Equazioni Differenziali 2

Esercizio 1 Compute the solution to the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}=\sin (x+y+3) \\
y(0)=-3
\end{array}\right.
$$

Esercizio 2 Consider the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}=\sqrt{y^{2}+x^{2}+1} \\
y(0)=0
\end{array}\right.
$$

i) Prove that the problem has a unique local solution $y \in C^{1}(-\delta, \delta)$ for some $0<\delta \leq+\infty$;
ii) Prove that the solution is even, i.e., $y(-x)=-y(x)$ for all $x \in(-\delta, \delta)$;
iii) Prove that the solution is convex for $x \geq 0$;
iv) Prove that the solution is defined for all $x \in \mathbb{R}$;
v) Show that $y(x) \geq \sinh (x)$ for all $x \geq 0$.

Esercizio 3 Let $f \in C(\mathbb{R})$ be a continuous function such that $t f(t) \geq 0$ for all $t \in \mathbb{R}$. Show that the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+e^{-x} f(y)=0 \\
y(0)=y^{\prime}(0)=0
\end{array}\right.
$$

has the unique solution $y=0$.

Esercizio 4 Prove that the solution of the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}=-(x+1) y^{2}+x \\
y(-1)=1
\end{array}\right.
$$

is globally defined on \mathbb{R}.

