest closed set that supports µ. Is µ singular with respect to Lebesgue

measure m = λ1?
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(ii) [3] Find a formula for the distribution function F (x) = µ(]−∞, x]), and plot F (it is convenient
to express F with the integer part function [x]).

Let now ν be the Radon measure defined on B1 by dν = χ]−∞,0](x) dx/(x−1)3, and consider the measure
λ = ν + µ on B1.

(iii) [2] Find the absolutely continuous and the singular part of λ (with respect to Lebesgue measure
m), find λ±, and also a Hahn decomposition for λ.

(iv) [2] Find a formula for the total variation function T (x) = |λ|(]−∞, x]), and plot T .
(v) [3] Given f(x) = x, determine the set of p > 0 such that f ∈ Lp(|λ|). Compute the integral

ˆ

R

x dλ(x)

if this integral exists (it may be useful to know that
∑∞

n=1 n z
n−1 = 1/(1− z)2 for |z| < 1).

Solution. (i) We have

µ(R) = (e− 1)
∞
∑

n=1

e−n = (e − 1)
1/e

1− 1/e
= 1.

Plainly µ(R r N>) = 0, and every larger set has strictly positive measure. Since N> is closed, it is the
required set. Since m(N>) = 0, we have µ ⊥ m.

(ii) We clearly have F (x) = 0 for x < 1. If x ≥ 1, we have F (x) = F ([x]), and

F ([x]) = (e− 1)

[x]
∑

n=1

e−n = (e− 1)
1

e

1− e−[x]

1− 1/e
= 1− e−[x].

The plot is easily done.

1 2 3 4 5

1-
1

ã

1-
1

ã
2

1-
1

ã
3

Figure 10. Plot of F (not on scale).

(iii) By its very definition ν is absolutely continuous with respect tom, and µ is singular, so that ν is the
absolutely continuous part and µ the singular part. Next, ν is negative (notice that χ]−∞,0](x)/(x−1)3 ≤ 0

for every x ∈ R), so that λ− = −ν and λ+ = µ (since also ν ⊥ µ). A Hahn decomposition for λ is for
instance N> ∪ (Rr N>), the first set positive, the second negative.

(iii) For x < 1 we have

T (x) = |λ|(]−∞, x]) = −ν(]−∞, x]) = −
ˆ

]−∞,x]

χ]−∞,0](t)
dt

(t− 1)3
;

assuming x ≤ 0 this integral is
ˆ x

−∞

−dt
(t− 1)3

=
1

2

[

1

(t− 1)2

]x

−∞

=
1

2(x− 1)2
;

then T (0) = 1/2 and T (x) = 1/2 for x ∈ [0, 1[. For x ≥ 1 we have T (x) = 1/2 + F (x).
(iv) We have that Lp(|λ|) = Lp(λ+) ∩ Lp(λ−) = Lp(µ) ∩ Lp(−ν). Thus f ∈ Lp(|λ|) iff

ˆ 0

−∞

|x|p
(1− x3)

dx;

∞
∑

n=1

np e−n
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Figure 11. Plot of T (not on scale).

are both finite. The second series converges for every p ∈ R (e.g. by the root test), while the integral is
finite if and only if 3− p > 1 ⇐⇒ p < 2: in fact the function is continuous and hence locally summable
on ]−∞, 0], and at −∞ it is asymptotic to 1/|x|3−p. So the answer is: for 0 < p < 2. The integral is

ˆ 0

−∞

x

(x− 1)3
dx+

∞
∑

n=1

ne−n =

[ −x
2(x− 1)2

]x=0

x=−∞

+
1

2

ˆ 0

−∞

dx

(x− 1)2
+

1

e

∞
∑

n=1

n
1

en−1

1

2

[ −1

x− 1

]0

−∞

+
1

e

1

(1− 1/e)2
=

1

2
+

e

(e− 1)2
.

�

Analisi Reale per Matematica – Appello di ricupero – 18 luglio 2012

Exercise 21. Let (X,M, µ) be a measure space.

(i) Let gn ∈ L+ be a sequence of measurable positive functions; assume that
´

X gn < ∞ for every
n ∈ N. Consider the following statements:
(a) The series of functions

∑∞
n=0 gn(x) converges to a finite sum for a.e. x ∈ X .

(b) The series
∑

n∈N

´

X
gn of the integrals is convergent, that is

∑

n∈N

´

X
gn <∞.

Are these statements equivalent? or does (b) imply (a)? or conversely does (a) imply (b)? Give
proofs, or counterexamples.

(ii) Given any function g ∈ L+(R), with
´

R
g = a > 0 (the measure is Lebesgue measure), and a

sequence cn ∈ R, prove that the formula

f(x) =

∞
∑

n=0

g(2n(x− cn))

defines for a.e. x ∈ R a function f ∈ L1(R). What is the integral of f?
(iii) Let the function g in (ii) be log+(1/|x|) = max{− log |x|, 0}, with g(0) = 0, and let n 7→ cn be a

bijection of N onto the set of rational numbers. Plot g, and prove that for every α > 0 and every
non–empty open interval I of R the set {x ∈ I : f(x) > α} has strictly positive measure.

