Funzioni BV e AC

15 Gennaio 2016

Esercizio 1 Sia $\alpha \in \mathbb{R}$ e consideriamo la funzione $f:[0,1] \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} 0 & x = 0\\ x^{\alpha} \cos(1/x) & 0 < x \le 1. \end{cases}$$

- i) Determinare tutti i valori di α tali che $f \in BV([0,1])$.
- ii) Determinare tutti i valori di α tali che $f \in AC([0,1])$.

Esercizio 2 Consideriamo la funzione $f:[0,1] \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} 0 & x = 0\\ \frac{x}{|\log(x/2)|^{\alpha}} \sin(1/x) & 0 < x \le 1. \end{cases}$$

Determinare tutti i valori di $\alpha \in \mathbb{R}$ tali che $f \in BV([0,1])$.

Esercizio 3 Sia $\{q_n \in \mathbb{Q} \cap [0,1] : n \in \mathbb{N}\}$ una enumerazione di $\mathbb{Q} \cap [0,1]$ e indichiamo con $\chi_n : [0,1] \to \mathbb{R}$ la funzione caratteristica dell'intervallo (q_n, q_{n+1}) , ovvero $\chi_n(x) = 1$ se x è (strettamente) compreso fra q_n e q_{n+1} , e $\chi_n(x) = 0$ altrimenti. Provare che per $\alpha > 1$ la funzione

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \chi_n(x), \quad x \in [0, 1].$$

è a variazione totale limitata su [0, 1].

Esercizio 4 Sia $f:[0,1] \to \mathbb{R}$ una funzione. Provare che (a meno di insiemi di misura nulla):

- i) Se $f \in W^{1,p}(0,1)$ con 1 allora <math>f è Hölderiana.
- ii) Si ha $f\in W^{1,\infty}(0,1)$ se e solo se f è Lipschitziana.

Esercizio 5 \star Sia $f:[0,1] \to \mathbb{R}$ una funzione monotona crescente. Sappiamo che f è differenziabile quasi dappertutto e che $f' \in L^1(0,1)$. Supponiamo che sia

$$f(1) - f(0) = \int_0^1 f'(x)dx.$$

Provare che f è assolutamente continua.