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CHAPTER 1

Heat Equation

1. Introduction

In Rn+1 = Rn × R, n ≥ 1, let us consider the coordinates x ∈ Rn and t ∈ R. The
differential operator in Rn+1

H =
∂

∂t
−∆, where ∆ =

n∑
j=1

∂2

∂x2
j

is called the heat operator. The three most important problems concerning the heat
operator are the Cauchy Problem, the Dirichlet Problem, and the Neumann Problem.

Cauchy Problem in Rn. The problem consists in finding a function u ∈ C2(Rn×
(0,∞)) ∩ C(Rn × [0,∞)) such that

(1.1)

{
ut(x, t) = ∆u(x, t), x ∈ Rn, t > 0,
u(x, 0) = f(x), x ∈ Rn,

where f ∈ C(Rn) is an initial distribution of temperature.

Dirichlet Problem. Let Ω ⊂ Rn be a bounded open set. The problem consists
in finding a function u ∈ C2(Ω× (0,∞)) ∩ C(Ω̄× [0,∞)) such that

(1.2)

 ut(x, t) = ∆u(x, t), x ∈ Ω, t > 0,
u(x, t) = g(x, t), x ∈ ∂Ω, t > 0,
u(x, 0) = f(x), x ∈ Ω.

The problem describes the evolution of the temperature of a body Ω having prescribed
temperature g ∈ C(∂Ω × (0,∞)) at the boundary of Ω (for any positive time) and
having an initial distribution of temperature f ∈ C(Ω) at time t = 0.

Neumann Problem. Let Ω ⊂ Rn be a bounded open set of class C1. We search
for a function u defined in the cylinder Ω × (0,∞) (with gradient defined up to the
boundary) such that

(1.3)


ut(x, t) = ∆u(x, t), x ∈ Ω, t > 0,
∂u

∂ν
(x, t) = g(x, t), x ∈ ∂Ω, t > 0,

u(x, 0) = f(x), x ∈ Ω,

where
∂u

∂ν
is the normal derivative of u at the boundary of Ω. In this case, prescribed

is the variation g of the temperature on the boundary.
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2. The foundamental solution and its properties

We derive a representation formula for the (a) solution of the Cauchy Problem
using a formal argument.

2.1. Preliminaries on the Fourier transform. For a given function f ∈
L1(Rn), we define its Fourier transform f̂ : Rn → C as

(2.4) f̂(ξ) =

∫
Rn

e−2πi〈ξ,x〉f(x)dx, ξ ∈ Rn.

We shall also write F(f)(ξ) = f̂(ξ). Let us recall some properties of the Fourier
transform.

1) If f, g ∈ L1(Rn) are integrable functions, then also their convolution

f ∗ g(x) =

∫
Rn
f(x− y)g(y)dy =

∫
Rn
g(x− y)f(y)dy

is in L1(Rn) and there holds

(2.5) F(f ∗ g) = F(f)F(g).

2) If f, f̂ ∈ L1(Rn) are both integrable functions then we have the inversion formula:

(2.6) F(F(f))(x) = F2(f)(x) = f(−x) for almost every x ∈ Rn.

3) If f ∈ L1(Rn) and also
∂f

∂xj
∈ L1(Rn) for some j = 1, ..., n, then

(2.7) F
( ∂f
∂xj

)
(ξ) = 2πiξj f̂(ξ).

4) Consider the Gaussian function fs(x) = e−s|x|
2
, where s > 0 is a parameter. The

Fourier transform of fs is the function

(2.8) f̂s(ξ) =
(π
s

)n
2
e−

π2|ξ|2
s .

2.2. Euristic computation of the foundamental solution. We transform
the Cauchy Problem (1.1) with a Fourier transform in the spatial variables x ∈ Rn.
Assuming that the Fourier transform commutes with the partial derivative in t we
obtain

∂̂u

∂t
(ξ, t) =

∂û

∂t
(ξ, t).