Solution. (i) It is true that (b) implies (a), but not the converse. If hm =
∑m

n=0 gn, then hm ∈ L+,
and the sequence hm is increasing to a limit h with h(x) =

∑∞
n=0 gn(x); by the monotone convergence

theorem we have
ˆ

X

h = lim
m→∞

ˆ

X

hm = lim
m→∞

m
∑

n=0

ˆ

X

gn =

∞
∑

n=0

ˆ

X

gn <∞ (by (b));

then
´

X
h < ∞ implies that E = {h = ∞} has measure 0; and E is exactly the set of all x ∈ X such

that
∑∞

n=0 gn(x) = ∞. Pointwise convergence everywhere of the series does not ensure convergence of
the series of integrals: take e.g. gn(x) = g(x− n), where g = χ[0,1[.

(ii) The change of variable t = 2n(x− cn) ⇐⇒ x = t/2n + cn reduces the integral to
ˆ

R

g(2n(x− cn)) dx =

ˆ

R

g(t)
dt

2n
=

a

2n
,
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so that the series of integrals of the given series is
∞
∑

n=0

ˆ

R

g(2n(x− cn)) dx =

∞
∑

n=0

a

2n
= 2a,

and by (i) the series the converges pointwise a.e. to a measurable positive function f with
´

R
f(x) dx = 2a.

(iii) The plot is easy.

-1 1

Figure 12. Plot of g

If I is non–empty open interval, by density of Q there are infinitely many n ∈ N such that cn ∈ I, and
if n is such that 2−n < m(I) (m Lebesgue measure) then either the right or the left half of the interval
]cn − 1/2n, cn + 1/2n[ are contained in I. Since the series has positive terms, f(x) > α is ensured if
g(2n(x− cn)) > α for at least one n; and

g(2n(x − cn)) > α ⇐⇒ 2n|x− cn| < e−α ⇐⇒ cn − e−α/2n < x < cn + e−α/2n,

so that the set {f > α} ∩ I has measure not less than e−α/2n.
�

Exercise 22. Let (X,M, µ) be a measure space.

(i) Let S ⊆ M be closed under union (that is, A,B ∈ S imply A ∪B ∈ S). Let s = sup{µ(A) : A ∈
S}. Prove that there exists an increasing sequence A0 ⊆ A1 ⊆ . . . of elements of S such that
µ
(
⋃

n∈NAn

)

= s. Prove that if S is closed under countable union then s = max{µ(A) : A ∈ S}.
Given E ∈ M let S(E) = {A ∈ M : A ⊆ E, µ(A) <∞}, and set µ0(E) = sup{µ(A) : A ∈ S(E)}.

(ii) Prove that S(E) is closed under union, and that the following are equivalent:
(a) µ0(E) = max{µ(A) : A ∈ S(E)}.
(b) µ0(E) <∞.
(c) S(E) is closed under countable union.

Let’s call atom in a measure space (X,M, µ) any A ∈ M such that 0 < µ(A) ≤ ∞, and for every B ⊆ A,
B ∈ M, we have either µ(B) = 0 or µ(B) = µ(A). Prove that if for some E ∈ M we have µ0(E) < µ(E)
then E contains an atom of infinite measure.

Solution. (i) There is of course a sequence Sn ∈ S such that supn µ(Sn) = s. Set An = S0 ∪ · · · ∪ Sn.
Then An ∈ S because S is closed under union, and clearly An is increasing. We have µ(Sn) ≤ µ(An),
and µ(An) ≤ s because An ∈ S. Then

s = sup
n
µ(Sn) ≤ lim

n→∞
µ(An) ≤ s so that s = lim

n→∞
µ(An) = µ

(

⋃

n∈N

An

)

.

Trivially we then have s = max{µ(A) : A ∈ S} if
⋃

n∈NAn ∈ S.
(ii) Subadditivity implies immediately that S(E) is closed under ∪: µ(A ∪B) ≤ µ(A) + µ(B) < ∞ if

both µ(A) and µ(B) are finite. Let us next show that (a) implies (b) implies (c) implies (a):
(a) implies (b) Since S(E) is closed under union, there is an increasing sequence A0 ⊆ A1 ⊆ . . .

of elements of S such that µ
(
⋃

n∈NAn

)

= s; then s = µ0(E) = µ
(
⋃

n∈NAn

)

; if µ0(E) < ∞ then
⋃

n∈NAn ∈ S(E), and s = max{µ(A) : A ∈ S(E)}.
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(b) implies (c) Since S(E) is closed under finite union, we only have to prove that the union of an
increasing sequence in S(E) belongs to S(E). If A0 ⊆ A1 ⊆ . . . is such a sequence we have µ(An) ≤ µ0(E)
for every n; if A =

⋃

n∈NAn we then get µ(A) = limn→∞ µ(An) ≤ µ0(E), so that µ(A) ≤ µ0(E) < ∞;
thus A ∈ S(E).

