Equazioni Differenziali 2

Exercise 1 Compute the solution to the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y=\frac{1}{\cos x}, \quad x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\
y(0)=0, \\
y^{\prime}(0)=0 .
\end{array}\right.
$$

Exercise 2 For $0<T \leq+\infty$ consider the vector space $X=\left\{b \in C\left([0, T) ; \mathbb{R}^{n}\right)\right.$: b is bounded $\}, n \geq 1$, endowed with the norm

$$
\|b\|_{\infty}=\sup _{x \in[0, T)}|b(x)| .
$$

Let $A \in M_{n}(\mathbb{R})$ and $y_{0} \in \mathbb{R}^{n}$, and consider the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}=A y+b \quad \text { in }[0, T) \\
y(0)=y_{0} .
\end{array}\right.
$$

Define $F: X \rightarrow C^{1}\left([0, T) ; \mathbb{R}^{n}\right)$ on letting $F(b)=y$ if and only if $y \in C^{1}\left([0, T) ; \mathbb{R}^{n}\right)$ is the solution of the Cauchy problem with datum b.
i) Prove that for any $0<T<+\infty$ there exists a constant $0<C_{T}<+\infty$ such that

$$
\begin{equation*}
\left\|F\left(b_{1}\right)-F\left(b_{2}\right)\right\|_{\infty} \leq C_{T}\left\|b_{1}-b_{2}\right\|_{\infty} \tag{1}
\end{equation*}
$$

for all $b_{1}, b_{2} \in X$;
ii) What can we say in the case $T=+\infty$?

Exercise 3 Let $a, b \in C(\mathbb{R})$ be continuous functions and let $y_{1} \in C^{2}(\mathbb{R}), y_{1}(x) \neq 0$ for all $x \in \mathbb{R}$, be a solution to the differential equation

$$
y^{\prime \prime}+a y^{\prime}+b y=0 .
$$

Determine a solution $y_{2} \in C^{2}(\mathbb{R})$ which is linearly independent from y_{1}.

Exercise 4 Consider the differential equation

$$
x^{3} y^{\prime}-2 y+2 x=0 .
$$

Prove that:
i) Any solution $y \in C^{1}(\mathbb{R} \backslash\{0\})$ can be continued to a function in $C^{1}(\mathbb{R})$;
ii) There is no analytic solution to the equation in any neighborhood of $x=0$.

