Nome:

Exercise 1 Compute in implicit form the (maximal) solution $y \in C^{\infty}(a, b)$, $-\infty \leq a < 1 < b \leq +\infty$, of the Cauchy Problem

$$\begin{cases} y' = \frac{y - x}{y + x}, \\ y(1) = 0, \end{cases}$$

and draw a qualitative graph of y. Compute b and show that $a > -\frac{1}{2}e^{-\pi/2}$.

Exercise 2 (Gradient flow) Let $f \in C^2(\mathbb{R}^n)$ be a function such that:

- a) The sets $\{x \in \mathbb{R}^n : f(x) \leq \lambda\}$ are compact for all $\lambda \in \mathbb{R}$.
- b) $\nabla f(x) = 0$ if and only if x = 0.

Consider the Cauchy Problem

$$\begin{cases} \dot{\gamma}(t) = -\nabla f(\gamma(t)), & t \ge 0, \\ \gamma(0) = x_0, \end{cases}$$

where $x_0 \in \mathbb{R}^n$. Prove that:

i) The problem has a unique solution $\gamma_{x_0} \in C^2([0, +\infty));$

ii)
$$\lim_{t \to +\infty} \gamma_{x_0}(t) = 0;$$

Exercise 3 Let $F \in C^1([0, +\infty))$ be a function such that F(0) > 0 and $F'(x) \ge 0$ for all $x \ge 0$. Show that any solution $y \in C^2([0, +\infty))$ to the differential equation

$$y'' + F(x)y = 0, \quad x \ge 0,$$

is bounded.

Hint. Show for $x \ge 0$:

$$F(x)y(x)^{2} \leq y'(0)^{2} + F(0)y(0)^{2} + \int_{0}^{x} F'(t)y(t)^{2}dt := \Phi(x),$$

and then $\frac{\Phi'}{\Phi} \leq \frac{F'}{F}$.