Equazioni Differenziali 2

Exercise 1 Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions in $C([0,1] ; \mathbb{R})$ and let $y \in C([0,1] ; \mathbb{R})$. Assume that:
i) There exists a dense set $A \subset[0,1]$ such that $y_{n}(x) \rightarrow y(x)$ as $n \rightarrow \infty$ for all $x \in A$;
ii) Any subsequence of $\left(y_{n}\right)_{n \in \mathbb{N}}$ has a subsequence which converges uniformly.

Prove that $y_{n} \rightarrow y$ uniformly as $n \rightarrow+\infty$.

Exercise 2 Study existence of periodic and global solutions $y \in C^{\infty}(\mathbb{R})$ to the equation

$$
y^{\prime \prime}=\alpha^{2}-y^{2},
$$

where α is a real parameter.

Exercise 3 Let $\varphi \in C^{1}(\mathbb{R})$ be a function. Compute the solution $u \in C^{1}(U), U \subset \mathbb{R}^{2}$ open neighborhood of $(0,1) \in \mathbb{R}^{2}$, to the Cauchy Problem

$$
\left\{\begin{array}{l}
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 u, \quad \text { in } U, \\
u(x, 1)=\varphi(x), \quad \text { for }(x, 1) \in U .
\end{array}\right.
$$

Determine the maximal domain U of the solution.

Exercise 4 For $\alpha>0$ and $\lambda \in \mathbb{R}$, consider the differential problem

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{y \sin y}{1+x^{\alpha}}, \quad x>0 \\
\lim _{x \rightarrow+\infty} y(x)=\lambda
\end{array}\right.
$$

For given α and λ, study existence and uniqueness of solutions $y \in C^{1}(0,+\infty)$. Even partial answers are welcome.