(c) implies (a) is immediate by (i).
Last question: if µ0(E) < µ(E) then certainly µ0(E) <∞; if µ(E) is finite, then trivially µ0(E) = µ(E)

so that the hypothesis implies µ0(E) finite and µ(E) = ∞; by (ii) there is A ⊆ E such that µ(A) =
µ0(E) = max{µ(B) : B ∈ S(E)} Then E rA is the required atom; it clearly has infinite measure, and if
B ⊆ E rA has finite measure then A∪B ∈ S(E) and µ(A) = µ(A) + µ(B) implies µ(B) = 0 (otherwise
µ(A ∪B) > µ(A) = µ0(E), a contradiction)

�

Exercise 23. Let (X,M, µ) be a measure space.

(i) If 0 < p < q, for every f ∈ L(X) we have

‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/q∞ ;

Prove it, and say when equality holds, assuming the right–hand side finite and nonzero.

On every set X the spaces ℓp = ℓp(X,K) are defined, and also ‖f‖p is defined for every f : X → K.

(ii) Explain how these spaces can be defined within the general theory of Lp spaces (that is, they are
Lp(X,M, µ) for some σ− algebra M on X and some measure µ). Prove that ‖f‖∞ ≤ ‖f‖p for
every p > 0, and determine the functions f for which equality holds. Prove that if 0 < p < q <∞
then ‖f‖q ≤ ‖f‖p.

(iii) Prove that if ℓp(X) = ℓq(X) for p, q > 0 and p < q, then X is finite (remember that
∑∞

n=1 1/(n+
1)α is in ℓp(N) iff pα . . . ).

Solution. (i) For a.e. x ∈ X we have

|f(x)|q = |f(x)|p |f(x)|q−p ≤ |f(x)|p ‖f‖q−p∞ integrating(*)
ˆ

X

|f |q ≤
ˆ

X

|f |p ‖f‖q−p∞ =

(
ˆ

X

|f |p
)

‖f‖q−p∞ ;

taking q−th roots of both sides:
‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/q∞ .

To avoid trivialities we consider the case in which the right–hand side is finite and nonzero. When
integrating in (*), the inequality becomes an equality if and only if the set

{x ∈ X : |f(x)|q < |f(x)|p ‖f‖q−p∞ } has measure 0;

this set is clearly contained in the cozero set {|f | > 0} of f , and coincides with

{x ∈ X : |f(x)| > 0, |f(x)|q−p < ‖f‖q−p∞ },
and clearly it has measure 0 if and only if |f(x)| is constantly a.e. equal to its esssupnorm on {|f | > 0},
in other words |f | = ‖f‖∞ χCoz(f); and for the right–hand side to be finite we need ‖f‖∞ < ∞ and
µ(Coz(f)) <∞. To sum up: the inequality is an equality with finite nonzero sides if and only if |f | is of
the form r χE , with r > 0 and 0 < µ(E) <∞.

(ii) We know that ℓp(X) = Lp(X,M, µ) if M = P(X), the power set of X , and µ the counting
measure on P(X). It is trivial to see that ‖f‖∞ ≤ ‖f‖p for every p with 0 < p < ∞: for every
c ∈ X one has |f(c)|p ≤ ∑

x∈X |f(x)|p = ‖f‖pp, so that |f(c)| ≤ ‖f‖p for every c ∈ X , and then
‖f‖∞ = sup{|f(c)| : c ∈ X} ≤ ‖f‖p. Equality holds when ‖f‖∞ = ∞ or when f = 0; excluding
these cases ‖f‖p has to be finite; then ‖f‖∞ = max{|f(x)| : x ∈ X}; if ‖f‖∞ = |f(c)| > 0, then we
must have f(x) = 0 for all x ∈ X r {c}; if not we have ‖f‖p∞ = |f(c)|p < |f(c)|p + |f(x)|p ≤ ‖f‖pp
when f(x) 6= 0. Then equality holds in non–trivial cases iff the cozero set of f is a singleton. Finally,

from (i) we get ‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/q∞ if 0 < p < q < ∞; and since ‖f‖∞ ≤ ‖f‖p we conclude that

‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/qp = ‖f‖p.
(iii) If X is infinite, then X contains a countably infinite subset N = {x0, x1, x2, . . . }. Given α > 0

we consider the function f = fα : X → R given by f(x) = 0 if x ∈ X r N , and f(xn) = 1/(n + 1)α.
Clearly f ∈ ℓp(X) iff pα > 1; the conclusion is immediate. �

Exercise 24. Define α : R → R by α(x) = 1/(1 − x) for x < 0, α(0) = 0, α(x) = e−[1/x] for x > 0 (as
usual, [t] is the integer part of t, for every t ∈ R).
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(i) Find all points of discontinuity of α, the jump of α at these points, and determine left or right
continuity of α at these points.

(ii) Plot α and the total variation function T (x) = V α(]−∞, x]); compute µ(R), where µ is the total
variation measure |λα| of the measure λα determined by α. Find the largest open set null for λα.

(iii) For λα find a Hahn decomposition, and describe the absolutely continuous and singular part with
respect to Lebesgue measure m on B1.

(v) Given f(x) = x+ = max{x, 0}, determine the set of all p > 0 such that f ∈ Lp(µ). Is it true that
f ∈ L∞(µ)?

Solution. (i) Clearly α is continuous on ] − ∞, 0[. For x > 1 we have [1/x] = 0 so that α(x) = 1 for
x > 1. We have [1/x] = n ∈ N iff n ≤ 1/x < n + 1, that is iff 1/(n + 1) < x ≤ 1/n. Then on the
left–open interval ]1/(n + 1), 1/n] the function α has the constant value e−n; α is discontinuous at all
points 1, 1/2, 1/3, . . . , and at these points it is left continuous, with α(1/n) = e−n = limx→(1/n)− α(x),

while limx→(1/n)+ α(x) = e−(n−1); the jump at 1/n is then σα(1/n) = e−(n−1) − e−n = e−n(e − 1).
Another point of discontinuity is 0, with limx→0− α(x) = 1, and limx→0+ α(x) = 0 = α(0); at 0 we have
right continuity, and σα(0) = −1.

1

3

1

2
1

1

Figure 13. Plot of α

1

3

1

2
1

1

2

Figure 14. Plot of T

(ii) With the previous information the plot of α is easy. For T : since α is increasing on ]−∞, 0[ and
0 at −∞, for x < 0 we get T (x) = α(x) = 1/(1− x), while T (0) = 2; next we get T (x) = 2+ β(x). where
β :]0,∞[→ R is the right–continuous modification of α; T (+∞) = 3 = µ(R). Sets null for λα are those of
|λα|−measure 0; it is quite clear that the largest open set of µ−measure 0 is ]0,∞[r{1/n : n ≥ 1} (any
larger open set will either contain a point 1/n, with measure µ({1/n}) = e−n(e− 1), or 0, with measure
µ({0}) = 1, or an open interval I of ]−∞, 0[, with measure α(sup I)− α(inf I) > 0).

(iii) The function α is increasing on ]−∞, 0] and on ]0,∞[, so that both these are positive sets; and
{0} is a negative set. Thus a Hahn decomposition is P = R∗, N = {0}. The absolutely continuous part
is (χ]−∞,0[/(1 − x)2) dm (or the measure associated to the monotone function x 7→ 1/(1− x) for x < 0,

x 7→ 1 for x ≥ 0); the singular part is the measure −δ0 +
∑∞

n=1 e
−n(e− 1) δ1/n.

(iv) Clearly the integral of fp is
ˆ

R

fp(x) dµ(x) =
∞
∑

n=1

1

np
e−n(e − 1);

this sum is clearly finite for every p > 0. Then f ∈ Lp(µ) for every p > 0. And it is easy to see that
f ∈ L∞(µ): the set {f > 1} =]1,∞[ has clearly µ−measure 0 (it is also easy to see that ‖f‖∞ = 1). �

Analisi Reale per Matematica – Appello di ricupero – 4 settembre 2012

Exercise 25. Let (X,M, µ) be a measure space; as usual we denote by L+(X) = L+
M(X) the set of all

measurable functions with values in [0,∞].
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(i) Given f ∈ L+(X) which of the following two statements is correct?
(a) If

´

X
f is finite, then f ∈ L1(µ).

(b) If
´

X f is finite, then f coincides a.e. with a function g ∈ L1(µ).
(ii) In X = R with Lebesgue measure consider the sequence fn = χ[n,∞[. Notice that fn is a

decreasing sequence in L+(R), and find the limit f ; is it true that
´

R
f = limn

´

R
fn?

(iii) State Fatou’s lemma. Next, state and prove the analogous of Fatou’s lemma for lim sup (with
the necessary modifications).

Solution. (i) The correct statement is (b). Functions in L+(X) may assume the value +∞; we know
(LN, 3.3.5, corollary) that if the integral is finite then {f = ∞} is measurable with zero measure.

(ii) The limit function f is identically 0, with zero integral, whereas
´

R
fn = ∞ for every n, so that

also limn

´

R
fn = ∞

(iii) For Fatou’s lemma see LN, 3.3.6. We were reminded, from (ii) that for a decreasing sequence of
functions to have passage to the limit under the integral sign an hypothesis of finiteness of the integral
has to be added. Then we can state:

. Let fn be a sequence of functions in L+(X). Assume that for some m ∈ N the integral of f∗m =
∨

n≥m fn
is finite. Then

ˆ

X

lim sup
n

fn ≥ lim sup
n

ˆ

X

fn.