From the rule (2.7) – we assume that the rule can be applied to all second derivatives
in x of u, – we obtain

F(∆u)(ξ, t) = −4π2|ξ|2û(ξ, t).
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Finally, if the initial datum f ∈ L1(Rn) is integrable, then we also have û(ξ, 0) = f̂(ξ).
Thus, we obtain the transformed problem

∂û

∂t
(ξ, t) = −4π2|ξ|2û(ξ, t), ξ ∈ Rn, t > 0

û(ξ, 0) = f̂(ξ), ξ ∈ Rn.

The solution of the problem is the function

(2.9) û(ξ, t) = f̂(ξ)e−4π2t|ξ|2 .

From the formula (2.8) with s = 1/4t we obtain

e−4π2t|ξ|2 = Γ̂t(ξ), dove Γt(x) =
( 1

4πt

)n/2
e−
|x|2
4t .

By the convolution formula (2.5), identity (2.9) reads as follows:

û(ξ, t) = f̂(ξ)Γ̂t(ξ) = F(f ∗ Γt)(ξ).

Using the inversion formula (2.6), we obtain the representation formula for the solu-
tion

(2.10) u(x, t) = f ∗ Γt(x) =
( 1

4πt

)n/2 ∫
Rn
f(y)e−

|x−y|2
4t dy, x ∈ Rn.

Definition 2.1. The function Γ : Rn+1 → R defined by

Γ(x, t) =

{
1

(4πt)n/2
e−
|x|2
4t , x ∈ Rn, t > 0,

0 t ≤ 0

is called the foundamental solution of the heat equation.

Theorem 2.2. The function Γ has the following properties:

1) Γ ∈ C∞(Rn+1 \ {0});

2)
∂Γ(x, t)

∂t
= ∆Γ(x, t) for all (x, t) ∈ Rn+1 \ {0};

3) For any t > 0 we have

(2.11)

∫
Rn

Γ(x, t)dx = 1.

4) The function Γ verifies the equation HΓ = δ0 in Rn+1 in the sense of dis-
tributions, where δ0 is the Dirac mass in 0. Namely, for any test function
ϕ ∈ C∞c (Rn+1) there holds∫

Rn+1

Γ(x, t)H∗ϕ(x, t)dxdt = −ϕ(0),

whre H∗ = ∂/∂t+ ∆ is the adjoint operator of H.

Proof. Claim 1) follows from the fact that, for any x 6= 0, the function

t 7→
( 1

4πt

)n/2
e−
|x|2
4t , t > 0,

can be continuously extended to t = 0, is differentiable infinitely many times at t = 0,
and all derivatives vanish. Claim 2) can be verified by a short computation which is
left as an exercise.
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Identity (2.11) follows from the well known formula∫ +∞

−∞
e−s

2

ds =
√
π

and from Fubini-Tonelli theorem. In fact, we have:∫
Rn

( 1

4πt

)n/2
e−
|x|2
4t dx =

( 1

4πt

)n/2 n∏
i=1

∫ +∞

−∞
e−

x2i
4t dxi =

1

πn/2

n∏
i=1

∫ +∞

−∞
e−x

2
i dxi = 1.

We prove Claim 4). For ΓH∗ϕ ∈ L1(Rn+1), by dominated convergence we have:∫
Rn+1

Γ(x, t)H∗ϕ(x, t)dxdt =

∫ ∞
0

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt

= lim
ε↓0

∫ ∞
ε

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt.

For any fixed t > 0, by an integration by parts we obtain∫
Rn

Γ(x, t)∆ϕ(x, t)dx =

∫
Rn

∆Γ(x, t)ϕ(x, t)dx.

There is no boundary contribution, because ϕ has compact support. Moreover, we
have ∫ ∞

ε

Γ(x, t)
∂ϕ(x, t)

∂t
dt = −

∫ ∞
ε

∂Γ(x, t)

∂t
ϕ(x, t)dt− Γ(x, ε)ϕ(x, ε).

Summing up and using HΓ = 0, that holds on the set where t > 0, we obtain∫ ∞
ε

∫
Rn

Γ(x, t)H∗ϕ(x, t)dx dt =

∫ ∞
ε

∫
Rn
HΓ(x, t)ϕ(x, t)dx dt−

∫
Rn

Γ(x, ε)ϕ(x, ε)dx

= −
∫

Rn
Γ(x, ε)ϕ(x, ε)dx

= −
∫

Rn
Γ(ξ, 1)ϕ(2

√
εξ, ε)dξ.

Taking the limit as ε ↓ 0, by dominated convergence we prove the claim. �

2.3. Cauchy Problem: existence of solutions.

Theorem 2.3. Let f ∈ C(Rn) ∩ L∞(Rn). The function u defined by the repre-
sentation formula (2.10) solves the Cauchy Problem (1.1), and namely:

1) u ∈ C∞(Rn × (0,∞)) and ut(x, t) = ∆u(x, t) for all x ∈ Rn and t > 0;
2) For any x0 ∈ Rn there holds

lim
x→x0,t↓0

u(x, t) = f(x0),

with uniform convergence for x0 belonging to a compact set;
3) Moreover, ‖u(·, t)‖∞ ≤ ‖f‖∞ for all t > 0.

Proof. Claim 1) follows from the fact that we can take partial derivatives of any
order in x and t into the integral in the representation formula (2.10). We prove, for
instance, that for any x ∈ Rn and for any t > 0 there holds

∂

∂t

∫
Rn
f(y)e−

|x−y|2
4t dy =

∫
Rn
f(y)

∂

∂t
e−
|x−y|2

4t dy.



2. THE FOUNDAMENTAL SOLUTION AND ITS PROPERTIES 7

By the Corollary to the Dominated Convergence Theorem, it suffices to show that
for any 0 < t0 ≤ T < ∞ there exists a function g ∈ L1(Rn), in variable y, such that
(for fixed x ∈ Rn and) for any t ∈ [t0, T ] we have

|x− y|2

4t2
e−
|x−y|2

4t ≤ g(y), for all y ∈ Rn.

This holds with the choice

g(y) =
|x− y|2

4t20
e−
|x−y|2

4T .

The case of derivatives in the variables x and the case of higher order derivatives is
analogous and is left as an exercise.

By the previous argument, it follows that, for t > 0, we can take the heat operator
into the integral:

ut(x, t)−∆u(x, t) =

∫
Rn
f(y)

( ∂
∂t
−∆x

)
Γ(x− y, t)dy

=

∫
Rn
f(y)

{
Γt(x− y, t)−∆Γ(x− y, t)

}
dy = 0.

Thus, u solves the heat equation for positive times.
We prove claim 2). Let K ⊂ Rn be a compact set and let x0 ∈ K. We may rewrite

the representation formula (2.10) in the folloperwing way:

u(x, t) =
1

πn/2

∫
Rn

Γ(ξ, 1)f(2
√
tξ + x)dξ, x ∈ Rn, t > 0.

Hence, we have

|u(x, t)− f(x0)| ≤
1

πn/2

∫
Rn

Γ(ξ, 1)|f(2
√
tξ + x)− f(x0)|dξ.

Fix now ε > 0 and choose R > 0 such that
1

πn/2

∫
|ξ|>R

Γ(ξ, 1)dξ ≤ ε.

As f is uniformly continuous on compact sets, there exists a δ > 0 such that for all
|ξ| ≤ R we have

|x− x0| < δ and 0 < t < δ ⇒ |f(2
√
tξ − x)− f(x0)| < ε.

The choice of δ is uniform in x0 ∈ K. After all, we get

|u(x, t)− f(x0)| ≤
1

πn/2

∫
|ξ|≤R

Γ(ξ, 1)|f(2
√
tξ + x)− f(x0)|dξ

+
1

πn/2

∫
|ξ|>R

Γ(ξ, 1)|f(2
√
tξ + x)− f(x0)|dξ

≤ ε+ 2‖f‖∞ε.
This proves claim 2). Claim 3) follows directly from the representation formula. �


