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CHAPTER 1

Heat Equation

1. Introduction

In R =R" x R, n > 1, let us consider the coordinates z € R® and ¢t € R. The
differential operator in R**!

H—Q—A here A—ia—2
SOt e _jilaa:z

is called the heat operator. The three most important problems concerning the heat
operator are the Cauchy Problem, the Dirichlet Problem, and the Neumann Problem.

Cauchy Problem in R”. The problem consists in finding a function u € C?*(R" x
(0,00)) N C(R™ x [0,00)) such that

{ w(x,t) = Au(z,t), x€R" t >0,

(1.1) u(z,0) = f(z), x eR",

where f € C'(R") is an initial distribution of temperature.

Dirichlet Problem. Let 2 C R" be a bounded open set. The problem consists
in finding a function u € C*(Q x (0,00)) N C(Q x [0,00)) such that

w(x,t) = Au(z,t), x €, t>0,
(1.2) u(z,t) = g(x,t), xed, t>0,
u(z,0) = f(x), x €.

The problem describes the evolution of the temperature of a body 2 having prescribed
temperature g € C(9Q x (0,00)) at the boundary of Q (for any positive time) and
having an initial distribution of temperature f € C'(Q2) at time ¢ = 0.

Neumann Problem. Let Q C R™ be a bounded open set of class C'. We search
for a function u defined in the cylinder Q x (0, 00) (with gradient defined up to the
boundary) such that

u(z,t) = Au(z,t), €, t>0,

(1.3) %(x,t) =g(z,t), xe€dQ t>0,
W0 = f(z),  weQ

ou | L. . .
where — is the normal derivative of u at the boundary of €. In this case, prescribed
v
is the variation g of the temperature on the boundary.

3



4 1. HEAT EQUATION

2. The foundamental solution and its properties

We derive a representation formula for the (a) solution of the Cauchy Problem
using a formal argument.

2.1. Preliminaries on the Fourier transform. For a given function f &
L*(R™), we define its Fourier transform f : R" — C as

(2.4) floy = [ e fayas, ¢ e,

We shall also write F(f)(€) = f(£). Let us recall some properties of the Fourier
transform.

1) If f,g € L'(R") are integrable functions, then also their convolution

frg(r) = - flx—y)g(y)dy = / g(xr —y)f(y)dy

n

is in L'(R") and there holds
(2.5) S(f*9) =3(f)3(9)

2) If f, fe L*(R™) are both integrable functions then we have the inversion formula:

(2.6) @) =F(f)(x) = f(—z) for almost every x € R",
1 af 1 .
3) If f € L'(R™) and also P € L' (R") for some j =1,...,n, then
9 .
27) 5(25) (@) = 2mig, Fle).

—s|z|?

4) Consider the Gaussian function fy(z) = e , where s > 0 is a parameter. The

Fourier transform of f is the function

~ T\2 _x2el?
(2.8) e =(5) e
2.2. Euristic computation of the foundamental solution. We transform
the Cauchy Problem (1.1) with a Fourier transform in the spatial variables x € R™.
Assuming that the Fourier transform commutes with the partial derivative in ¢ we
obtain

du ou
E(f:t) = E(f,t)-

From the rule (2.7) — we assume that the rule can be applied to all second derivatives
in x of u, — we obtain

F(Au)(&, 1) = —An’[€[*u(&, 1)
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Finally, if the initial datum f € L'(IR") is integrable, then we also have u(&,0) = f(€).
Thus, we obtain the transformed problem

6.0 = 4w kA D), €150

~

u(&,0) = f(6), {eR™
The solution of the problem is the function
(2.9) a(E,t) = FE)e
From the formula (2.8) with s = 1/4¢ we obtain
- = 1 n _@
o—am2te? _ [i(§), dove TI'y(z)= (R> /28 "

By the convolution formula (2.5), identity (2.9) reads as follows:

~ o~

u(§,t) = fOI(E) = F(f *Te)(&).

Using the inversion formula (2.6), we obtain the representation formula for the solu-
tion

n/ oyl
(210)  w(a,t) = f*Dy(x) = (4%) 2/nf(y)e| - dy, xR

DEFINITION 2.1. The function I' : R"*! — R defined by
_le? .
[(x,t) = We w, xreR" t>0,
0 t<0

is called the foundamental solution of the heat equation.

