Equazioni Differenziali 2

Esercizio 1 Compute the solution $y \in C^{1}(\mathbb{R})$ to the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{y}{1+e^{x}}+e^{-x} \\
y(0)=0 .
\end{array}\right.
$$

Esercizio 2 Compute the general solution of the differential equation

$$
y^{\prime}=y-\frac{x^{2}}{y} .
$$

Esercizio 3 Consider the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}(x)=\sqrt{x}+\sqrt{|y(x)|}, \quad x \geq 0 \\
y(0)=0 .
\end{array}\right.
$$

i) Prove that any solution y satisfies $y(x) \geq \frac{2}{3} x^{3 / 2}$ for $x \geq 0$.
ii) Using the contraction principle, prove that there exists a unique local solution of the problem.
iii) Show that the local solution can be continued to a global solution on $[0,+\infty)$.
iv) Prove that

$$
\lim _{x \rightarrow+\infty} \frac{y(x)}{x^{2}}=\frac{1}{4}, \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{y(x)}{x^{3 / 2}}=\frac{2}{3} .
$$

Esercizio 4 Let (X, d) be a compact metric space and let $T: X \rightarrow X$ be a mapping such that $d(T(x), T(y))<d(x, y)$ for all $x, y \in X$ with $x \neq y$. Prove that there exists a unique $x \in X$ such that $x=T(x)$.

