Nome:

Exercise 1 Compute the solution to the Cauchy Problem

$$\begin{cases} y'' + y = \frac{1}{\cos x}, & x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\ y(0) = 0, & \\ y'(0) = 0. & \end{cases}$$

Exercise 2 For $0 < T \leq +\infty$ consider the vector space $X = \{b \in C([0,T); \mathbb{R}^n) : b \text{ is bounded}\}, n \geq 1$, endowed with the norm

$$||b||_{\infty} = \sup_{x \in [0,T)} |b(x)|.$$

Let $A \in M_n(\mathbb{R})$ and $y_0 \in \mathbb{R}^n$, and consider the Cauchy Problem

$$\begin{cases} y' = Ay + b & \text{in } [0,T] \\ y(0) = y_0. \end{cases}$$

Define $F: X \to C^1([0,T); \mathbb{R}^n)$ on letting F(b) = y if and only if $y \in C^1([0,T); \mathbb{R}^n)$ is the solution of the Cauchy problem with datum b.

i) Prove that for any $0 < T < +\infty$ there exists a constant $0 < C_T < +\infty$ such that

$$||F(b_1) - F(b_2)||_{\infty} \le C_T ||b_1 - b_2||_{\infty}$$
(1)

for all $b_1, b_2 \in X$;

ii) What can we say in the case $T = +\infty$?

Exercise 3 Let $a, b \in C(\mathbb{R})$ be continuous functions and let $y_1 \in C^2(\mathbb{R}), y_1(x) \neq 0$ for all $x \in \mathbb{R}$, be a solution to the differential equation

$$y'' + ay' + by = 0.$$

Determine a solution $y_2 \in C^2(\mathbb{R})$ which is linearly independent from y_1 .

Exercise 4 Consider the differential equation

$$x^3y' - 2y + 2x = 0.$$

Prove that:

- i) Any solution $y \in C^1(\mathbb{R} \setminus \{0\})$ can be continued to a function in $C^1(\mathbb{R})$;
- ii) There is no analytic solution to the equation in any neighborhood of x = 0.