THEOREM 2.2. The function I' has the following properties:
1) T € C=(R"™\ {0});
[(x,t
2) () = AT(z,t) for all (x,t) € R™\ {0},

ot
3) For any t > 0 we have

(2.11) / [(z,t)dz = 1.

4) The function T wverifies the equation HU = &y in R™™ in the sense of dis-
tributions, where dqg is the Dirac mass in 0. Namely, for any test function
¢ € C(R™1) there holds

| T ol ot = ~p(0),
Rn+1
whre H* = 0/0t + A is the adjoint operator of H.

ProOOF. Claim 1) follows from the fact that, for any x # 0, the function
1 \7/2 2
t+—><—> e &, t>0,
47t
can be continuously extended to t = 0, is differentiable infinitely many times at ¢t = 0,

and all derivatives vanish. Claim 2) can be verified by a short computation which is
left as an exercise.
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Identity (2.11) follows from the well known formula

o0 )
/ e ¥ ds =/

[e.9]

and from Fubini-Tonelli theorem. In fact, we have:

1 \n/2 L2 1 \n/2 n 400 _ﬁ 1 n +o00 2
/Rn<4_7-[-t> e 4tdl'_<4—ﬂ_t> Z];!/Ooezltd(ﬂi—mg/ooe idr; = 1.

We prove Claim 4). For TH*p € L*(R™"!), by dominated convergence we have:
/ D(x, t)H p(z, t)dzdt :/ / D(x, t)H p(x,t)dx dt
Rn+1 0 n
= lim/ / D(x, t)H*p(x, t)dx dt.

el0

For any fixed t > 0, by an integration by parts we obtain

/n Lz, t)Ap(z, t)de = /n AT (z,t)p(z, t)dx.

There is no boundary contribution, because ¢ has compact support. Moreover, we

have - 5 % g
/ [(x,t) SOéxt’t)dt = —/ éxt’t)go(x,t)dt —T'(z,e)p(z,e).

Summing up and using HI' = 0, that holds on the set where t > 0, we obtain

/00 /n D(z, t)H* p(z,t)dx dt = /OO - HT(x,t)p(z, t)dx dt — /n ['(x,e)p(z, e)dx
=— /n [(x,e)p(z, e)dx
S R GRENCIET S

Taking the limit as € | 0, by dominated convergence we prove the claim. 0

2.3. Cauchy Problem: existence of solutions.

THEOREM 2.3. Let f € C(R™) N L*(R™). The function u defined by the repre-
sentation formula (2.10) solves the Cauchy Problem (1.1), and namely:
1) u € C®°(R™ x (0,00)) and wy(x,t) = Au(x,t) for all x € R™ and t > 0;
2) For any xo € R™ there holds
lim  wu(x,t) = f(xg),

r—xg,t|0

with uniform convergence for xq belonging to a compact set;
3) Moreover, |[u(-, )]s < ||fl|lco for all t > 0.

ProoOF. Claim 1) follows from the fact that we can take partial derivatives of any
order in x and ¢ into the integral in the representation formula (2.10). We prove, for
instance, that for any € R and for any ¢ > 0 there holds

0 _la—y? 0 _lz—y?

at .. (y)em # dy = Rnf(y)ge - dy.
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By the Corollary to the Dominated Convergence Theorem, it suffices to show that
for any 0 < to < T < oo there exists a function g € L'(R™), in variable y, such that
(for fixed x € R™ and) for any ¢ € [ty,T] we have

_ ]2 "
]x4t2y] e_% <g(y), forallyeR".

This holds with the choice

|z — y|? _la—u?
et 4T

The case of derivatives in the variables x and the case of higher order derivatives is
analogous and is left as an exercise.

By the previous argument, it follows that, for ¢ > 0, we can take the heat operator
into the integral:

u(w,t) — Au(z,t) = /

= . FW){Ti(z —y,t) — Al(z — y,t) }dy = 0.

F) (2~ 80—y, )y

n

Thus, u solves the heat equation for positive times.
We prove claim 2). Let K C R” be a compact set and let xy € K. We may rewrite
the representation formula (2.10) in the following way:

(1) = ﬁ /R T, 1/4) f(VIE + 2)dé, € R", 1> 0.