Proof. The sequence f∗k is decreasing, converges pointwise to f∗ = lim supn fn and
´

X f∗k is finite as soon

as k ≥ m; then
´

X f∗ = limk→∞

´

X f∗k (LN, 3.3.6.2; alternatively, dominated convergence); since f∗k ≥ fl
for l ≥ k we have

´

X
f∗k ≥

´

X
fl for every l ≥ k, hence also

´

X
f∗k ≥ supl≥k

´

X
fl; passing to the limit in

this inequality as k → ∞ we get
ˆ

X

f∗
(

=

ˆ

X

lim sup
n

fn

)

≥ lim sup
k

ˆ

X

fk,

as required. �

Remark. The hypothesis that f∗m has finite integral for some m is equivalent to the hypothesis that
some function in L1(µ) dominates a.e. all functions fk for k ≥ m: combined with Fatou’s lemma for
lim inf the above in fact gives the dominated convergence theorem (another proof of)

�

Exercise 26. Let (X,M) be a measurable space and let µ, ν : M → [0,∞] be positive measures on it.

(i) Define absolute continuity of ν with respect to µ, ν ≪ µ.

The ε− δ notion of absolute continuity is the following:

Definition. The measure ν is said to be ε− δ absolutely continuous with respect to µ if for every ε > 0
there is δ = δε > 0 such that (|ν(E)| =)ν(E) ≤ ε for every E ∈ M with µ(E) ≤ δ.

(ii) Prove that ε− δ absolute continuity implies absolute continuity.
(iii) With X = R and M = B(R), Borel σ−algebra of R, let µ = m=Lebesgue measure, and dν =

x2 dm. Prove that ν ≪ m, but that ν is not ε− δ absolutely continuous with respect to m.
(iv) On a measure space (X,M, µ) let ρ be a positive function in L∞(µ), and let dν = ρ dµ. Prove

that ν is ε− δ absolutely continuous with respect to µ.
(v) Prove that if ν is a finite measure, and ν ≪ µ then ν is also ε − δ absolutely continuous with

respect to µ.

Solution. (i) For every E ∈ M, if µ(E) = 0 then also ν(E) = 0. (ii) If µ(E) = 0, then µ(E) < δ for every
δ > 0 so that ν(E) ≤ ε for every ε > 0, hence ν(E) = 0.

(iii) We compute ν([a, a+ δ]):

ν([a, a+ δ]) =

ˆ a+δ

a

x2 dm =

[

x3

3

]x=a+δ

x=a

=
(a+ δ)3 − a3

3
=
a3

3
((1 + δ/a)3 − 1).

For a→ +∞ we have ν([a, a+ δ]) → ∞, and the ε− δ condition cannot hold.
(iv) Trivial: for every E ∈ M of finite µ−measure we have

ν(E) =

ˆ

E

ρ dµ =

ˆ

E

g dµ ≤
ˆ

E

‖ρ‖∞ dµ = ‖ρ‖∞ µ(E),
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so that, given ε > 0 we take δ = ε/‖ρ‖∞ and we get ν(E) ≤ ε if µ(E) ≤ δ.
(v) See LN,6.2.5.3: when ν is finite then ν ≪ µ implies that ν verifies also the ε− δ condition.

�

Exercise 27. Let (X,M, µ) be a finite measure space, µ(X) <∞. Assume that 0 < p < q ≤ ∞
(i) Prove that there exists a constant C(p, q) > 0 such that for every measurable f : X → C we have

‖f‖p ≤ C(p, q) ‖f‖q;
and find such a constant.

(ii) We have Lp(µ) ⊇ Lq(µ), and convergence of a sequence in Lq(µ) implies convergence of the
sequence in Lp(µ), to the same limit; prove these statements.

(iii) Prove that Lp([0, 1]) % Lq([0, 1]), and that L∞([0, 1]) $
⋂

0<p<∞ L
p([0, 1]); the measure is

Lebesgue measure.

Solution. (i) Remember (LN, 5.1.8) that we have

‖f‖p ≤ µ(X)1/p−1/q ‖f‖q,
for every measurable f ∈ L(X). In fact, assuming first q < ∞, and applying Hölder’s inequality to the
pair of functions |f |p, 1 with conjugate exponents q/p, q/(q − p) we get:

ˆ

X

|f |p =

ˆ

X

|f |p 1 ≤
(
ˆ

X

|f |q
)p/q (ˆ

X

1q/(q−p)
)(q−p)/q

= µ(X)1−p/q ‖f‖pq,

so we need only to take p−th roots of both sides. For q = ∞ the inequality is immediate.
(ii) Is now trivial: f ∈ Lq(µ) means that f is measurable and that ‖f‖q <∞; the preceding inequality

says that then also ‖f‖p <∞, so that f ∈ Lp(µ). Similarly, fn → f in Lq(µ) means that ‖f − fn‖q → 0;
since for p < q

‖f − fn‖p ≤ µ(X)1/p−1/q ‖f − fn‖q
this implies ‖f − fn‖p → 0 and hence fn → f also in Lp(µ).

