Differential Equations 1

Name:

Problem 1 Let $f \in C(\mathbb{R})$ be a function that is odd and 2π-periodic. Consider the Dirichlet problem

$$
\begin{cases}u_{t}=u_{x x} & \text { in }(0, \pi) \times(0, \infty), \\ u(0, t)=u(\pi, t)=0 & \text { for } t>0, \\ u(x, 0)=f(x) & \text { for } x \in[0, \pi] .\end{cases}
$$

i) By separation of variables and superposition, construct a "formal solution" of the form

$$
u(x, t)=\sum_{k=1}^{\infty} c_{k} v_{k}(x) w_{k}(t) .
$$

Determine the functions v_{k} and w_{k}. Determine the coefficients $c_{k} \in \mathbb{R}$ using the Fourier expansion of f in sine functions.
ii) Prove that the function u is in $C^{\infty}([0, \pi] \times(0, \infty))$ and solves the differential equation.
iii) Assume, in addition, that $f \in C^{2}(\mathbb{R})$. Prove that $u \in C([0, \pi] \times[0, \infty)$ and $u(\cdot, 0)=f$.

Problem 2 Let $\Omega \subset \mathbb{R}^{n}$, $n \geq 1$, be a bounded open set with regular boundary and let $u \in C^{\infty}(\bar{\Omega} \times[0, \infty))$ be a solution of the problem

$$
\begin{cases}u_{t}=\Delta u & \text { in } \Omega \times[0, \infty) \\ u=0 & \text { on } \partial \Omega \times[0, \infty) .\end{cases}
$$

i) Prove that the function

$$
U(t)=\int_{\Omega} u(x, t)^{2} d x, \quad t \in[0, \infty)
$$

is decreasing and convex on $[0, \infty)$.
ii) Prove that

$$
\lim _{t \rightarrow \infty} U(t)=0 .
$$

iii) Assume that $U(t)>0$ for all $t \in[0, \infty)$. Prove that the function $\varphi(t)=\log U(t)$ is convex on $[0, \infty)$.