Hence, we have
1
) = Flan)| < i [ D&/ @VE +2) = Sl
Rn
Fix now € > 0 and choose R > 0 such that
1
— /|£>Rr(g, 1/4)de < .

As f is uniformly continuous on compact sets, there exists a § > 0 such that for all
€] < R we have

lz—zo| <dand 0 <t <d = |f(2VHE — ) — f(z)| <e.

The choice of § is uniform in zy € K. After all, we get

e ) — flao)] < /Ig L TEDISRVEE 2) — fro)i

- gn/2

N # Al & /IF(VEE+2) — flan)ldg

< e+ 2| fllook-

This proves claim 2). Claim 3) follows directly from the representation formula. [
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2.4. Tychonov’s counterexample. In general, the solution of the Cauchy Pro-
blem

(2.12) { w(z,t) = Au(z,t), zeR" >0,

u(z,0) = f(x), r e R,

even with f € C(R™)NL>(R™), is not unique in the class of functions C'(R" x [0, c0))N
C*(R" N (0, 00)).

In dimension n = 1, let us consider the problem

ur(z,t) = gy (z,t), x€R, >0,
(2.13) { u(z,0) =0, z € R.

The function v = 0 is a solution. We construct a second solution that is not identically
ZEro.
Let ¢ : C — C be the function

eV if 2 £0,
pl2) = { 0 ’

, if z=0.
The function ¢ is holomorphic in C\ {0}. Moreover, the function t — ¢(t) with t € R
is of class C*°(R) and ¢™(0) = 0 for all n € N. Let us consider the series of functions

2n

- () ()2 t>0. 1 €R.

We shall prove the following facts:

1) The sum defining v and the series of the derivatives of any order converge
uniformly on any set of the form [—R, R] x [T, 00) with R, T > 0;
2) w is a continuous function up to the boundary in the halfspace ¢ > 0.

From 2) it follows that u attains the initial datum 0 at the time ¢t = 0. By 1), we can
interchange sum and partial derivatives. Then we can compute

U (2, 1) = Zw Zwm“ Qm)

2m

ol = wy(x,t).

s
= a Z W(m)( )
m=0

Let us prove claim 1). For fixed t > 0, by the Cauchy formula for holomorphic

functions we obtain
(,D(n)(t) _ l‘/ 90(2)
20 J)y= t/2( t)"“

On the circle |z — t| = ¢/2, we have |¢(2)| < e Re(1/#) < =4/ and thus
] 74/t2 —4/t?
™) (¢ e — d19 — pion®
)] = 27r/ (/212" T T
We shall use the following inequality, that can be proved by induction:
nl2" 1

@n)l = al
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Thus we get:

2n e—4/t2 ’x‘2n
!

u(w 0l <3 o) i;”ln <2 "2 G

n.

n=0

where the last sum converges uniformly for ¢ > T > 0 and |z| < R < oco. By
Weierstrass’ criterion, the sum defining u converges uniformly on the same set. In
particular, by comparison we find

lime ¥+t — 0 = lim lu(z,t)| =0
t—0 t—0
with uniform convergence for |z| < R. This proves claim 2).
The study of convergence of the series of derivatives is analogous and is left as an

exercise to the reader.

2.5. Nonhomogeneous problem. Let us consider the nonhomogeneous Cauchy
problem

(2.14) { w(x,t) — Au(z,t) = f(z,1), z€R" ¢>0,

u(z,0) =0, r € R,

where f : R™ x (0,00) — R is a suitable function. We discuss the regularity of f
later. A candidate solution of the problem can be obtained on using the “Duhamel’s
Principle”. Fix s > 0 and assume there exists a (the) solution v(-;s) of the Cauchy
Problem

(2.15) { vz, t;s) = Av(z, t;s), ©€R? >,

v(z,s;s) = f(x,s), r € R™.

On integrating the solutions v(x,t;s) for s € (0,t) we obtain the function

(2.16) u(m,t):/o v(x, t; s)ds.

When we formally insert ¢ = 0 into this identity, we get u(x,0) = 0. If we formally
differentiate the identity — taking derivatives into the integral is a idelicate issue, here,
— we obtain

t t
ur(z,t) = v(x, t;t) +/ v(z,t;8)ds e Au(z,t) = / Av(z,t; s)ds,
0 0

and thus u(z,t) — Au(z,t) = v(x,t;t) = f(x,t). If the previous computations are
allowed, the function u is a solution to the problem (2.14).

