Spazi L^p , convergenza forte e debole

11 Novembre 2015

Esercizi di primo livello

Esercizio 1 Sia (X, \mathcal{A}, μ) uno spazio di misura finito, $\mu(X) < \infty$. Dato $1 \leq p < \infty$, provare che per ogni funzione $f: X \to [0, \infty)$ si ha

$$f \in L^p(X) \quad \Leftrightarrow \quad \sum_{k=1}^{\infty} k^p \mu(A_k) < \infty,$$

dove $A_k = \{x \in X : k - 1 \le f(x) < k\}.$

Esercizio 2 Sia $\varphi : [0,1] \to \mathbb{R}$ una funzione continua positiva, $\varphi > 0$. Provare che per ogni $f \in L^{\infty}([0,1])$ si ha

$$\lim_{p \to \infty} \left(\int_{[0,1]} |f(x)|^p \varphi(x) \, dx \right)^{1/p} = \|f\|_{L^{\infty}([0,1])}.$$

Esercizio 3 Sia $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni in $L^p([0,1])$, $1 \leq p < \infty$, uniformemente limitata $||f_n||_p \leq C < \infty$ per ogni $n \in \mathbb{N}$ e supponiamo che $f_n(x) \to f(x)$ per q.o. $x \in [0,1]$.

- i) Provare che $f \in L^p([0,1])$.
- ii) Se $1 , provare che <math>f_n \to f$ in $L^q([0,1])$ per ogni $1 \le q < p$.

Sugg. ii) Hölder \rightarrow uniforme integrabilità.

Esercizio 4 Sia $\varphi: [1, \infty) \to \mathbb{R}$ una funzione crescente tale che $\lim_{t \to \infty} \varphi(t) = \infty$. Definiamo la successione di funzioni $f_n: [0,1] \to \mathbb{R}$, $f_n(x) = \varphi(n)\chi_{(0,1/n]}(x)$, per $n \in \mathbb{N}$ ed $x \in [0,1]$. Provare che sono equivalenti le seguenti affermazioni:

- i) La successione $(f_n)_{n\in\mathbb{N}}$ converge in $L^1([0,1])$.
- ii) La successione $(f_n)_{n\in\mathbb{N}}$ è uniformemente integrabile.
- iii) Si ha $\lim_{t\to\infty} \varphi(t)/t = 0$.

Esercizi di secondo livello

Esercizio 5 Sia $K \subset \mathbb{R}$ un insieme chiuso e consideriamo l'insieme di funzioni

$$X = \{ f \in L^2([0,1]) : f(x) \in K \text{ per q.o. } x \in K \}.$$

- i) Provare che X è chiuso in $L^2([0,1])$ per la convergenza forte.
- ii) Sia ora $K \subset \mathbb{R}$ un *intervallo* chiuso. Provare che X è chiuso per la convergenza debole di $L^2([0,1])$.
- iii) Dare un esempio di insieme chiuso $K \subset \mathbb{R}$ tale che X non sia chiuso per la convergenza debole di $L^2([0,1])$.

Esercizio 6 Sia $1 . Provare che per ogni funzione misurabile <math>f:(0,\infty) \to [0,\infty)$ non negativa si ha

$$\int_0^\infty \left(\frac{1}{t} \int_0^t \frac{f(s)}{s} ds\right)^p \frac{dt}{t} \leqslant \int_0^\infty \left(\frac{f(s)}{s}\right)^p \frac{ds}{s}.$$

Sugg. Partire da $f \in C_c^{\infty}(0, \infty)$.