(iii) The function fα(x) = 1/xα is in Lp([0, 1]) iff pα < 1; if pα < 1 but qα > 1, that is for α ∈]1/q, 1/p[
then fα ∈ Lp r Lq. And log x is in

⋂

0<p<∞ L
p([0, 1])r L∞([0, 1]). �

Exercise 28. Define F : R → R by F (x) = −e−|x| for x < 0, F (x) =
√

(2x− x2)+ for x ≥ 0 (as usual,
(2x− x2)+ = max{2x− x2, 0} is the positive part of 2x− x2, for every x ∈ R).

(i) Plot F .
(ii) Find the total variation function T (x) = V F (]−∞, x]), the positive and negative variation F±

of F , and plot all these functions.
(iii) For the signed measure ν = µF associated to F describe a Hahn decomposition, and describe the

Lebesgue–Radon–Nikodym decomposition of ν± with respect to Lebesgue measure m on B1.

Let now f : R → R be defined by f(x) = x+ = max{x, 0}.
(iv) Compute

ˆ

R

f d|ν|.

(v) Prove that f ∈ L∞(|ν|) and compute ‖f‖∞ in this space.

Solution. (i) Easy:

(ii) We have T (x) = ex for x < 0; T (0) = 2; T (x) = 2+
√
2x− x2 for 0 ≤ x < 1; T (x) = 4−

√
2x− x2

for 1 ≤ x < 2; T (x) = 4 for x ≥ 2. And we have F±(x) = (T (x)± F (x))/2 so that

F+(x) = 0 (x < 0); F+(x) = 1 +
√

2x− x2 (0 ≤ x < 1); F+(x) = 2 (1 ≤ x).

F−(x) = ex (x < 0); F−(x) = 1 0 ≤ x < 1; F−(x) = 2−
√

(x− 2x2)+ 1 ≤ x

(in particular, F−(x) = 2 if 2 ≤ x).
(iii) We can take P = [0, 1[ and Q = R r P . Also

dν+ = δ0 +
1− x√
2x− x2

χ]0,1[(x) dx; dν− = ex χ[−∞,0[(x) dx +
x− 1√
2x− x2

χ]1,2[(x) dx.

(iv) We have
ˆ

R

f d|ν| =
ˆ

R

f dν+ +

ˆ

R

f dν− =

ˆ 1

0

x
1− x√
2x− x2

dx+

ˆ 2

1

x
x− 1√
2x− x2

dx =
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[

x
√

2x− x2
]x=1

x=0
−
ˆ 1

0

√

2x− x2 dx+
[

−x
√

2x− x2
]x=2

x=1
+

ˆ 2

1

√

2x− x2 dx =

1−
ˆ 1

0

√

2x− x2 dx+ 1 +

ˆ 2

1

√

2x− x2 dx = 2.

(v) Since |ν|([2,+∞[) = 0 we have ‖f‖∞ = 2.

-1 1 2

-1

1

-1 1 2 3

1

2

3

4

Figure 15. Plots of F (left) and T (right).

(the plots of F± are omitted). �

Analisi Reale per Matematica – Appello di ricupero – 19 settembre 2012

Exercise 29. Let (X,M, µ) be a measure space; for simplicity we consider only real valued functions
on X , in particular here L1(µ) consists of real–valued functions only.

(i) Define (real valued) measurable simple functions, and prove that such a function f is in L1(µ) if
and only if its cozero–set {f 6= 0} has finite measure.

We call S(µ) the set of all simple functions which belong to L1(µ).

(ii) Prove that a positive measurable function f : X → [0,∞[ is in L1(µ) if and only if it is the limit
in L1(µ) of an increasing sequence of positive simple functions in L1(µ), and deduce from this
that S(µ) is dense in L1(µ).

Assume now that (X,M, µ) is the Carathèodory extension of a premeasure (still called µ) defined on an
algebra A of parts of X .

(iii) Prove that if E ∈ M and µ(E) <∞ then for every ε > 0 there is A ∈ A such that µ(A △ E) ≤ ε;
deduce from this fact that the subspace of A−simple functions in S(µ) is still dense in L1(µ).

Solution. (i) A simple function is a function with finite range; real–valued measurable simple functions
are then functions f of the form f =

∑m
k=1 αk χE(k), where {E(k) : k = 1, . . . ,m} is a finite partition

of X into members of M, and {α1, . . . , αm} is set of m different real numbers (we are here talking of
the standard representation). The absolute value of such a function is then |f | = ∑m

k=1 |αk|χE(k), and

by definition the integral of such a function is
´

X
|f | = ∑m

k=1 |αk|µ(E(k)); this is a finite value if and
only if µ(E(k)) = ∞ implies |αk| = 0, that is, on a set of infinite measure the simple function must be
identically zero. The cozero–set of f is {|f | > 0} and is

⋃{E(k) : |αk| > 0}; so f ∈ L1(µ) ⇐⇒ |f | ∈
L1(µ) ⇐⇒ µ({|f | > 0}) <∞ has been proved.

(ii) Recall that every positive measurable function f is the pointwise limit of an increasing sequence
of positive measurable simple functions ϕn (LN, 3.2.3). If f ∈ L1(µ) then clearly ϕn ∈ L1(µ), and by
monotone convergence

´

X f = lim
´

x ϕn, which implies

‖f − ϕn‖1 =
ˆ

X

(f − ϕn) =

ˆ

X

f −
ˆ

X

ϕn → 0 for n→ ∞.

Clearly any L1 limit of a sequence of functions in L1 is in L1. Given a real f ∈ L1(µ) we simply split fas
f = f+ − f−; if ϕn, ψn are sequences of simple functions converging in L1(µ) to f± respectively, then
ϕn − ψn converges to f in L1(µ).
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(iii) The first part is LN, 2.3.4. Given a simple function in L1(µ), f =
∑m

k=1 αk χE(k) (where now
the value 0 of f , if present, is omitted so that αk 6= 0 and µ(E(k)) < ∞ for every k ∈ {1, . . . ,m}) and
ε > 0 we can pick for every k ∈ {1, . . . ,m} a set A(k) ∈ A such that µ(E(k) △ A(k)) ≤ ε/α, where
α =

∑m
k=1 |αk|. If g =

∑m
k=1 αk χA(k) then g is A−simple, belongs to L1(µ), and

‖f − g‖1 =
ˆ

X

|f − g| =
ˆ

X

∣

∣

∣

∣

∣

m
∑

k=1

αk χE(k) −
m
∑

k=1

αk χA(k)

∣

∣

∣

∣

∣

≤
ˆ

X

m
∑

k=1

|αk| |χE(k) − χA(k)| =

m
∑

k=1

|αk|
ˆ

X

|χE(k) − χA(k)| =
m
∑

k=1

|αk|µ(E(k) △ A(k)) ≤ ε,

Then the closure of the set of A−simple functions in L1(µ) contains S(µ), which is dense in L1(µ); then
this closure is all of L1(µ).

Remark. A more direct proof of the above is in LN, 3.3.15.

�

Exercise 30. Let (X,M, µ) be a measure space.

(i) What does it mean that E ∈ M is of σ−finite measure? when is the measure space called
σ−finite?

An atom in the measure space (X,M, µ) is a set A ∈ M with µ(A) > 0 such that for every E ∈ M
contained in A we either have µ(E) = 0 or µ(Ar E) = 0.

(ii) If A,B ∈ M are atoms, then either µ(A ∩B) = 0, or µ(A ∩B) = µ(A) = µ(B).
(iii) Prove that in a σ−finite measure space an atom has finite measure.

Two sets A,B ∈ M are said to be almost disjoint if µ(A ∩B) = 0.

(iv) Let (An)n∈N be a sequence of pairwise almost disjoint sets in M, and let A =
⋃

n∈NAn. Prove
that

µ(A) =

∞
∑

n=0

µ(An).

(v) Prove that in a σ−finite measure space a family of pairwise almost disjoint atoms is at most
countable.

Solution. (i) Lecture notes, 2.2.8. (ii) If µ(A ∩ B) > 0, then µ(A r (A ∩ B)) = µ(B r (A ∩ B)) = 0
because A and B are atoms. Then µ(A) = µ(A ∩ B) + µ(A r (A ∩ B)) = µ(A ∩ B) and µ(B) =
µ(A ∩ B) + µ(B r (A ∩ B)) = µ(A ∩ B) by finite additivity; by transitivity µ(A) = µ(B)(= µ(A ∩ B)).
(iii) We can reproduce the argument given above that σ−finiteness implies semifiniteness; at any rate, if
An ∈ M is an increasing sequence of sets of finite measure with union X , and A is an atom, we also have
A ∩ An ↑ A, so that if µ(A ∩ An) = 0 for every n we get µ(A) = 0, a contradiction; then µ(A ∩ An) > 0
for some n, which implies µ(ArAn) = 0, and µ(A) = µ(A ∩ An) + µ(ArAn) = µ(A ∩ An) <∞.

(iv)Let’s apply the usual trick for making a disjoint union, Bk = Ak r
(

⋃k−1
j=0 Aj

)

. We have Bk ⊆ Ak,

and if the Ak’s are pairwise almost disjoint then µ(Bk) = µ(Ak): in fact Ak r Bk = Ak ∩
(

⋃k−1
j=0 Aj

)

=
⋃k−1

j=0 Ak ∩ Aj is a finite union of sets of measure zero, and has then measure zero.

(v) Assume that E ⊆ X has finite measure, and let (Aλ)λ∈Λ be a family of almost disjoint atoms
contained in E; we prove that

∑

λ∈Λ µ(Aλ)
(

:= sup{∑λ∈F µ(Aλ) : F a finite subset of Λ}
)

≤ µ(E); this
implies that Λ is countable (Lecture Notes, lemma 1.2.4). In fact, for every finite subset F ⊆ Λ we have,
by (i),

∑

λ∈F µ(Aλ) = µ
(
⋃

λ∈F Aλ

)

≤ µ(E). We have proved that any subset of X of finite measure
contains an at most countable set A(E) of pairwise almost disjoint atoms; since X =

⋃

n∈NEn, where
(En)n∈N is an increasing sequence of sets of finite measure, we have that A(X) =

⋃

n∈N A(En) is a
countable union of countable sets, hence countable.

�

Exercise 31. Let (X,M, µ) be a measure space, and let f ∈ L(X) be a measurable function.

(i) Prove that
lim inf
p→∞

‖f‖p ≥ ‖f‖∞
(given 0 < α < ‖f‖∞ use Čebičeff’s inequality for Lp to prove that lim infp→∞ ‖f‖p ≥ α).

(ii) Assuming f ∈ Lp(µ) for some p > 0 prove that lim supp→∞ ‖f‖p ≤ ‖f‖∞.
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(iii) Find a Lebesgue measurable function f : R → R such that limp→∞ ‖f‖p exists, but is not equal
to ‖f‖∞.

(iv) Compute the limit

lim
n→∞

(
ˆ ∞

0

dx

(1 + x2)n

)1/n

and deduce from it the value of limn→∞((2n)!/(n!)2)1/n (use the Beta and Gamma functions to
evaluate the preceding integral; do this last part only if you spare some time).

Solution. (i) and (ii): LN, 5.1.1. (iii) Take the constant 1: its p−norms are all infinite, but ‖1‖∞ = 1.
(iv) Clearly all p−norms are finite, so that the limit is the L∞−norm of f(x) = 1/(1 + x2) in [0,∞[,

which is 1. To compute the integrals: first use the change of variables x2 = t, which gives
ˆ ∞

0

dx

(1 + x2)n
=

1

2

ˆ ∞

0

t−1/2

(1 + t)n
dt =

1

2
B(1/2, n− 1/2) =

1

2

Γ(1/2) Γ(n− 1/2)

Γ(n)
.

We have Γ(1/2) = π1/2 and

Γ(n− 1/2) =
(n− 1/2) Γ(n− 1/2)

n− 1/2
=

Γ(n+ 1/2)

n− 1/2
=

(2n)!

22nn!
π1/2,

so that
(
ˆ ∞

0

dx

(1 + x2)n

)1/n

=

(

π

2

(2n)!

22nn!Γ(n)

)1/n

=
1

4

(nπ

2

)1/n
(

(2n)!

(n!)2

)1/n

;

as n→ ∞ the left–hand side tends to 1, and also (nπ/2)1/n tends to 1; then the required limit is 4. �

Exercise 32. Define F : R → R by F (x) = sgnx e−|x|.

(i) Plot F .
(ii) Find the total variation function T (x) = V F (]−∞, x]), the positive and negative variation F±

of F , and plot all these functions.
(iii) For the signed measure ν = µF associated to F describe a Hahn decomposition, and describe the

Lebesgue–Radon–Nikodym decomposition of ν± with respect to Lebesgue measure m on B1.

Let now f : R → R be defined by f(x) = |x|.
(iv) Compute

ˆ

R

fp d|ν|,
for every p > 0

(v) Is it true that f ∈ L∞(|ν|)?
Solution. (schematic) The plots are easy and we omit them. The total variation is T (x) = ex for x < 0,
T (0) = 2, T (x) = 4− e−x for x > 0. The positive variation is F+(x) = 0 for x < 0, F+(0) = 1, F+(x) = 2
for x > 0; the negative is F−(x) = ex for x < 0, F−(x) = 2 − e−x for x ≥ 0. A Hahn decomposition is
P = {0} and Q = R r {0}. The singular part is 2 δ0, the absolutely continuous part is −e−|x| dm. We
have

ˆ

R

|f |p d|ν| = 2|f(0)|p δ0 +
ˆ

Rr{0}

|x|p e−|x| dm(x) = 2

ˆ ∞

0

xp e−x dx = 2Γ(p+ 1).

Then f ∈ Lp(|ν|) for every p > 0. Clearly f is not in L∞(|ν)): for every α > 0 the set {x ∈ R : |x| > α}
is the union of the two half lines ]−∞,−α[∪]α,∞[, of |ν|−measure 2 exp(−α) > 0.

�


