Equazioni Differenziali 2

Nome:
Consegna: 21 Maggio 2010

Exercise 1 Compute in implicit form the (maximal) solution $y \in C^{\infty}(a, b),-\infty \leq a<$ $1<b \leq+\infty$, of the Cauchy Problem

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{y-x}{y+x}, \\
y(1) \stackrel{y}{=},
\end{array}\right.
$$

and draw a qualitative graph of y. Compute b and show that $a>-\frac{1}{2} e^{-\pi / 2}$.

Exercise 2 (Gradient flow) Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ be a function such that:
a) The sets $\left\{x \in \mathbb{R}^{n}: f(x) \leq \lambda\right\}$ are compact for all $\lambda \in \mathbb{R}$.
b) $\nabla f(x)=0$ if and only if $x=0$.

Consider the Cauchy Problem

$$
\left\{\begin{array}{l}
\dot{\gamma}(t)=-\nabla f(\gamma(t)), \quad t \geq 0, \\
\gamma(0)=x_{0}
\end{array}\right.
$$

where $x_{0} \in \mathbb{R}^{n}$. Prove that:
i) The problem has a unique solution $\gamma_{x_{0}} \in C^{2}([0,+\infty))$;
ii) $\lim _{t \rightarrow+\infty} \gamma_{x_{0}}(t)=0$;

Exercise 3 Let $F \in C^{1}\left([0,+\infty)\right.$) be a function such that $F(0)>0$ and $F^{\prime}(x) \geq 0$ for all $x \geq 0$. Show that any solution $y \in C^{2}([0,+\infty))$ to the differential equation

$$
y^{\prime \prime}+F(x) y=0, \quad x \geq 0
$$

is bounded.
Hint. Show for $x \geq 0$:

$$
F(x) y(x)^{2} \leq y^{\prime}(0)^{2}+F(0) y(0)^{2}+\int_{0}^{x} F^{\prime}(t) y(t)^{2} d t:=\Phi(x),
$$

and then $\frac{\Phi^{\prime}}{\Phi} \leq \frac{F^{\prime}}{F}$.

