Differential Equations 1

Exercise 1 Let $\Omega \subset \mathbb{R}^{n}, n \geq 1$, be a bounded open set with regular boundary (say, $\partial \Omega$ is of class $\left.C^{1}\right)$. Let $u \in C^{2}(\bar{\Omega} \times(0, \infty))$ be a function solving the problem

$$
\begin{cases}u_{t}(x, t)-\Delta u(x, t)=f(x, t), & (x, t) \in \Omega \times(0, \infty), \\ u(x, t)=0, & x \in \partial \Omega, t>0,\end{cases}
$$

where $f \in C(\bar{\Omega} \times(0, \infty))$ is a function such that

$$
\lim _{t \rightarrow \infty} \int_{\Omega}|f(x, t)|^{2} d x=0
$$

Prove that

$$
\lim _{t \rightarrow \infty} \int_{\Omega}|u(x, t)|^{2} d x=0
$$

Hints. Letting

$$
U(t)=\int_{\Omega}|u(x, t)|^{2} d x \quad \text { and } \quad F(t)=\int_{\Omega}|f(x, t)|^{2} d x
$$

arrive at the inequality $U^{\prime}(t)+\beta U(t) \leq \varepsilon F(t)$ for suitable constants $\beta, \varepsilon>0$. You need the Poincarè inequality: there exists a constant $C=C(\Omega)$ such that

$$
\int_{\Omega}|v(x)|^{2} d x \leq C \int_{\Omega}|\nabla v(x)|^{2} d x
$$

for all functions $v \in C^{1}(\bar{\Omega})$ such that $v=0$ on $\partial \Omega$.

Exercise 2 Let ϑ be a continuous function of the variables $x \in \mathbb{R}^{n}$ and $t, s \in \mathbb{R}$ with $0<s<t$ that satisfies

$$
|\vartheta(x, t ; s)| \leq \frac{1}{|t-s|^{\beta}}, \quad x \in \mathbb{R}^{n}, \quad 0<s<t
$$

for some $\beta \in(0,1)$. Prove that the function

$$
\varphi(x, t)=\int_{0}^{t} \vartheta(x, t ; s) d s
$$

is continuous for $x \in \mathbb{R}^{n}$ and $t>0$.

Exercise 3 Let $u \in C^{2}\left(\mathbb{R}^{n} \times(0, T)\right) \cap L^{2}\left(\mathbb{R}^{n} \times(0, T)\right), T>0$, be a solution to the problem

$$
\begin{cases}u_{t}-\Delta u=0, & \text { in } \mathbb{R}^{n} \times(0, T), \\ \lim _{t \downarrow 0} \int_{\mathbb{R}^{n}}|u(x, t)|^{2} d x=0 .\end{cases}
$$

i) Prove that $u=0$.
ii) Deduce that the problem

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=0, \\
u(\cdot, 0)=f \in L^{2}\left(\mathbb{R}^{n}\right)
\end{array} \quad \text { in } \mathbb{R}^{n} \times(0, T),\right.
$$

has a unique solution in the class $L^{2}\left(\mathbb{R}^{n} \times(0, T)\right)$.
Hints. Let $\zeta \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ be a continuously differentiable function with compact support. Multiply the differential equation by $u \zeta^{2}$, integrate over $\mathbb{R}^{n} \times(0, t), 0<t<T$, and arrive at the inequality

$$
\frac{1}{2} \int_{\mathbb{R}^{n}} u(x, t)^{2} \zeta(x)^{2} d x \leq \int_{0}^{t} \int_{\mathbb{R}^{n}} u(x, s)^{2}|\nabla \zeta(x)|^{2} d x d s, \quad 0<t<T
$$

Now choose a suitable sequence of test functions ζ to conclude.