Inserting the representation formula (2.10) for the solutions v(z,t; s) into (2.16),
we get the representation formula for the solution u

(2.17) u(z,t) = /Ot/n Iz —y,t—s)f(y,s)dyds, xe€R" t>0.

In order the make rigorous the previuous argument, we need estimates for the
solution to the Cauchy problem near time t = 0.
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PROPOSIZIONE 2.4. Let f € L>®(R™) and let u € C*°(R"™ x (0,00)) be the function
given by the representation formula (2.10). There exists a dimensional constant C' =
C(n) > 0 such that for all x € R™ and t > 0 we have

C
(2.18) [Vu(z, )| < %HfHoo-

PROOF. We can take derivatives in x into the integral in formula (2.10). We
obtain:

1 T—Y .2
1) = le—yl? /4t d
and thus
f 00 T =Y _jp—y2 f 0o —ly|2
[Vulz, Bl < (Jllmf”)n/? | 2t ey (47!);“/5# e V1

O

PROPOSIZIONE 2.5. Let f € L®(R™) be a function in CL.(R™) for some a € (0, 1],
i.e., for any compact set K C R™ there exists a constant C'x > 0 such that for all
x,y € K we have

(2.19) [f (@) = f(y)| < Cxle —y[*

Let w € C(R" x (0,00)) be the function given by the representation formula (2.10).
Then, for any R > 0 and T > 0 there exists a constant C' > 0 depending on R,
T, | fllcos @, and n € N, such that for all |x| < R and t € (0,T) we have

0%u C

9,01 {i-az’

(2.20)

(w.1)] <

for all indeces 1,7 =1,...,n.

Proor. We compute second order derivatives in x in the identity:
/ MNx—y,t)Ydy=1, ze€R" t>0.

We obtain, for any i,5 =1, ...,n,
2

0
[i(x —y, t)dy = INx—y,t)dy=0, x€R" t>0.
/n i@ =y, t)dy axia%/n (z =y, t)dy
o’r
0x;0x;
On using this piece of information, the second order derivatives of u may be written
in the following way

Here and hereafter, we let I';; = . Taking derivatives into the integral is allowed.

wilet) = [ Tyl =507 - f@)dy. v R t>0,

where a short computation shows that

52']' Z’Z'flfj

Ty(z,t) = { -2 45 }F(x,t).
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Eventually, we obtain the estimate

el < [ g+ B e = il - swlas,

:/|y_$|§R<...>dy+/|y_xl>R(...)dy=A+B.

Let Ok be the constant in (2.19) relative to K = Byp. The term A can be estimated
in the following way:

2t 412

S QaCKta/Q—l /

1 |z—y)?
AgOK/ (3 + PV r @ — gty — yioay
ly—z|<R

(5 + 10000, 1/4)nf"dn

n

We performed the change of variable z — y = 2v/tn. The estimate for A holds for all
t > 0 and for all |z| < R.
Analogously, we can obtain the estimate

%Mm/ 1 2
B < /== =+ 7 )T(n, 1/4)dn.

Now, for any 7" > 0 there exists a constant Cr > 0 such that for all 0 < ¢t < T we
have

1
[ (5 +mP)r/ g < cre
Inl>r/2/E 2
The proof of this fact is left as an exercise. The claim of the theorem now follows. [

DEFINITION 2.6. Let U C R™™ be an open set. We denote by C*!(U) the set
of functions v : U — R such that the following partial derivatives exist and are
continuous

ou 0%u
— e (),

THEOREM 2.7. Let f € L>®(R" x (0,00)) NC(R™ x (0,00)) be a function such that
x— f(z,t) is in C2.(R™), 0 < a < 1, uniformly in t > 0. Then the function u in
(2.17) satisfies:

1) u € C*'(R™ x (0,00));
2) uy(x,t) — Au(z,t) = f(x,t) for allz € R, t > 0;
3) limy o u(x,t) = 0 uniformly in x € R™.

ceC), i,j=1,..n.

PROOF. As in (2.17), letting

v@iw%Z/iNx—%t—ﬁfwdww&

the solution v may be written in the following way:

t
u(z,t) = / v(z,t;s)ds, x€R" t>0.
0
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By Proposition 2.4, it follows that there exists a constant C' > 0 such that
Cllf [l
Vvt—3s

and thus we can take derivatives in x into the integral in ds:

t t
Vu(z,t) = / Vo(z,t;s)ds = / VI(z —y,t—s)f(y,s)dyds.
0 0 Jrn

Analogously, by Proposition 2.5, for any R > 0 and 7" > 0 there exists a constant
C = C(R,T,|f|loo, @) such that for |z|] < R and 0 < t < T we have, with 7,5 =
1,...,n,

|Vu(z,t;s)| < € Li(0,t), 0<s<t,

C
v (2, 8:8)| < ——7=7
(t _ S)Ifa/Z

We can therefore take derivatives in x into the integral:

t
(2.21) uij(x,t):/ v (z, t; s)ds.
0

It also follows that the function (x,t) — wu;j(x,t) is continuous for € R™ and t > 0.
The proof of this claim is left as an exercise.

In an analogous way, we can prove that the function t — wu(z,t) is differentiable
and

t t
(2.22) u(x,t) = %/ v(x, t; s)ds = v(x, t;t) +/ v(x, t; s)ds.
0 0

In order to prove this claim, notice that

c LY0,1).

lvg(z, 85 8)| = |Av(z, t; 8)| < m.

Finally, the function (z,t) — w;(x,t) is also continuous (exercise).
Summing up (2.21) and (2.22), we obtain

up(z,t) — Au(z, t) = v(z, t;t) —l—/o {vt(x,t; s) — Av(z, t; s)}ds = f(z,1).

Claim iii) follows from the inequalities:

t
(. )] < / oz, £ 5)[ds < || 1wt
0

3. Parabolic mean formula

DEFINITION 3.8. Let 7 > 0 and (z,t) € R""'. The set
1
E.(z,t) = {(y,s) cR"™ :s<tand I'(z—y,t—s)> —}
/r-n

is called parabolic ball with radius r centered at (z,t). For (z,t) = (0,0) we also let
E, = E,(0,0).

PROPOSIZIONE 3.9. For all v > 0 and (z,t) € R"™! there holds:
i) E.(z,t) = (z,t) + E,;
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ii) Letting 0x(x,t) = (A\x, A%t), A > 0, we have §\(E,(x,t)) = E\.(0x(z,1)).

PrROOF. Claim i) follows from the fact that the definition of E,.(z,t) depends
only on the differences © — y and ¢t — s. Claim ii) follows from the fact that (y,s) €
Ir(E,(x,t)) is equivalent to

_la—y/2?  Pa—yl?
e t—s/A? 1 e At—s 1

> — = >
[Am(t — s/N2)]™/2 = pm [Am (N2t — s)|™/2 = Anpn
that is equivalent with (y, s) € Ex.(Ax, A%t).

O

OSSERVAZIONE 3.10. The parabolic ball E, is the set of points (y, s) € R"! with
s < 0 such that I'(y, —s) > 1/r™, condition that is equivalent to

(3.23) ly|? < 43(% log(—4ms) — nlog 7") = J(s).

In particular, the balls is contained in the strip —r? /47 < s < 0. The maximum value
of ¥ is nr?/2me.

The balls E, has a size of order r in the spatial directions and of order r? in the
time direction. The center of the ball is in fact the “north pole”.

THEOREM 3.11. let U C R™™ be an open set and let u € C*(U) be a function
that satisfies uy = Aw in U. Then for any r > 0 and for all (x,t) € U such that
E,(z,t) C U there holds the mean formula

1 ly — 2|
(3.24) u(z,t) = / u(y, s) dyds,
CpT™ Er(x,t) (t - 8)2
where ¢, > 0 is a dimensional constant (and in fact ¢, = 4 does not depend on
neN).

PRrOOF. It sufficies to prove the theorem in the case x = 0 and t = 0. Consider
the function

1 y2
wmz—/uw$%@%
E, S

T’VL

for 7 > 0 small enough. We claim that the function ¢ is constant. Formula (3.24)
then follows from the limit

lim i/ u(y, s)%dyds = lim/ u(ry,rzs)wdyds = c,u(0),
E, 52 10 /g, 52

rl0 r7
2
cn:/ |y—|2dyd5.
By S

The fact that ¢, is finite and the computation of its value are left as exercises. In the
change of variable, we used Proposition 3.9.

It suffices to show that ¢'(r) = 0 for r > 0. We can take the derivative into the
integral in the definition of ¢, after the change of variable transforming the integration

where ¢,, > 0 is the constant
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domain into Fjy:

2
¢'(r) = / {y - Vu(ry, r2s) + 2rsug(ry, rzs)}%dyds
Ey

1 ly|?
- prt+l /Er {y ’ vu<y7 8) + 25”3(:% 3)}8—2dyd8

1 ly|® 1 lyl®
= [E?/ Vauly, s)=5-dyds + —5 [E 2us(y, 5)= - dyds

1
= rnJrl (A + B) :
Consider the function
U(y,s) = Wl _n log(—4ms) + nlogr.
’ 4s 2

The definition of 1 is suggested by condition (3.23) that characterizes the parabolic
ball F,. The function satisfies ©» = 0 on JF, and, moreover,

(3.25) Vi(y, s) = 2?/_3

We use the last identity to transform B in the following way:

2
B = / 2us(y, s)%dyds = 4/ us(y, s)y - V(y, s)dyds

T

=—4 : Y(y, s)div(us(y, s)y)dyds

= —4/E U(y, $){y - Vus(y, s) + nus(y, s) fdyds.

We used the divergence theorem (integration by parts) in the variables y for fixed
s (and, implicitly, also Fubini-Tonelli theorem). Now we integrate by parts in s for
fixed y in the first term, and we use the differential equation uy; = Aw in the second
one. We get

B=4 | {oy,s)y-Vuly,s) —nmb(y,s)Auly, s) }dyds

Er

_ P> n
=4 — — — — ¢ty - Vul(y,s)dyds +4n [ Vi(y,s) - Vu(y, s)dyds
E, Ly

= [ Sugy. s)dyds = —a
== | oy Vuly s)dyds = —A.

We used again the divergence theorem and the properties of .
We eventually obtain A+ B = 0 identically in > 0 and the theorem is proved. [

4. Parabolic maximum principles

Let 2 C R™ be an open set and T > 0. We denote by Q7 = Q2 x (0,T) the cylinder
of height T over €2. With abuse of notation, we define the parabolic boundary of Qr
as the set 9Qp C R™"! defined in the following way

0 =00 x [0,T]UQ x {0}.
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THEOREM 4.12 (Weak maximum principle). Let Q@ C R"™ be a bounded open set
and let u € C*(Qr) N C(Qr) be a solution of the equation uy — Au = 0 in Qp. Then
we have

max |u| = max |ul.
Qr Q7

The weak maximum principle is a corollary of the strong maximum principle. We
postpone the proof.

THEOREM 4.13 (Strong maximum principle). Let Q C R™ be a connected open set
and let uw € C*(Qr) be a solution to the differential equation uy — Au = 0 in Qp. If
there is a point (xo,to) € Qr such that

u(xg,to)| = max |u(zx,t
oo to)| = maxfu(a, )

then we have u(z,t) = u(xo, to) for all (z,t) € Q x (0, ).
PROOF. Let (z9,tp) € Qr be a point such that

u(xo, tg) = M = max wu(z,t).

(o, to) s (w,t)

Let (x,t) € Qp be any point such that ¢ < ¢, and such that the line segment S
connecting (xg, to) to (z,1), i.e.,

S = {(wr,t;) = (1 = 7)(wo, o) + 7(x,1) € R™: 0 < 7 < 1},
is entirely contained in 2. Let
A= {T = [07 1] : u(xTJtT) - M}

We have A # () because 0 € A. We shall prove that if 7 € A then also 7+ § € A for
all 0 < & < dg, for some Jp > 0. Indeed, there exists r > 0 such that E,.(z,,t,) C Qr,
because )7 is open and thus, by the parabolic mean formula, we have

1 y— ]2
r(Tr,tr T

2

< % Mdyds — M.

41 J g (ar ) (8 = 17)?

It follows that v = M in E,.(x,,t;) and the existence of § > 0 is implied by the

“shape” of parabolic balls. From the previous argument it follows that A = [0, 1] and
thus u = M on S.

Let (z,t) € Qp be any point such that 0 < ¢t < ;. As Q is a connected
open set, then it is pathwise connected by polygonal arcs: there exist m + 1 points
xg, L1, ..., Ty = x contained 2 such that each segment [z;_1,;], ¢ = 1,...,m, is con-
tained in €2. Choose times tq > t; > ... > t,, = t. A successive application of the previ-
ous argument shows that u = M on each segment S; = {(1 —T)(@i1, ticr)+7(4,t) €
Qr :0< 7 <L 1} and thus u(z,t) = M. By continuity, the claim holds also for
t = to. O

PROOF OF THEOREM 4.12. We prove for instance that

M = maxu = maxu.
QT 8S—ZT
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Notice that the maximum on the left hand side is attained, beacause u is continuous
in Qr, that is a compact set. Then there exists (79, ty) € Qr such that u(zg,ty) = M.

If (2o, tg) € 0Qr the proof is finished. Let (xq,to) € 2x(0,T]. Let 27 C € denote
the connected component of € containing xy. From the strong maximum principle it
follows that u = M on Q% x (0,tp]. This holds also in the case ty = T. Eventually,
u attaines the maximum (also) on the parabolic boundary 0. O

The weak maximum principle implies the uniqueness of the solution of the para-
bolic Dirichlet problem on a bounded domain with initial and boundary conditions.

THEOREM 4.14 (Uniqueness for the Dirichlet problem). Let @ C R" be a bounded
set, T >0, f € C(Qr) and g € C(0Qr). Then the problem

{ut—Au:f, in Qr,

(4.26) u =g, su OQ,

has at most one solution u € C?(Qp) N C(Qp).

PROOF. Indeed, if u, v are solutions then the function w = u — v satisfies w = 0
on 0927 and wy — Aw = 0 in Q7. From the weak maximum principle, it follows that
maxg,, |w| = maxaq, |w| = 0 and thus v = v. O

The uniqueness for the Cauchy problem on R™ requires a global version of the
maximum principle.

THEOREM 4.15. Let f € C(R") and let u € C*(R™ x (0,T)) N C(R" x [0,T]) be
a solution of the Cauchy problem

(127 fupu=t i 00
that satisfies for some constants A,b > 0

(4.28) lu(z,t)| < AP’z eR" te[0,T).
Then we have

(4.29) sup fu(z, t)] < sup [f(x)].

z€R™, t€[0,T] zERn

PrROOF. We prove, for instance, that u(z,t) < supg. f for z € R” and ¢ € [0, 7).
Assume that there also holds 40T < 1. This assumption will be removed at the end
of the proof. Then there exists € > 0 such that 46(T +¢) < 1 and thus == = b+~

4(T+e)
for some v > 0. Let § > 0 be a positive parameter and consider the function
||
v(x,t) = u(z,t) — et =0, zeR" tel0,T].

(T +e—t)/?
An explicit computation, that is omitted, shows that v; = Av. Moreover, from (4.28)
it follows that for 2 € R™ and t € [0, 7] we have
o Eli o
B _ Y ommre — Aeblel Y y)al?
v(z,t) < Ae T 5)71/28 T+ = Ae T 5)n/2e :
As § > 0, there exists R > 0 such that for |z| > R and for all ¢t € [0, 7] we have

v(z,t) < sup f(x).
TER™
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On the other hand, letting Q = {|z| < R}, by the weak maximum principle we have

max v(x,t) = max wv(x,t) < su ).
(z,t)€Qr ( ) (z,t)€0Qr ( ) xe[ézz f( )
After all, we obtain
) |2 "
u(z,t) — me‘“”“” =v(z, 1) < sup f(z), zeR" tel0,T],

and letting § | 0 we obtain the claim.

The restriction 4b7" < 1 can be removed on dividing the interval [0, 7] into subin-
tervals [0, T3], [T1, 211], [(k—1)Ty, kT}] with kT) = T and 4bT < 1, and then applying
the previous argument to each subinterval.

O

THEOREM 4.16 (Uniqueness for the Cauchy problem). Let T' > 0, f € C(R" x
[0,T]) and g € C(R™). Then the Cauchy problem

u—Au=f, inR"x(0,7T),
u(z,0) = g(z), forxzeR",

has at most one solution v € C*(R"™ x (0,T)) N C(R"™ x [0,T]) within the class of
functions that satisfies the growth condition

(4.31) lu(z,t)| < APz eR", te (0,7,

for some constants A,b > 0.

(4.30)

The proof is an elementary exercise.



