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Introduction

Let Ω ⊂ Rn+2, n ∈ N, be an open set and let F : Ω→ R be a continuous function.

An equation of the form

F (x, y, y′, ..., y(n)) = 0 (0.0.1)

is called ordinary differential equation of order n. Here, x is a real variable, y is a

real valued unknown function, and y′,...,y(n) are its derivatives.

A function ϕ ∈ Cn(I) is a solution of the differential equation if:

i) I ⊂ R is an open interval;

ii) (x, y(x), ..., y(n)(x)) ∈ Ω for all x ∈ I;

iii) F (x, y(x), ..., y(n)(x)) = 0 for all x ∈ I.

The main problems concerning ordinary differential equations are:

1) Existence of solutions;

2) Uniqueness of solutions (with suitable initial conditions or boundary value

data);

3) Regularity and stability of solutions (e.g. dependence on the initial condi-

tions, large time stability, higher regularity depending on F or on parame-

ters);

4) Computation of solutions.

The existence of solutions can be proved by fixed point theorems, by approxi-

mation and compactness, by variational methods (minimization and critical point

theorems), by the implicit function theorem in Banach spaces, by Functional Ana-

lysis techniques. The problem of uniqueness is typically more difficult. Only in very

special cases, it is possible to compute the solutions in some explicit form.
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CHAPTER 1

Some methods of resolution

1. First order linear equations

1.1. First order linear equations. Let I ⊂ R be an open interval and let

a, b ∈ C(I) be two continuous functions. A first order differential equation of the

form

y′ + a(x)y = b(x), x ∈ I, (1.1.2)

is called linear. In the case b = 0, the equation is said to be homogeneous

y′ + a(x)y = 0, x ∈ I. (1.1.3)

We solve the homogeneous equation, first. Assuming y 6= 0, e.g. y > 0, the differential

equation (1.1.3) has the form y′/y = −a(x). A primitive of y′/y is log y. Then,

denoting by A a primitive of a, i.e., A′(x) = a(x) for all x ∈ I, we have

−A = log y + d,

for some constant d ∈ R. It follows that y = exp(−d−A) and letting c = e−d we find

the solution

y(x) = ce−A(x), x ∈ I. (1.1.4)

This function is a solution to the homogeneous equation for any c ∈ R (i.e., the

restriction y > 0 can be dropped).

Now we look for a solution of the form (1.1.4) for the non homogeneous equation

(1.1.2), where now c ∈ C1(I) is a function that has to be determined (this method is

called “Variation of constants”). Plugging y′ = c′e−A − ace−A into (1.1.2) we get

c′e−A = b, that is c′ = beA.

Integrating this equation on some interval (x0, x) ⊂ I we get

c(x) = c(x0) +

∫ x

x0

b(t)eA(t)dt,

and we find

y(x) =
(
c(x0) +

∫ x

x0

b(t)eA(t)dt
)
e−A(x), x ∈ I, (1.1.5)

where c(x0) ∈ R is a real number and x0 ∈ I.

Proposition 1.1.1. Let x0 ∈ I and A be a primitive of a. Then the function

in (1.1.5) is a solution to (1.1.2). Moreover, any solution of (1.1.2) is of the form

(1.1.5) for some c(x0) ∈ R.
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8 1. SOME METHODS OF RESOLUTION

Proof. The first statement is a computation. Let z ∈ C1(I) be a solution to

(1.1.2) and let

w(x) = eA(x)z(x)−
∫ x

x0

b(t)eA(t)dt.

For we have

w′ = (az + z′)eA − beA = 0,

the function w is constant on I, and the second claim is proved.

�

2. Separation of variables

Let I, J ⊂ R be two open intervals and let f ∈ C(I) and g ∈ C(J) be two

continuous functions. We look for solutions to the first order differential equation

y′ = f(x)g(y). (1.2.6)

Let x0 ∈ I and y0 ∈ J . If g(y0) = 0 for some y0 ∈ J , then the constant function

y(x) = y0, x ∈ I, is a solution to the differential equation (1.2.6). Assume that

g(y0) 6= 0. Then it is g 6= 0 in a neighborhood of y0 and we can divide the equation

be g(y) (separation of variables). We find

y′(x)

g(y(x))
= f(x). (1.2.7)

Let G ∈ C1(J1) be the primitive of 1/g(y) (in the variable y), defined in some interval

J1 containing y0. The function G is strictly monotonic, because G′(y) 6= 0, and thus

invertible. Moreover, let F ∈ C1(I) be a primitive of f . Upon integrating (1.2.7), we

get

G(y(x)) = F (x) + C, x ∈ I1, (1.2.8)

for some interval I1 ⊂ I. Here C ∈ R is a real constant. The general solution of the

differential equation is then

y(x) = G−1(F (x) + C), x ∈ I1, (1.2.9)

where G−1 : G(J1) → J1 is the inverse function of G. The constant C is uniquely

determined by the initial condition y(x0) = y0, i.e., C = G(y0)− F (x0).

This argument identifies two kinds of solutions to the equation (1.2.6): constant

solutions and solutions such that g(y) 6= 0. There could be other solutions (see Section

5). If e.g. g ∈ C1(J), however, there are no other solutions (see Chapter 2).

Example 1.2.1. We look for the solution to the Cauchy Problem y′ =
1 + 2x

cos y
y(0) = π.

(1.2.10)

The differential equation is of the form y′ = f(x)g(y) with f(x) = 1 + 2x and

g(y) = 1/ cos y. ular, g is defined for cos y 6= 0, i.e., for y 6= π/2 + kπ with k ∈ Z.
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Separating the variables we get y′ cos y = 1 + 2x, and integrating we find the general

solution in implicit form

sin y = x+ x2 + C,

where C ∈ R is a constant, which is determined by the initial condition y(0) = π,

i.e., C = sin y(0) = 0. The function

z(x) = arcsin(x+ x2)

is not, however, the solution to (1.2.10) because z(0) = arcsin(0) = 0. In order to

determine the correct solution, notice the arcsin is the inverse function of sin when

restricted to [−π/2, π/2], whereas y takes values in a neighborhood of π. Letting

w(x) = y(x) − π, we have w(0) = y(0) − π = 0 and sinw = sin(y − π) = − sin y =

−(x+ x2). Now we can invert the sine function, obtaining w = − arcsin(x+ x2) and

thus

y(x) = π − arcsin(x+ x2).

The solution y is defined in a suitable neighborhood of the origin.

3. Equations of homogeneous type

A differential equation of the form

y′ = f
(y
x

)
is called of homogeneous type. Here f : I → R is a (continuous) function in some

interval I ⊂ R. With the change of variable y = xz, where z is the new unknown

function, we get y′ = z + xz′ and the differential equation transforms into

xz′ + z = f(z).

This equation can be solved on separating the variables.

For instance, the following differential equation is of homogeneous type (see Ex-

ercise ??)

y′ =
x2 + y2

xy
= f

(y
x

)
, with f(t) =

1

t
+ t.

4. Bernoulli’s equations

A differential equation of the form

y′ + a(x)y = b(x)yα, x ∈ I, (1.4.11)

where α is a real parameter such that α 6= 0, 1 is said to be of Bernoulli type. Letting

y = z
1

1−α , y′ =
1

1− α
z

α
1−α z′,

the equations transforms into

z′ + (1− α)a(x)z = (1− α)b(x).

This is a linear equation.
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5. Exact equations

Let Ω ⊂ R2 be an open set and f, g ∈ C(Ω) be continuous function. We look for

a solution y ∈ C1(I), I ⊂ R open interval, of the differential equation

f(x, y) + g(x, y)y′ = 0, (1.5.12)

satisfying the condition y(x0) = y0 for some (x0, y0) ∈ Ω with x0 ∈ I.

To this aim, consider the differential form ω in Ω

ω = f(x, y)dx+ g(x, y)dy, (1.5.13)

where dx, dy is the dual basis of the basis e1 = (1, 0) and e2 = (0, 1).

Definition 1.5.1 (Exact forms). The differential form ω is exact if there exists

a function F ∈ C1(Ω) such that

ω = dF =
∂F

∂x
dx+

∂F

∂y
dy in Ω.

The function F is called a potential of ω. In this case, the differential equation (1.5.12)

is called exact.

Theorem 1.5.2. Assume that ω is an exact form with potential F such that

∂F (x0, y0)

∂y
6= 0. (1.5.14)

Then the equation F (x, y) = F (x0, y0) implicitly defines a function y ∈ C1(I) for

some open interval I containing x0 solving the differential equation (1.5.12) along

with the condition y(x0) = y0. This solution is unique on the interval I.

Proof. Assume w.l.g. that F (x0, y0) = 0. By the implicit function theorem,

there exist δ, η > 0 and y ∈ C1(x0 − δ, x0 + δ) such that{
(x, y) ∈ Ω : |x− x0| < δ, |y − y0| < η, F (x, y) = 0

}
=
{

(x, y(x)) ∈ Ω : |x− x0| < δ
}
.

(1.5.15)

Differentiating the identity F (x, y(x)) = 0 we get

0 =
d

dx
F (x, y(x)) =

∂F (x, y(x))

∂x
+
∂F (x, y(x))

∂y
y′(x)

= f(x, y(x)) + g(x, y(x))y′(x),

(1.5.16)

i.e., y is a solution of the differential equation, and moreover y(x0) = y0.

On the other hand, if z ∈ C1(I) is a solution to the equation (1.5.12) such that

z(x0) = y0, then the same argument as in (1.5.16) shows that

d

dx
F (x, z(x)) = 0,

and therefore F (x, z(x)) = F (x0, z(x0)) = F (x0, y0) = 0. By (1.5.15) it must by

z = y. �
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Definition 1.5.3 (Closed forms). Assume that f, g ∈ C1(Ω). The differential

form ω = fdx+ gdy is closed in Ω if

∂f(x, y)

∂y
=
∂g(x, y)

∂x
for all (x, y) ∈ Ω.

An exact differential form in an open set Ω with a potential F ∈ C2(Ω) is closed

in Ω because mixed derivatives are equal by Schwarz theorem

∂2F

∂x∂y
(x, y) =

∂2F

∂y∂x
(x, y), (x, y) ∈ Ω.

The converse is also true if Ω is simply connected.

Theorem 1.5.4. If Ω ⊂ R2 is a simply connected open set, then any closed dif-

ferential form in Ω is exact.

Convex and starshaped open sets are simply connected. In particular, closed forms

always have a potential locally.

If ϕ ∈ C(Ω) is a function such that ϕ 6= 0 in Ω, then the differential equation

(1.5.12) and the differential equation

ϕ(x, y)
{
f(x, y) + g(x, y)y′

}
= 0, (1.5.17)

have the same solutions. For a suitable choice of ϕ, the differential equation (1.5.17)

may happen to be exact, even though (1.5.12) is not exact. The function ϕ is then

called integrating factor (or multiplier). If f, g ∈ C1(Ω), a necessary condition for a

function ϕ ∈ C1(Ω) to be a multiplier is

∂

∂y
ϕf =

∂

∂x
ϕg in Ω. (1.5.18)

Example 1.5.5. The differential equation

xy2 + y − xy′ = 0 (1.5.19)

is not exact. In fact, with f = xy2 + y and g = −x, we have

∂f(x, y)

∂y
= 2xy + 1 and

∂g(x, y)

∂x
= −1.

We look for a function ϕ such that (1.5.18) holds. We try with the ansatz ϕ = ϕ(y),

i.e., ϕ depends only on y. We get the necessary condition

ϕ′(y)(xy2 + y) + ϕ(y)(2xy + 1) = −ϕ(y),

that is implied by yϕ′ + 2ϕ = 0 (this equation does not depend on x). A solution for

this linear equation is ϕ(y) = 1/y2. Now the differential equation

x+
1

y
− xy′

y2
= 0

is exact, where y 6= 0. A potential F for this exact differential equation can be found

on solving
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1

An integration yields

F (x, y) =
x2

2
+
x

y
+ C, C ∈ R.

The equation F (x, y) = 0 implicitly defines solutions to the differential equation

(1.5.19) (for x 6= 0 and y 6= 0).

6. Second order linear equations with constant coefficients

Let f : I → R be a continuous function on the interval I ⊂ R and let a, b, c ∈ be

real numbers such that a 6= 0. The differential equation

ay′′ + by′ + cy = f(x), x ∈ I, (1.6.20)

is a second order linear differential equation with constant coefficients. When f =

0 the equation is called homogeneous. The general solution of the homogeneous

equation

ay′′ + by′ + cy = 0, x ∈ R, (1.6.21)

is of the form yGH = C1y1+C2y2 where C1, C2 ∈ R are real numbers and y1, y2 are two

solutions of (1.6.21) which are linearly independent, i.e., such that for real numbers

α, β ∈ R
αy1 + βy2 = 0 in R ⇒ α = β = 0.

The general solution of the inhomogeneous equation (1.6.20) is a function y ∈
C2(I) of the form y = yGH + yP , where yP ∈ C2(I) is a particular solution of the

inhomogeneous equations. We describe some practical methods to compute yGH and

yP . The general theory is dealt with in Chapter 3.

6.1. Homogeneous equation. The solutions to the homogeneous equation

ay′′ + by′ + cy = 0 (1.6.22)

are a real vector space, i.e., any linear combination of solutions is still a solution.

We shall prove in Chapter 3 that this vector space has dimension 2. It is therefore

sufficient to find two linearly independent solutions to the equation. We look for

solutions of the form y(x) = eλx for some complex number λ ∈ C. Inserting y, y′, y′′

into (1.6.22) we get eλx(aλ2 + bλ+ c) = 0. Since eλx 6= 0, the complex number λ must

solve the characteristic equation

aλ2 + bλ+ c = 0. (1.6.23)

According to the sign of ∆ = b2 − 4ac we distinguish three cases.

Case 1: ∆ > 0. In this case the characteristic equation has two real (simple)

solutions

λ1 =
−b+

√
∆

2a
, λ2 =

−b−
√

∆

2a
.

1MANCA TESTO
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The general solution of the homogeneous equation (1.6.22) is

yGH(x) = C1e
λ1x + C2e

λ2x,

where C1, C2 ∈ R are real constant.

Case 2: ∆ = 0. In this case the characteristic equation aλ2 + bλ + c = 0 has

one real double solution λ = −b/2a. The ansatz yields only the solution y1(x) = eλx.

A direct computation shows that the function y2(x) = xeλx is also a solution which

is linearly independent from the first one. The general solution of the homogeneous

equation (1.6.22) is then

yGH(x) = eλx(C1 + C2x),

where C1, C2 ∈ R are real constants.

Case 3: ∆ < 0. In this case the characteristic equation has two complex conjugate

solutions

λ1 = α + iβ and λ2 = α− iβ, where α = − b

2a
, β =

√
|∆|

2a
.

We get the complex valued solutions

z1(x) = e(α+iβ)x = eαx(cos(βx) + i sin(βx),

z2(x) = e(α−iβ)x = eαx(cos(βx)− i sin(βx),

and the real valued solutions

y1(x) =
1

2
(z1(x) + z2(x)) = eαx cos(βx),

y2(x) =
1

2i
(z1(x)− z2(x)) = eαx sin(βx).

The general solution of the homogeneous equation is

yGH(x) = eαx
(
C1 cos(βx) + C2 sin(βx)

)
,

where C1, C2 ∈ R are real constants.

6.2. Inhomogeneous equation. Similar solutions. Consider the inhomoge-

neous equation (1.6.20), where the right hand side is a function f : R → R of the

form

f(x) = eαx
(
P0(x) cos(βx) +Q0(x) sin(βx)

)
,

for some α, β ∈ R and real polynoms P0 and Q0.

We describe a practical method to find a particular solution yP to the differential

equation

ay′′ + by′ + cy = f(x). (1.6.24)

A more systematic method is given in the next section.

Consider the real or complex number λ = α+ iβ and denote by m ∈ {0, 1, 2} the

multiplicity of λ as a solution of the characteristic equation (1.6.23). The case m = 0

means that λ is not a solution, the case m = 1 means that λ is a simple solution, the

case m = 2 means that λ is a double solution.
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It is always possible to find a particular solution yP for the inhomogeneous equa-

tion (1.6.24) of the form

yP (x) = xmeαx
(
P (x) cos(βx) +Q(x) sin(βx)

)
,

where P and Q are unknown polynoms with degree equal to the maximum of the

degrees of P0 and Q0. These polynoms can be determined inserting yP , y
′
P , y

′′
P into

(1.6.24) and comparing the coefficients of the trigonometric functions in the left and

right hand side.

6.3. Inhomogeneous equation. Variation of constants. We look for a par-

ticular solution of the inhomogeneous equation (1.6.20) when f : I → R is any

continuous function on some interval I ⊂ R.

The general solution of the homogeneous equation (1.6.21) is of the form

y = C1y1 + C2y2, (1.6.25)

where C1, C2 are two real constants and y1 and y2 are two linearly independent solu-

tions of the homogeneous equation. These solutions are known.

The method of the variation of constants consists in letting C1, C2 be functions

of the variable x. We look for a particular solution y of (1.6.20) of the form (1.6.25),

where now C1 and C2 are functions. We have to determine C1 and C2. On differen-

tiating y, we get

y′ = C ′1y1 + C1y
′
1 + C ′2y2 + C2y

′
2. (1.6.26)

We impose on C ′1 and C ′2 the condition

C ′1y1 + C ′2y2 = 0. (1.6.27)

On differentiating y′ we find

y′′ = C ′1y
′
1 + C1y

′′
1 + C ′2y

′
2 + C2y

′′
2 . (1.6.28)

Plugging (1.6.25), (1.6.26), (1.6.28) into the inhomogeneous equation (1.6.20) we find

a(C ′1y
′
1 + C ′2y

′
2) = f(x). (1.6.29)

We also used (1.6.27) and the fact that y1, y2 are solution to the homogeneous equa-

tion.

As y1 and y2 are linearly independent, it is

det

∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣ 6= 0. (1.6.30)

This fact follows from Exercise ??. Then it is possible to solve the system of equations{
C ′1y1 + C ′2y2 = 0

C ′1y
′
1 + C ′2y

′
2 = f(x)/a.

(1.6.31)

Finally, the functions C1 and C2 can be computed on integrating C ′1 and C ′2.
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7. Euler’s second order equations

Let f : I → R be a continuous function on the interval I ⊂ R+ and let a, b, c ∈
be real numbers such that a 6= 0. The differential equation

ax2y′′ + bxy′ + cy = f(x), x ∈ I, (1.7.32)

is a second order differential equation of Euler’s type. We consider only the case

f = 0, i.e., the homogeneous equation

ax2y′′ + bxy′ + cy = 0, x ∈ R+. (1.7.33)

The differential equation is singular at x = 0 because the coefficient of y′′ vanishes.

We look for solutions on the half line R+ = (0,+∞). For the differential equation

is linear, solutions are a two dimensional vector space. We look for two linearly

independent solutions of the form

y(x) = xλ = eλ log(x) = e(α+iβ) log x = xα(cos(β log x) + i sin(β log x)),

where λ = α + iβ is a complex parameter. Plugging y, y′ = λxλ−1, and y′′ =

λ(λ− 1)xλ−2 into (1.7.33) we get xλ(aλ(λ− 1) + bλ+ c) = 0. Because xλ 6= 0, λ must

solve the characteristic equation

aλ2 + (b− a)λ+ c = 0. (1.7.34)

According to the sign of ∆ = (b− a)2 − 4ac we distinguish three cases.

Case 1: ∆ > 0. In this case the characteristic equation has two real (simple)

solutions λ1, λ2 ∈ R and the general solution of the homogeneous equation (1.7.33) is

y(x) = C1x
λ1 + C2x

λ2 ,

where C1, C2 ∈ R are real constant.

Case 2: ∆ = 0. In this case the characteristic equation has one real double

solution λ ∈ R and we get the solution y1(x) = xλ. A direct computation shows that

the function y2(x) = xλ log x is also a solution which is linearly independent from the

first one. The general solution of the homogeneous equation (1.7.33) is then

y(x) = xλ(C1 + C2 log x),

where C1, C2 ∈ R are real constants.

Case 3: ∆ < 0. In this case the characteristic equation has two complex conjugate

solutions

λ1 = α + iβ and λ2 = α− iβ.

We get the complex valued solutions

z1(x) = xα+iβ = xα
(

cos(β log x) + i sin(β log x)
)
,

z2(x) = xα−iβ = xα
(

cos(β log x)− i sin(β log x)
)
,
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and the real valued solutions

y1(x) =
1

2
(z1(x) + z2(x)) = xα cos(β log x),

y2(x) =
1

2i
(z1(x)− z2(x)) = xα sin(β log x).

The general solution of the homogeneous equation is

y(x) = xα
(
C1 cos(β log x) + C2 sin(β log x)

)
,

where C1, C2 ∈ R are real constants.



CHAPTER 2

Existence and uniqueness in the Lipschitz case

1. Banach fixed point theorem

Definition 2.1.1 (Contraction). Let (X, d) be a metric space. A mapping T :

X → X is a contraction if there exists 0 < λ < 1 such that d(T (x), T (y)) ≤ λd(x, y)

for all x, y ∈ X.

Theorem 2.1.2. Let (X, d) be a complete metric space and let T : X → X be a

contraction. Then there exists a unique x ∈ X such that x = T (x).

Proof. Let x0 ∈ X be a given point and define xn = T n(x0) = T ◦ ... ◦ T (x0),

n-times. The sequence (xn)n∈N is Cauchy. In fact, by the triangle inequality we have

for all n, k ∈ N

d(xn+k, xn) ≤
k∑

h=1

d(xn+h, xn+h−1) =
k∑

h=1

d(T n+h(x0), T n+h−1(x0))

≤ d(T (x0), x0)
k∑

h=1

λn+h−1 ≤ λnd(T (x0), x0)
∞∑
h=1

λh−1.

The series converges and λn → 0 as n→∞, because λ < 1. For X is complete, there

exists x ∈ X such that x = lim
n→∞

T n(x0).

We show that x = T (x). The mapping T is continuous and so we have

x = lim
n→∞

T n(x0) = lim
n→∞

T (T n−1(x0)) = T ( lim
n→∞

T n−1(x0)) = T (x).

Finally, we prove that the fixed point is unique. Let x̄ ∈ X be such that x̄ = T (x̄).

Then we have

d(x, x̄) = d(T (x), T (x̄)) ≤ λd(x, x̄) ⇒ d(x, x̄) = 0,

because λ < 1, and thus x = x̄.

�

Theorem 2.1.3. Let (X, d) be a complete metric space and let T : X → X be a

mapping such that T n is a contraction, for some n ∈ N. Then there exists a unique

x ∈ X such that x = T (x).

Proof. There exists a unique x ∈ X such that T n(x) = x. Then we have for

some 0 ≤ λ < 1

d(x, T (x)) = d(T n(x), T (T n(x))) = d(T n(x), T n(T (x))) ≤ λd(x, T (x)),

17
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and thus d(x, T (x)) = 0, which is equivalent to T (x) = x.

Now assume that for some y ∈ X it is y = T (y). Then we also have y = T n(y)

and thus x = y, because the fixed point of T n is unique. �

2. Excursus. Other fixed point theorems

Some fixed point theorems are based on the notion of convexity.

Theorem 2.2.1 (Brouwer). Let K ⊂ Rn be a closed ball and let T : K → K be

continuous. Then there exists x ∈ K such that T (x) = x.

For an analytical proof, see Evans, Partial Differential Equations, p.441. Brouwer’s

theorem extends to the infinite dimensional case.

Theorem 2.2.2 (Schauder I). Let (X, ‖ · ‖) be a Banach space and let K ⊂ X be

a nonempty, convex, and compact set. Any continuous mapping T : K → K has at

least one fixed point in K, i.e., there exists x ∈ K tale che T (x) = x.

See Evans, Partial Differential Equations, p.502. The assumption on K to be compact

can be be transferred to the mapping T .

Theorem 2.2.3 (Schauder II). Let (X, ‖ · ‖) be a Banach space and let K ⊂ X

be a nonempty, convex, closed and bounded set. Let T : K → K be a mapping such

that:

(i) T is continuous;

(ii) T is compact, i.e., T (K) ⊂ K is precompact.

Then there exists x ∈ K such that T (x) = x.

Tarki’s Fixed Point theorem relies upon the notion of partial order.

Theorem 2.2.4 (Tarski). Let (X,≤) be a partially ordered set such that any subset

Y ⊂ X has a supremum. Let T : X → X be an order preserving mapping, i.e., a

mapping such that

x ≤ y ⇒ T (x) ≤ T (y).

Then there exists x ∈ X such that x = T (x).

The proof of Tarki’s Lemma is an exercise.

3. Cauchy Problem. Introduction

In Rn+1 = R × Rn, n ≥ 1, we introduce the coordinates x ∈ R and y ∈ Rn. Let

Ω ⊂ Rn+1 be an open set and let f ∈ C(Ω; Rn) be a continuous function. Given a

point (x0, y0) ∈ Ω we consider the Cauchy Problem{
y′ = f(x, y)

y(x0) = y0.
(2.3.35)

A function y ∈ C1(I; Rn) is a solution to the problem if:

i) I ⊂ R is an interval such that x0 ∈ I;
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ii) (x, y(x)) ∈ Ω for all x ∈ I;

iii) y′(x) = f(x, y(x)) for all x ∈ I (the differential equations is solved);

iv) y(x0) = y0 (the initial datum is attained).

We are interested in the following questions:

a) Existence of solutions;

b) Uniqueness of solutions;

c) Dependence of solutions from x0, y0, and f (regularity and stability).

Integrating the differential equation y′ = f(x, y) on the interval with end-points

x0 and x we get the integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt = Ty(x), (2.3.36)

where y 7→ Ty is a mapping defined on a suitable functional space. A solution to

the Cauchy Problem is then a fixed point of the mapping T . On the other hand, if

a continuous function y solves the fixed point equation (2.3.36) then y is of class C1

and solves the Cauchy Problem (2.3.35).

We fix the functional space. For a δ > 0 consider the real vector space

V = C([x0 − δ, x0 + δ]; Rn). (2.3.37)

Endowed with the norm

‖y‖ = max
x∈[x0−δ,x0+δ]

|y(x)|, y ∈ V, (2.3.38)

the vector space V is a Banach space, because any Cauchy sequence in V converges

to a function in V . For any ε > 0, the subset X of V

X =
{
y ∈ V : y(x0) = y0, ‖y − y0‖ ≤ ε

}
(2.3.39)

is closed because both conditions y(x0) = y0 and ‖y − y0‖ ≤ ε are preserved by the

uniform (pointwise) convergence. Then the metric space (X, d) is complete w.r.t. the

metric d(y, z) = ‖y − z‖.
We shall see that for a suitable choice of δ and ε the mapping T : X → X

Ty(x) = y0 +

∫ x

x0

f(t, y(t)) dt (2.3.40)

is well defined, i.e., it is Ty ∈ X for all y ∈ X.

4. Local existence and uniqueness under the Lipschitz condition

Definition 2.4.1. Let Ω ⊂ Rn+1 be an open set. We say that a function f ∈
C(Ω; Rn) has the local Lipschitz property in y if for any compact set K ⊂ Ω there

exists a constant L > 0 such that

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2| (2.4.41)

for all (x, y1), (x, y2) ∈ K.



20 2. EXISTENCE AND UNIQUENESS IN THE LIPSCHITZ CASE

Theorem 2.4.2. Let Ω ⊂ Rn+1 be an open set, (x0, y0) ∈ Ω, and let f ∈ C(Ω; Rn)

be a function with the local Lipschitz property in y. Then there exists δ > 0 such

that the Cauchy Problem (2.3.35) has a unique solution y ∈ C1(I; Rn) in the interval

I = [x0 − δ, x0 + δ] .

Proof. Let δ > 0 and ε > 0 be such that K = [x0 − δ, x0 + δ] × {y ∈ Rn :

|y − y0| ≤ ε} ⊂ Ω. Let H ⊂ Ω be any compact set such that K ⊂ int(H). For f is

continuous on H, the number

M = sup
(x,y)∈H

|f(x, y)| < +∞

is finite. Let X be the set introduced in (2.3.39) and let T be the mapping (2.3.40).

For any y ∈ X we have for x ∈ I

|Ty(x)− y0| ≤
∣∣∣ ∫ x

x0

|f(t, y(t))|dt
∣∣∣ ≤M |x− x0| ≤ δM.

In fact it is (t, y(t)) ∈ K for all t ∈ I. Possibly choosing a smaller δ > 0 (this does

not affect M), we can assume that δM ≤ ε. With such a choice, it is Ty ∈ X for all

y ∈ X. The choice of δ > 0 is independent from x0 and y0 as long as K ⊂ int(H).

We prove that the mapping T : X → X has a unique fixed point. It is enough to

show that, for some k ∈ N, the iterated mapping T k is a contraction. Let y, ȳ ∈ X
and x ∈ I. We have (with e.g. x ≥ x0)

|Ty(x)− T ȳ(x)| =
∣∣∣ ∫ x

x0

(
f(t, y(t))− f(t, ȳ(t)

)
dt
∣∣∣

≤
∫ x

x0

|f(t, y(t))− f(t, ȳ(t)|dt

≤ L

∫ x

x0

|y(t)− ȳ(t)|dt ≤ L|x− x0| · ‖y − ȳ‖.

Here, L is the Lipschitz constant for f relative to the compact set H. Analogously,

it is (e.g. x ≥ x0)

|T 2y(x)− T 2ȳ(x)| =
∣∣∣ ∫ x

x0

(f(t, Ty(t))− f(t, T ȳ(t))dt
∣∣∣

≤ L

∫ x

x0

|Ty(t)− T ȳ(t)|dt

≤ L2‖y − ȳ‖
∫ x

x0

(t− x0)dt ≤ L2 (x− x0)2

2
‖y − ȳ‖.

By induction, we get for any k ∈ N and x ∈ I

|T ky(x)− T kȳ(x)| ≤ Lk|x− x0|k

k!
‖y − ȳ‖,

which implies

‖T ky − T kȳ‖ ≤ (Lδ)k

k!
‖y − ȳ‖.
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Because

lim
k→+∞

(Lδ)k

k!
= 0,

there exists k ∈ N such that (Lδ)k

k!
< 1. For such a k, the mapping T k is a contraction.

Then T has a unique fixed point y ∈ X. Then it is y ∈ C1([x0 − δ, x0 + δ]; Rn) and y

solves the Cauchy Problem (2.3.35). �

5. Peano’s example

Consider the Cauchy problem{
y′(x) = 2

√
|y(x)|, x ∈ R,

y(0) = 0
(2.5.42)

The function f(x, y) = 2
√
|y| is not locally Lipschitz in the variable y. The Lipschitz

property (2.4.41) fails in a neighborhood of y = 0 and the assumptions of Theorem

2.4.2 are not fulfilled. The Cauchy Problem could have more than one solution.

In fact, a solution is the constant function y = 0. A second solution can be found

separating the variables: 2 = y′/
√
|y|. Integrating this equation on the interval

between 0 and x ∈ R we get

2x =

∫ x

0

y′(t)√
|y(t)|

dt =

∫ y(x)

0

1√
|z|
dz =

{
2
√
y(x), if y(x) > 0

−2
√
−y(x), if y(x) < 0.

In the change of variable z = y(t) we used the initial datum y(0) = 0. Then we find

the solution y ∈ C1(R)

y(x) =

{
x2 if x ≥ 0,

−x2 if x < 0.

On the other hand, for all real numbers α ≤ 0 ≤ β, the function

yαβ(x) =


(x− β)2 if x ≥ β,

0 if α < x < β,

−(x− α)2 if x ≤ α

is of class C1(R) and solves the Cauchy Problem (2.5.42). So there is a continuum of

solutions.

6. Maximal solutions

Let f ∈ C(Ω; Rn) be a function satisfying the local Lipschitz condition (2.4.41)

and let (x0, y0) ∈ Ω.

Proposition 2.6.1. Under the hypotheses of Theorem 2.4.2, let I1 and I2 be two

open intervals containing x0 and assume that y1 ∈ C1(I1; Rn) and y2 ∈ C1(I2; Rn) are

solutions to the Cauchy Problem (2.3.35). Then it is y1 = y2 on I1 ∩ I2.



22 2. EXISTENCE AND UNIQUENESS IN THE LIPSCHITZ CASE

Proof. The set A = {x ∈ I1 ∩ I2 : y1(x) = y2(x)} is relatively closed in I1 ∩ I2

because y1 and y2 are continuous. We show that A is also open in I1∩I2. Since I1∩I2

is connected it then follows that A = I1 ∩ I2.

Let x̄0 ∈ A and ȳ0 = y1(x̄0) = y2(x̄0). By Theorem 2.4.2 there exists δ > 0 such

that the Cauchy Problem {
y′ = f(x, y)

y(x̄0) = ȳ0
(2.6.43)

has a unique solution y ∈ C1(I; Rn) with I = [x̄0 − δ, x̄0 + δ]. For a small δ > 0 it is

I ⊂ I1 ∩ I2. It then follows that y = y1 = y2 in I, and thus I ⊂ A. �

Consider the family A of all pairs (J, yJ) where J ⊂ R is an open interval contain-

ing x0 and yJ ∈ C1(J ; Rn) is a solution to the Cauchy Problem (2.3.35). By Theorem

2.4.2, it is A 6= ∅.
Let I ⊂ R be the interval I =

⋃
J , where the union is over all intervals J such

that (J, yJ) ∈ A. Let y ∈ C1(I; Rn) be the function defined by

y(x) = yJ(x) if x ∈ J. (2.6.44)

The function y is well defined because by Proposition 2.6.1 it is yJ = yJ ′ on J ∩ J ′.
Moreover, y is a solution to the Cauchy Problem (2.3.35).

Definition 2.6.2 (Maximal solution). The function y defined in (2.6.44) is called

maximal solution to the Cauchy Problem (2.3.35).

Theorem 2.6.3 (Continuation criterion). Let I = (a0, b0) ⊂ R be an open interval

with −∞ < a0 < b0 < +∞, Ω = I × Rn, and f ∈ C(Ω; Rn) be a function satisfying

the local Lipschitz property in y. If y ∈ C1((a, b); Rn) is the maximal solution to the

Cauchy Problem (2.3.35), for some interval (a, b) ⊂ (a0, b0), then we have either

i) b = b0; or,

ii) lim
x↑b
|y(x)| = +∞.

There is an analogous statement for a.

Proof. Assume by contradiction that b < b0 and there exists a sequence xk ∈
(a, b), k ∈ N, such that

lim
k→+∞

xk = b and sup
k∈N
|y(xk)| ≤M0,

for some constant M0 < +∞. Letting ȳk = y(xk) ∈ Rn, possibly taking a subsequence

we can assume that

lim
k→+∞

ȳk = ȳ0

for some ȳ0 ∈ Rn.

We study the Cauchy Problem{
z′(x) = f(x, z(x))

z(xk) = ȳk.
(2.6.45)
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Fix a compact set H ⊂ Ω such that (b, ȳ0) ∈ int(H) and let

M = max
(x,y)∈H

|f(x, y)| < +∞.

For some ε > 0 and for some large enough k ∈ N, the compact set

K = [xk, 2b− xk]× {y ∈ Rn : |y − ȳk| ≤ ε}

is contained in H. Let us introduce the functional space

X =
{
z ∈ C([xk, 2b− xk]; Rn) : z(xk) = ȳk, ‖z − ȳk‖ ≤ ε

}
.

For large enough k ∈ N we also have 2(b− xk)M ≤ ε. Then, the integral operator

Tz(x) = ȳk +

∫ x

xk

f(t, z(t))dt

maps X into itself, i.e., T : X → X.

As in the proof of Theorem 2.4.2, some iterated of T is a contraction on X and

therefore by Theorem 2.1.3 there exists a unique solution z ∈ C1([xk, 2b− xk]; Rn) to

the Cauchy Problem (2.6.45).

On the other hand, the function y solves the same Cauchy Problem on the interval

[xk, b) and by uniqueness it is y = z on [xk, b). This shows that y can be continued as

a solution to the Cauchy Problem (2.3.35) beyond b. This contradicts the maximality

of y. �

7. Gronwall’s Lemma

Lemma 2.7.1. Let I ⊂ R be an interval, x0 ∈ I, and ϕ ∈ C(I) be a non negative

ϕ ≥ 0 continuous function. If there exist α, β ∈ R, α, β ≥ 0, such that

ϕ(x) ≤ α + β

∫ x

x0

ϕ(t) dt, for all x ∈ I with x ≥ x0, (2.7.46)

then

ϕ(x) ≤ αeβ(x−x0) for all x ∈ I with x ≥ x0. (2.7.47)

Proof. Let Φ : I → R be the function

Φ(x) = α + β

∫ x

x0

ϕ(t) dt.

It is Φ ∈ C1(I) and moreover, Φ′(x) = βϕ(x) for all x ∈ I, by the Fundamental

Theorem of Calculus. From (2.7.46) it follows that Φ′(x) ≤ βΦ(x) for x ∈ I, because

β ≥ 0. The function Ψ(x) = e−β(x−x0)Φ(x) satisfies

Ψ′(x) = −βe−β(x−x0)Φ(x) + e−β(x−x0)Φ′(x) = e−β(x−x0)
(
− βΦ(x) + Φ′(x)

)
≤ 0

and Ψ(x0) = Φ(x0) = α. It follows that Ψ(x) ≤ α for x ≥ x0, i.e.,

Φ(x) ≤ αeβ(x−x0)

for all x ∈ I with x ≥ x0. This implies (2.7.47), because ϕ(x) ≤ Φ(x), by (2.7.46). �
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8. Existence in the large

Theorem 2.8.1 (Global solutions). Let I = (a0, b0) with −∞ ≤ a0 < b0 ≤ +∞,

Ω = I ×Rn, and f ∈ C(Ω; Rn) be a continuous function satisfying the local Lipschitz

assumption (2.4.41). Assume that for any compact set K ⊂ I there exists a constant

C ≥ 0 such that

|f(x, y)| ≤ C(1 + |y|), for all x ∈ K and y ∈ Rn. (2.8.48)

Then the Cauchy Problem (2.3.35), with x0 ∈ I and y0 ∈ Rn, has a (unique) global

solution defined on I.

Proof. Let y ∈ C1(J ; Rn) be the maximal solution to the Cauchy Problem

(2.3.35), with J = (a, b) ⊂ I. Assume by contradiction that b < b0. By Theorem

2.6.3 it is

lim
x↑b
|y(x)| = +∞. (2.8.49)

Let K = [x0, b] and C > 0 such that (2.8.48) holds. From

y(x) = y0 +

∫ x

x0

f(t, y(t))dt, x ∈ J,

we get for x ∈ J with x ≥ x0

|y(x)| ≤ |y0|+ C

∫ x

x0

(1 + |y(t)|)dt ≤ |y0|+ C(b− x0) + C

∫ x

x0

|y(t)| dt.

By the Gronwall’s Lemma it follows that

|y(x)| ≤
{
|y0|+ C(b− x0)}eC(x−x0), x ∈ (x0, b),

and therefore (2.8.49) cannot hold. �



CHAPTER 3

Linear systems

1. Introduction

Denote by Mn(R), n ≥ 1, the vector space of n× n matrices with real entries. If

A = (aij)i,j=1,...,n ∈ Mn(R) and y ∈ Rn, we denote by Ay the standard matrix-vector

product where y is thought of as a column vector, and precisely

Ay =

 a11 · · · a1n
...

...

an1 · · · ann


 y1

...

yn

 =


∑n

j=1 a1jyj
...∑n

j=1 anjyj

 .

The matrix norm of A is

‖A‖ = max
|y|=1
|Ay|.

The matrix norm has the following properties:

i) |Ay| ≤ ‖A‖|y| for all y ∈ Rn;

ii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈Mn(R);

iii) ‖AB‖ ≤ ‖A‖ · ‖B‖ for all A,B ∈Mn(R).

Let I = (a, b) ⊂ R be an interval. A function A : I → Mn(R) is continuous if

A(x) = (aij(x))i,j=1,...,n for x ∈ I and aij ∈ C(I) for all i, j = 1, ..., n.

Let A : I → Mn(R) be continuous and let b : I → Rn be a continuous mapping.

A system of differential equations of the form

y′ = A(x)y + b(x) (3.1.50)

is called linear. The function f : I × Rn → Rn

f(x, y) = A(x)y + b(x).

has the following properties:

1) f ∈ C(I × Rn; Rn);

2) f has the local Lipschitz property in y;

3) for any compact set K ⊂ I there is a constant C > 0 such that

|f(x, y)| ≤ C(1 + |y|), for all x ∈ K, y ∈ Rn;

In fact, for any compact set K ⊂ I it is L = maxx∈K ‖A(x)‖ < +∞ and thus

|f(x, y1)− f(x, y2)| = |A(x)y1 − A(x)y2| = |A(x)(y1 − y2)|
≤ ‖A(x)‖|y1 − y2| ≤ L|y1 − y2|

25
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for all x ∈ K and y1, y2 ∈ Rn. This shows 2). Moreover, let M = maxx∈K |b(x)| and

C = max{L,M}. Then we have

|f(x, y)| ≤ |A(x)y|+ |b(x)| ≤ C(|y|+ 1), x ∈ K, y ∈ Rn.

By Theorem 2.4.2, the Cauchy problem{
y′ = A(x)y + b(x)

y(x0) = y0
(3.1.51)

has a unique local solution, for any x0 ∈ I and y0 ∈ Rn. On the other hand, by

Theorem 2.8.1 the maximal solution of the Cauchy Problem (3.1.51) is defined on the

whole interval I. In the following, by solution of the differential equation (3.1.50) we

mean a maximal solution.

2. Homogeneous equations

A differential equation of the form (3.1.50) with b = 0 is called homogeneous.

Theorem 3.2.1. Let A : I → Mn(R) be continuous. The set of solutions of the

differential equation

y′ = A(x)y, x ∈ I, (3.2.52)

is a real vector space of dimension n ∈ N.

Proof. Let S = {y ∈ C1(I; Rn) : y is a solution of (3.2.52)} be the set of solu-

tions. If y, z ∈ S, then αy + βz ∈ C1(I; Rn) is also a solution, for any α, β ∈ R:

(αy + βz)′ = αy′ + βz′ = αA(x)y + βA(x)z = A(x)(αy + βz), x ∈ I.

Then S is a linear subspace of C1(I; Rn).

We show that the dimension of S is n. For some fixed x0 ∈ I, define the mapping

T : S → Rn

T (y) = y(x0). (3.2.53)

T is linear: T (αy+βz) = αy(x0)+βz(x0) = αT (y)+βT (z). T is injective, i.e., T (y) =

0 implies y = 0. In fact, y solves equation (3.2.52) with initial condition y(x0) = 0.

The solution to this problem is unique and 0 is a solution. Then it is y = 0. Finally,

T is surjective because for any y0 ∈ Rn the differential equation (3.2.52) with initial

datum y(x0) = y0 has a solution y ∈ C1(I; Rn). �

Proposition 3.2.2. Let S ⊂ C1(I; Rn) be the space of solutions to (3.2.52) and

let y1, ..., yn ∈ S. The following are equivalent:

i) y1, ..., yn are a basis of S;

ii) det[y1(x0), ..., yn(x0)] 6= 0 for all x0 ∈ I;

iii) det[y1(x0), ..., yn(x0)] 6= 0 for some x0 ∈ I.

By [y1, ..., yn] we mean the n× n matrix with columns y1, ..., yn ∈ Rn.



2. HOMOGENEOUS EQUATIONS 27

Definition 3.2.3 (Fundamental matrix). If one of the three equivalent conditions

of Proposition 3.2.2 holds, then the functions y1, ..., yn are called a fundamental system

of solutions of the differential equation y′ = Ay. The matrix Y = [y1, ..., yn] is then

called a fundamental matrix for the equation.

Proof of Proposition 3.2.2. i)⇒ii) Let x0 ∈ I, and let T : S → Rn be the

isomorphism defined in (3.2.53). Then y1(x0) = Ty1, ..., yn(x0) = Tyn form a basis

for Rn. This is equivalent with ii).

iii)⇒i) Let x0 ∈ I be such that iii) holds and let T : S → Rn be the isomorphism

(3.2.53) relative to x0. Then T−1 : Rn → S is also an isomorphisms. It follows that

y1 = T−1(y1(x0)), ..., yn = T−1(yn)(x0) is a basis of S. �

Definition 3.2.4 (Wronski determinant). Let y1, ..., yn ∈ S be solutions to the

differential equations (3.2.52). The function w ∈ C1(I; Rn)

w(x) = det[y1(x), ..., yn(x)], x ∈ I, (3.2.54)

is called Wronski determinant of y1, ..., yn.

Theorem 3.2.5. The Wronski determinant w of y1, ..., yn ∈ S solves the differ-

ential equation

w′ = trA(x)w, x ∈ I, (3.2.55)

where trA(x) =
n∑
i=1

aii(x) is the trace of the matrix A(x) = (aij(x))i,j=1,...,n.

Proof. If y1, ..., yn are linearly dependent then w(x) = 0 for all x ∈ I and

equation (3.2.55) trivially holds. Assume that y1, ..., yn are linearly independent,

i.e., w(x) 6= 0 for all x ∈ I. Denote by Y : I → Mn(R) the fundamental matrix

having as columns the solutions y1, ..., yn. Letting yj = (y1j, ..., ynj)
T , j = 1, ..., n, we

have

Y (x) = (yij(x))i,j=1,...,n, x ∈ I.
We check equation (3.2.55) at the point x0 ∈ I, i.e., we show that w′(x0) = trA(x0)w(x0).

To this aim, let zj ∈ C1(I; Rn) be the solution to the Cauchy problem{
z′ = A(x)z

z(x0) = ej,
(3.2.56)

where ej = (0, ..., 0, 1, 0, ..., 0) with 1 at the jth position. The functions z1, ..., zn are a

basis for the space if solutions to the differential equation z′ = Az. Letting, as above,

Z(x) = (zij(x))i,j=1,...,n, x ∈ I,

there exists an invertible matrix C ∈ GLn(R) such that

Y (x) = CZ(x), x ∈ I.

We show that the function v(x) = detZ(x) solves v′(x0) = trA(x0). In fact, we have

v′(x) =
d

dx

∑
σ∈Sn

(−1)sgnσ

n∏
i=1

ziσ(i)(x) =
∑
σ∈Sn

(−1)sgnσ

n∑
j=1

z′jσ(j)(x)
∏
i 6=j

ziσ(i)(x),
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where ∏
i 6=j

ziσ(i)(x0) = 0 unless σ = Id,

and

z′jj(x0) = (A(x0)zj(x0))j =
n∑
k=1

ajk(x0)zkj(x0) =
n∑
k=1

ajk(x0)δkj(x0) = ajj(x0).

Then it is v′(x0) = trA(x0). Now the general result follows on differentiating the

identity

w = detY = det(CZ) = detC detZ = detCv.

In fact,

w′(x0) = detCv′(x0) = detC trA(x0) = trA(x0)w(x0),

because v(x0) = 1. �

3. Inhomogeneous equations

Consider an inhomogeneous linear differential equation of the form

y′ = A(x)y + b(x), (3.3.57)

with A ∈ C(I;Mn(R)) and b ∈ C(I; Rn) for some open interval I ⊂ R.

Let Y be a fundamental matrix for the homogeneous equation y′ = A(x)y,

i.e., Y ′ = AY and detY 6= 0 on I. Then, any solution y to this equation is of

the form

y(x) = Y (x)c, x ∈ I, (3.3.58)

for some (column) vector c ∈ Rn. We look for a solution to (3.3.57) of the form

(3.3.58) with c ∈ C1(I; Rn). This method is called “variation of constants”. In this

case,

y′ = Y ′c+ Y c′ = AY c+ Y c′ = Ay + Y c′.

Plugging this identity into (3.3.57), we get Y c′ = b. Being Y invertible, by an

integration over an interval [x0, x] we find

c(x) = c0 +

∫ x

x0

Y (t)−1b(t)dt,

for some c0 ∈ Rn. Thus we find the solution

y(x) = Y (x)
(
c0 +

∫ x

x0

Y (t)−1b(t)dt
)
. (3.3.59)

Theorem 3.3.1. Let Y be a fundamental matrix for the homogeneous equation

y′ = Ay. For any c0 ∈ Rn the function y in (3.3.59) is a solution to (3.3.57).

Moreover, any solution to (3.3.57) is of the form (3.3.59) for some c0 ∈ Rn.
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Proof. The first statement is an easy computation. Let y be the function (3.3.59)

and let z ∈ C1(I; Rn) be a solution to (3.3.57). Then

(z − y)′ = z′ − y′ = Az + b− (Ay + b) = A(z − y).

It follows that z − y = Y c1 for some c1 ∈ Rn and the claim follows. �

4. Exponential of a matrix

For a matrix A ∈Mn(C) define the exponential matrix eA ∈Mn(C) on letting

eA =
+∞∑
k=0

Ak

k!
.

In order to prove that the series converges, we show that the sequence of matrices

(Bk)k∈N ⊂Mn(C)

Bk =
k∑

h=0

Ah

h!
, k ∈ N,

is a Cauchy sequence in the norm ‖ · ‖. In fact, for any ε > 0 there exists N ∈ N such

that for all k ≥ N and for all p ∈ N we have

‖Bk+p −Bk‖ =
∥∥∥ k+p∑
h=k+1

Ah

h!

∥∥∥ ≤ k+p∑
h=k+1

‖A‖h

h!
≤ ε.

Notice that the normed space (Mn(C), ‖ · ‖) is complete.

We list some properties of the exponential matrix.

4.1. Exponential of the sum. If A,B ∈Mn(C) and AB = BA, then

eA+B = eAeB. (3.4.60)

The proof of this fact is left as an exercise.

4.2. Diagonal matrix. Let λ1, ..., λn ∈ C. The exponential matrix of a diagonal

matrix A ∈Mn(C) of the form

A =

 λ1 0
. . .

0 λn

 is eA =

 eλ1 0
. . .

0 eλn

 .

This follows directly from the formula for the exponential.

4.3. Block matrix. Let Aj ∈Mkj(C) for j = 1, ..., p, with k1 + ...+kp = n. The

exponential matrix of a block matrix A ∈Mn(C) of the form

A =

 A1 0
. . .

0 Ap

 is eA =

 eA1 0
. . .

0 eAp

 .

This also follows directly from the formula for the exponential.
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4.4. Fundamental Jordan block. Consider a matrix A ∈Mn(C) of the form

A =


λ 1 0

λ
. . .
. . . 1

0 λ

 , A = λIn + J, with J =


0 1 0

0
. . .
. . . 1

0 0

 ,

and λ ∈ C. The matrix A is called fundamental Jordan block of order n relative to

λ ∈ C. Later, we shall use the notation A = Jn(λ).

We show that for any t ∈ R we have

etA = eλt



1 t t2/2! . . . tn−1/(n− 1)!

1 t
...

1
. . . t2/2!
. . . t

0 1

 . (3.4.61)

The matrix Jk = J . . . J k-times, k = 0, 1, ..., n− 1, has 1 on the (k + 1)-th left-right

downwards diagonal and 0 otherwise. Moreover, it is Jk = 0 for k ≥ n. Then we

have

+∞∑
k=0

tkAk

k!
=

+∞∑
k=0

tk

k!

k∑
h=0

(
k

h

)
λhJk−h

=
+∞∑
h=0

λh
h+n−1∑
k=h

tk

k!

(
k

h

)
Jk−h

=
+∞∑
h=0

λhth

h!

n−1∑
p=0

tp

p!
Jp.

4.5. Conjugation and exponentiation. Let A,B ∈ Mn(C) and C ∈ GLn(C)

be matrices such that A = CBC−1. Then we have

eA = CeBC−1.

In fact

eA =
+∞∑
k=0

Ak

k!
=

+∞∑
k=0

(CBC−1)k

k!
=

+∞∑
k=0

CBkC−1

k!
= CeBC−1.

5. Linear systems with constant coefficients

Let A ∈Mn(R) be an n× n matrix and consider the differential equation

y′ = Ay, x ∈ R. (3.5.62)

This is a linear, homogeneous system of differential equations with constant coeffi-

cients. The solutions are defined on R and the set of solutions is a real vector space
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of dimension n. For some x0 ∈ R, fix the initial data y(x0) = y0 ∈ Rn. The solu-

tion to the differential equation with this initial data is a fixed point of the mapping

T : X → X

Ty(x) = y0 +

∫ x

x0

Ay(t) dt = y0 + A

∫ x

x0

y(t) dt, x ∈ R, (3.5.63)

where X = {y ∈ C(R; Rn) : y(x0) = y0}. We can interchange integral and A, because

A has constant coefficients.

The fixed point is unique and can be obtained as the limit of T ky for k → +∞,

for any y ∈ X. In particular, we can choose the constant function y = y0. In this

case we have

Ty(x) = y0 + (x− x0)Ay0,

and, in general, we find for any k ∈ N

T ky(x) =
k∑

h=0

(x− x0)h

h!
Ahy0.

This formula can be checked by induction. It holds for k = 0, 1, with the convention

A0 = In, the identity matrix. Assume it holds for k. Then we have

T k+1y(x) = T (T ky)(x) = y0 + A

∫ x

x0

T ky(t) dt

= y0 + A
k∑

h=0

Ahy0

∫ x

x0

(t− x0)h

h!
dt

= y0 +
k∑

h=0

(x− x0)h+1

(h+ 1)!
Ah+1y0 =

k+1∑
h=0

(x− x0)h

h!
Ahy0.

For any compact set K ⊂ R, the sequence of matrices

Bk(x) =
k∑

h=0

(x− x0)h

h!
Ah, k ∈ N,

converges uniformly for x ∈ K. From the theory of power series, it follows that the

function ϕ : R→Mn(R)

ϕ(x) = e(x−x0)A =
+∞∑
h=0

(x− x0)h

h!
Ah

is of class C∞, and in fact it is analytic.

Proposition 3.5.1. Let A ∈ Mn(R). For any x0 ∈ R and y0 ∈ Rn, the function

y ∈ C∞(R; Rn)

y(x) = e(x−x0)Ay0

is the unique solution to the Cauchy Problem y′ = Ay and y(x0) = y0.
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Proof. The function y is the unique fixed point of the mapping T in (3.5.63).

Alternatively, the function y can be differentiated term by term, because the series

of the derivatives converges uniformly on compact sets. Then we find

y′(x) =
+∞∑
h=1

(x− x0)h−1

(h− 1)!
Ahy0 = A

+∞∑
h=1

(x− x0)h−1

(h− 1)!
Ah−1y0 = Ay(x), x ∈ R.

Moreover, y(x0) = y0. �

Definition 3.5.2 (Jordan block). A matrix A ∈Mn(C) of the form

A =

 Jk1(λ) 0
. . .

0 Jkp(λ)

 ,

where λ ∈ C, k1 + ...+ kp = n, and Jk1(λ), ..., Jkp(λ) are fundamental Jordan blocks,

is called Jordan block of orders k1, ..., kp relative to λ ∈ C. We denote A = Jk1...kp(λ).

The exponential of a Jordan block can be computed using the rules of Section 4.

By known results from Linear Algebra, for any matrix A ∈ Mn(R) with complex

eigenvalues λ1, ..., λm ∈ C there exists a matrix C ∈ GLn(C) such that A = CBC−1,

where B is the Jordan normal form of A, i.e.,

B =

 Jk1
1 ...k

1
p1

(λ1) 0
. . .

0 Jkm1 ...kmpm (λm)

 , (3.5.64)

with k1
1 + ... + k1

p1
+ ... + km1 + ... + kmpm = n and Jk1

1 ...k
1
p1

(λ1), ..., Jkm1 ...kmpm (λm) are

Jordan blocks relative to the eigenvalues λ1, ..., λm.

Proposition 3.5.3. Let A ∈ Mn(R), A = CBC−1 where C ∈ GLn(C) and B is

as in (3.5.64). A fundamental system of solutions of the homogeneous linear equation

y′ = Ay is given by the columns of the (real) matrix

exA = C

 e
xJ
k11...k

1
p1

(λ1)
0

. . .

0 e
xJkm1 ...kmpm

(λm)

C−1, x ∈ R.

Proof. This follows from Proposition 3.5.1 and by the computation rules of

Section 4. �

6. Higher order linear equations

Let f, ak ∈ C(I), k = 0, 1, ..., n − 1, be continuous functions in some interval

I ⊂ R. We transform the linear n-th order differential equation

y(n) + an−1(x)y(n−1) + ...+ a1(x)y′ + a0(x)y = f(x), x ∈ I, (3.6.65)
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into a linear system. Consider the mapping T : Cn(I)→ C1(I; Rn)

Ty =


y

y′

...

y(n−1)

 .

The vector of functions z = Ty satisfies the system of equations
z′i = zi+1, i = 1, ..., n− 1,

z′n = f(x)−
n−1∑
k=0

ak(x)zk+1,

which can be written in the following way

z′ = Az + F, with A =


0 1

0 1

0
. . .
. . . 1

−a0 −a1 . . . −an−1

 and F =


0
...

0

f

 .

(3.6.66)

Proposition 3.6.1. Let y ∈ Cn(I) and z = Ty ∈ C1(I; Rn). Then y solves

equation (3.6.65) if and only if z solves system (3.6.66). Moreover, the set of solutions

y ∈ Cn(I) of equation (3.6.65) with f = 0 is a real vector space of dimension n.

The proof of this proposition is straightforward.

7. Higher order linear equations with constant coefficients

We solve the differential equation (3.6.65) in the homogeneous case f = 0 and

with constant coefficients a0, a1, ..., ak ∈ R. Equivalently, we solve the linear system

z′ = Az, with A =


0 1

0 1

0
. . .
. . . 1

−a0 −a1 . . . −an−1

 ∈Mn(R). (3.7.67)

We establish some algebraic properties of the matrix A. The characteristic polynomial

in the variable λ ∈ C of the matrix A is

p(λ) = det(A− λI) = (−1)n
n∑
k=0

akλ
k,



34 3. LINEAR SYSTEMS

with an = 1. In fact, we can develop the determinant in the last row:

p(λ) = det


−λ 1

−λ 1

−λ . . .
. . . 1

−a0 −a1 . . . −an−1 − λ


= −(−1)n+1a0 − (−1)n+2a1(−λ)1 − ...− (−1)2n(an−1 + λ)(−λ)n−1

= (−1)n
(
a0 + a1λ+ ...+ (an−1 + λ)λn−1

)
.

The geometric multiplicity (i.e., the dimension of the eigenspace) of any eigenvalue

λ ∈ C of A is 1 and a corresponding eigenvector is

vλ =


1

λ
...

λn−1

 . (3.7.68)

Indeed, let v = (v1, ..., vn)t be an eigenvector of A, Av = λv. If v1 = 0 then it follows

that v = 0. We can then assume v1 = 1 and from vi+1 = λvi we deduce that v = vλ
as in (3.7.68).

A Jordan chain of vectors v0, v1, ..., vr−1 relative to the eigenvector v with eigen-

value λ of algebraic multiplicity r ≥ 1 is defined through the recursive relations v0 = v

and (A − λ)vi+1 = vi, i = 0, 1, ..., r − 2. Jordan chains will be used to transform A

into its Jordan normal form.

In our case, a Jordan chain relative to the eigenvalue λ ∈ C of algebraic multi-

plicity rλ is given by the vectors

vλ,i =
1

i!
Di
λvλ, i = 0, 1, ..., rλ − 1,

where Di
λ is the i-th derivative operator w.r.t. λ. Explicitly, we have

vλ,0 =


1

λ

λ2

...

λn−1

 , vλ,1 =


0

1

2λ
...

(n− 1)λn−2

 , vλ,2 =


0

0

1
...

(n−1)(n−2)
2

λn−3

 , etc.

(3.7.69)

We check that (A − λ)vλ,i+1 = vλ,i for all i = 0, 1, ..., rλ − 1. Let us introduce the

following notation:

vλ,i = (v1
i , ..., v

n
i )t, vji =

1

i!
Diλj−1.

Then we have to check that

vj+1
i+1 − λv

j
i+1 = vji , j = 1, ..., n− 1, −

n−1∑
k=0

akv
k+1
i+1 − λvni+1 = vni , i+ 1 ≤ rλ − 1.
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The last equation is equivalent with

0 =
n−1∑
k=0

akD
i+1λk + λDi+1λn−1 + (i+ 1)Diλn−1

=
n−1∑
k=0

akD
i+1λk +Di+1λn

=
n∑
k=0

akD
i+1λk = (−1)nDi+1p(λ).

The equation Di+1p(λ) = 0 is satisfied as soon as i+1 ≤ rλ−1, because it is p(λ) = 0

with (algebraic) multiplicity rλ.

Now we determine the Jordan normal form of the matrix A. Let λ1, ..., λp ∈ C be

the eigenvalues of A and vλ1 , ..., vλp the corresponding eigenvectors. Denote by rλj the

algebraic multiplicity of λj, for j = 1, ..., p. Finally, let vkλj with k = 0, 1, ..., rλj − 1

be a Jordan chain relative to vλj = v0
λj

.

Let C ∈ GLn(C) be the matrix

C = [v0
λ1
. . . v

rλ1
−1

λ1
. . . v0

λp . . . v
rλp−1

λp
].

Then A has the Jordan normal form

A = C

Jrλ1
(λ1)

. . .

Jrλp (λp)

C−1,

where Jrλ1
(λ1),..., Jrλp (λp) are fundamental Jordan blocks. The exponential of A is

then

exA = C

e
xJrλ1

(λ1)

. . .

e
xJrλp

(λp)

C−1,

where the exponential of a fundamental Jordan block is computed in (3.4.61).

The column of the matrix exAC are a fundamental system of complex valued

solutions for the system of equations z′ = Az. The n functions appearing in the first

row of the matrix exAC are thus n linearly independent complex valued solutions of

equation (3.6.65) with f = 0. Then the following functions are a system of n linearly

independent complex valued solution to the equation

eλ1x, xeλ1x, ..., xrλ1
−1eλ1x, . . . , eλpx, xeλpx, ..., xrλp−1eλpx. (3.7.70)

In order to get real valued solutions notice that λ ∈ C is an eigenvalue for A if and

only if λ̄ is an eigenvalue, because A has real coefficients. Complex valued solutions

are thus coupled, and by linear combinations we obtain real valued solutions.

Theorem 3.7.1. Let ak ∈ R, k = 0, 1, ..., n − 1, and an = 1. Let µ1, ..., µq ∈ R
and λ1 = α1 + iβ1, ..., λp = αp + iβp, λ̄1, ..., λ̄p ∈ C \R be the real respectively complex
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solutions of the equation
n∑
k=0

akλ
k = 0.

Let rµi ≥ 1 be the algebraic multiplicity of µi, and let rλj ≥ 1 be the algebraic multi-

plicity of λj (and so also of λ̄j). A basis of solutions to the differential equation

y(n) + an−1y
(n−1) + ...+ a1y

′ + a0y = 0, x ∈ R, (3.7.71)

is given by the functions

eµ1x, xeµ1x, . . . , xrµ1−1eµ1x

...

eµqx, xeµqx, . . . , xrµq−1eµqx

along with
eα1x sin(β1x), xeα1x sin(β1x), . . . , xrλ1

−1eα1x sin(β1x)

eα1x cos(β1x), xeα1x cos(β1x), . . . , xrλ1
−1eα1x cos(β1x)

...

eαpx sin(βpx), xeαpx sin(βpx), . . . , xrλp−1eαpx sin(βpx)

eαpx cos(βpx), xeαpx cos(βpx), . . . , xrλp−1eαpx cos(βpx).
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Regularity of solutions

1. Higher differentiability of solutions

Proposition 4.1.1. Let Ω ⊂ Rn+1 be an open set and let f : Ω → Rn be locally

Lipschitz continuous, i.e., for any compact set K ⊂ Ω there exists a constant L > 0

such that for all (x, y), (x̄, ȳ) ∈ K

|f(x, y)− f(x̄, ȳ)| ≤ L(|x− x̄|+ |y − ȳ|). (4.1.1)

Then any solution y ∈ C1(I; Rn), with I ⊂ R compact interval, of the differential

equation y′ = f(x, y) is in C1,1(I; Rn), i.e., y′ exists and is Lipschitz continuous on

I.

Proof. The graph of y is a compact subset of Ω. Then we have

M = max
x∈I
|f(x, y(x))| < +∞.

It follows the Lipschitz estimate for y

|y(x)− y(x̄)| ≤
∣∣∣∣∫ x

x̄

f(t, y(t))dt

∣∣∣∣ ≤M |x− x̄|,

for all x, x̄ ∈ I. Using (4.1.1) we obtain

|y′(x)− y′(x̄)| ≤ |f(x, y(x))− f(x̄, y(x̄))|
≤ L(|x− x̄|+ |y(x)− y(x̄)|)
≤ L(1 +M)|x− x̄|,

for all x, x̄ ∈ I. �

Theorem 4.1.2. If f ∈ Ck(Ω; Rn), k ≥ 0, then any solution of the differential

equation y′ = f(x, y) is of class Ck+1.

Proof. The proof is by induction, the case k = 0 being clear. If f ∈ Ck(Ω)

then y is at least of class Ck, by the inductive assumption. Then the function x 7→
f(x, y(x)) = y′(x) is also of class Ck. The function y is then of class Ck+1. �

2. Analytic solutions

Theorem 4.2.1. Let Ω ⊂ Rn+1 be an open set. If f ∈ C∞(Ω; Rn) is a real analytic

function then any solution of the differential equation y′ = f(x, y) is also real analytic.

37
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Proof. Without loss of generality we assume that (0, 0) ∈ Ω. We show that a

solution y ∈ C∞([−δ, δ]; Rn) to the differential equation y′ = f(x, y) with y(0) = 0 is

real analytic, provided that δ > 0 is small enough.

Because f = (f1, ..., fn) is analytic (i.e., each component is analytic), there exist

η > 0 and γ > 0 such that

f(x, y) =
+∞∑
m=0

∑
p+|q|=m

∂px∂
q
yf(0)

p!q!
xpyq, for |x| < 2η, |y| < 2γ. (4.2.2)

We are using the following notation: p ∈ N0, q = (q1, ..., qn) ∈ Nn
0 , |q| = q1 + ...+ qn,

q! = q1! . . . qn!, ∂qy = ∂q1y1 . . . ∂
qn
yn , and yq = yq11 . . . yqnn .

We have to prove that there exists δ > 0 such that for |x| < δ

y(x) =
+∞∑
k=1

ckx
k, with ck =

y(k)(0)

k!
∈ Rn, k ∈ N. (4.2.3)

The coefficients ck ∈ Rn can be recursively determined by f and its derivatives at the

origin, e.g. c0, c1, and c2 are given by

c0 = y(0) = 0,

c1 = y′(0) = f(0),

c2 =
1

2!
y′′(0) =

1

2!

(
fx(0) + fy(0)y′(0)

)
=

1

2!

(
fx(0) + fy(0)f(0)

)
, etc.

(4.2.4)

Here, fy(0)f(0) is a matrix-vector multiplication.

Assume that the series

ϕ(x) =
+∞∑
k=1

ckx
k (4.2.5)

converges for |x| < δ. Then ϕ is an analytic function in the interval (−δ, δ). The

function ψ(x) = ϕ′(x) − f(x, ϕ(x)) is thus also analytic and moreover ψ(k)(0) = 0

for any k ∈ N0. This can be recursively proved using (4.2.4). It follows that ψ = 0,

i.e., ϕ is a solution of the differential equation y′ = f(x, y) with ϕ(0) = 0. By the

uniqueness of the solution to the Cauchy problem it follows that ϕ = y.

In order to prove the theorem, it is enough to show that the series (4.2.5) converges

in (−δ, δ) for some δ > 0. To this aim, assume there exists an analytic function

F ∈ C∞(U ; R), where U ⊂ Rn+1 is a neighborhood of 0, such that

|∂px∂qyfi(0)| ≤ ∂px∂
q
yF (0) for all p ∈ N0 and q ∈ Nn

0 , i = 1, ..., n. (4.2.6)

Moreover, assume that the solution Y = (Y1, ..., Yn) to the Cauchy Problem{
Y ′i (x) = F (x, Y (x)), i = 1, ..., n,

Y (0) = 0
(4.2.7)

is analytic in (−δ, δ), i.e.,

Yi(x) =
+∞∑
k=1

Y
(k)
i (0)

k!
xk, |x| < δ, i = 1, ..., n. (4.2.8)
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From (4.2.4) and (4.2.6) it follows that |y(k)
i (0)| ≤ Y (k)(0) for all k ∈ N0. The

convergence of the series (4.2.8) implies the absolute convergence of the series (4.2.5)

in the interval (−δ, δ).
We look for a function F satisfying (4.2.6). Because the series (4.2.2) converges

absolutely for |x| ≤ η and |y| ≤ γ, there is M > 0 such that

sup
|x|≤η,|y|≤γ

∣∣∣∂px∂qyf(0)

p!q!
xpyq

∣∣∣ ≤M for all p ∈ N0, q ∈ Nn
0 ,

and then

|∂px∂qyf(0)| ≤ p!q!

ηpγ|q|
M, for all p ∈ N0, q ∈ Nn

0 .

The function

F (x, y) =
M(

1− x

η

)(
1− y1

γ

)
. . .
(

1− yn
γ

) = M
∑

p∈N0,q∈Nn0

(x
η

)p(y
γ

)q
is analytic in |x| < η and |y| < γ and moreover ∂px∂

q
yF (0) = p!q!

ηpγ|q|
M . In other words,

F satisfies (4.2.6). The solution of the Cauchy Problem (4.2.7) can be computed with

the Ansatz Y1 = ... = Yn = Z, i.e.,

Z ′ =
M(

1− x

η

)(
1− Z

γ

)n , Z(0) = 0.

On separating the variables, we find

Z(x) = γ

(
1− n+1

√
1 +

(n+ 1)Mη

γ
log
(

1− x

η

))
.

The function Z is analytic in an interval (−δ, δ) for some δ > 0. �

3. Continuity w.r.t. the initial data

Let Ω ⊂ Rn+1 be an open set and f ∈ C(Ω; Rn) be a function which is locally

Lipschitz in y. For (ξ, η) ∈ Ω consider the Cauchy Problem{
y′(x) = f(x, y(x))

y(ξ) = η.
(4.3.9)

The problem has a unique solution in some interval Iξη containing ξ. We denote this

solution by yξη ∈ C1(Iξη; Rn). Now fix a point (x0, y0) ∈ Ω. For some δ > 0, the

solution yx0y0 is defined on the interval I = [x0 − δ, x0 + δ]. If (ξ, η) ∈ Ω is a point

such that |ξ − x0|+ |ξ − y0| < r for some small enough r > 0, the solution yξη is also

defined on the same interval I = [x0− δ, x0 + δ]. I.e., we can assume that Iξ,η = I for

all such ξ and η, and for some small enough δ > 0.
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Theorem 4.3.1. With the notation and the assumptions stated above, let yξη ∈
C1(I; Rn) be the solution to the Cauchy Problem (4.3.9) and let yx0y0 ∈ C1(I; Rn) be

the solution with initial data y(x0) = y0. Then we have

lim
ξ→x0,η→y0

max
x∈I
|yξη(x)− yx0y0(x)| = 0. (4.3.10)

Proof. There is h > 0 such that |yξη(x) − y0| ≤ h for all x ∈ I and for all

(ξ, η) ∈ Ω such that |ξ−x0|+ |η− y0| < r, for some small r > 0. We can also assume

that K = I × {y ∈ Rn : |y − y0| ≤ h} ⊂ Ω. Let

M = max
(x,y)∈K

|f(x, y)|,

and let L a Lipschitz constant for f relative to K, as in (2.4.41). Then we have

yξη(x)− yx0y0(x) = η − y0 +

∫ x

ξ

f(t, yξη(t))dt−
∫ x

x0

f(t, yx0y0(t))dt

= η − y0 +

∫ x0

ξ

f(t, yξη(t))dt+

∫ x

x0

{f(t, yξη(t))− f(t, yx0y0(t))}dt,

and by the triangle inequality (with ξ ≤ x0 ≤ x) we get

|yξη(x)− yx0y0(x)| ≤ |η − y0|+
∫ x0

ξ

|f(t, yξη(t))|dt+

∫ x

x0

|f(t, yξη(t))− f(t, yx0y0(t))|dt

≤ |η − y0|+M |ξ − x0|+ L

∫ x

x0

|yξη(t)− yx0y0(t)|dt.

Now Gronwall’s Lemma implies

|yξη(x)− yx0y0(x)| ≤ (|η − y0|+M |ξ − x0|)eL|x−x0|,

for all x ∈ I, and the uniform convergence follows. �

Remark 4.3.2. Let I = [x0 − δ, x0 + δ] and B =
{
y ∈ Rn : |y − y0| ≤ δ

}
. Define

the mapping Φ : I × I × B → Rn on letting Φ(x, ξ, η) = yξη(x). We show that Φ is

continuous. In fact, fix (x0, ξ0, η0) ∈ I × I ×B and let ε > 0. Then we have

|Φ(x, ξ, η)− Φ(x0, ξ0, η0)| ≤ |Φ(x, ξ, η)− Φ(x, ξ0, η0)|+ |Φ(x, ξ0, η0)− Φ(x0, ξ0, η0)|,

where |Φ(x, ξ, η)−Φ(x, ξ0, η0)| ≤ ε/2 for all ξ, η such that |ξ−ξ0| ≤ δ1 and |η−η0| ≤ δ1.

Here, δ1 > 0 is a suitable number which does not depend on x ∈ I, by Theorem 4.3.1.

Moreover, we have |Φ(x, ξ0, η0)−Φ(x0, ξ0, η0)| ≤ ε/2 as soon as |x−x0| ≤ δ2, because

x 7→ Φ(x, ξ0, η0) is continuous.

4. Higher regularity

Let Ω ⊂ Rn+1 be an open set and let f ∈ C(Ω; Rn) be a function such that

∂f(x, y)

∂yi
∈ C(Ω; Rn), i = 1, ..., n. (4.4.11)
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In particular, f is locally Lipschitz continuous in y. For a given (ξ, η) ∈ Ω let yξη be

the (unique) solution of the Cauchy Problem (4.3.9). We assume that yξη is defined

in the interval I = [x0−δ, x0 +δ], for some x0 ∈ R and δ > 0 independent from (ξ, η).

In this section, we show that the mapping (ξ, η) 7→ yξη(x) is of class C1, under the

assumption (4.4.11).

Before stating the result, we compute the derivatives of yξη formally. First, we

have

∂

∂x

∂

∂ξ
yξη(x) =

∂

∂ξ

∂

∂x
yξη(x) =

∂

∂ξ
f(x, yξη(x)) =

∂f

∂y
(x, yξη(x))

∂

∂ξ
yξη(x).

In this formal computation, we also assumed that we can interchange ∂
∂x

and ∂
∂ξ

.

Now we compute,
∂yξη
∂ξ

(x) at the point x = ξ. From the fact that yξη(ξ) = η for

all ξ ∈ I, it follows that the derivative of the function ξ 7→ yξη(ξ) vanishes. Thus, by

the chain rule

0 =
∂yξη
∂ξ

(ξ) +
∂yξη(x)

∂x

∣∣∣∣
x=ξ

=
∂yξη
∂ξ

(ξ) + f(ξ, yξη(ξ)).

In other words, the function ψξη : I → Rn

ψξη(x) =
∂yξη(x)

∂ξ
, x ∈ I,

is the solution of the linear Cauchy Problem{
ψ′(x) = Fξη(x)ψ(x)

ψ(ξ) = −f(ξ, yξη(ξ)),
(4.4.12)

where Fξη ∈ C(I;Mn(R)) is the matrix valued function

Fξη(x) =
∂f

∂y
(x, yξη(x)). (4.4.13)

Problem (4.4.12) has (always) a unique solution.

Now we compute formally the derivatives of yξη w.r.t. η. For i = 1, ..., n we have

∂

∂x

∂

∂ηi
yξη(x) =

∂

∂ηi

∂

∂x
yξη(x) =

∂

∂ηi
f(x, yξη(x)) =

∂f

∂y
(x, yξη(x))

∂

∂ηi
yξη(x).

Moreover, from yξη(ξ) = η for all ξ ∈ I it follows that

∂yξη
∂ηi

(ξ) = ei = (0, ..., 1, ..., 0).

In other words, the function ϕξη,i : I → Rn

ϕξη,i(x) =
∂yξη
∂ηi

(x)

is the solution of the linear Cauchy Problem{
ϕ′i(x) = Fξη(x)ϕi(x), x ∈ I,
ϕi(ξ) = ei.

(4.4.14)
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Theorem 4.4.1. Let Ω ⊂ Rn+1 be an open set, (x0, y0) ∈ Ω and f ∈ C(Ω; Rn) be

a function satisfying (4.4.11). For δ > 0 let I = [x0 − δ, x0 + δ] and B = {y ∈ Rn :

|y − y0| ≤ δ}. Then there exists δ > 0 such that the mapping Φ : I × I ×B → Rn

Φ(x, ξ, η) = yξη(x),

where yξη ∈ C1(I; Rn) is the solution of the Cauchy Problem (4.3.9), is of class

C1(I × I ×B; Rn). Moreover,

∂Φ(x, ξ, η)

∂ξ
= ψξη(x) and

∂Φ(x, ξ, η)

∂ηi
= ϕξη,i(x), i = 1, ..., n,

where ψξη and ϕξη,i are the solutions of the Cauchy Problems (4.4.12) and (4.4.14).

Proof. If δ > 0 is small enough, then the map Φ is well defined and it is contin-

uous, by Theorem 4.3.1 and Remark 4.3.2.

We prove that Φ is continuously differentiable in η. It is enough to consider the

case n = 1, i.e., η is one dimensional. For x, ξ ∈ I, η ∈ B and h ∈ R with 0 < |h| ≤ h0

small enough

yξ,η+h(x)− yξη(x)

h
=

1

h

[
η + h+

∫ x

ξ

f(t, yξ,η+h(t)) dt− η −
∫ x

ξ

f(t, yξη(t)) dt

]
= 1 +

∫ x

ξ

f(t, yξ,η+h(t))− f(t, yξη(t))

h
dt

= 1 +

∫ x

ξ

yξ,η+h(t)− yξη(t)
h

∂f

∂y
(t, ȳh(t)) dt.

(4.4.15)

In the last line, we used the mean value theorem, providing us some ȳh(t) ∈ (yξ,η+h(t), yξη(t))

such that

f(t, yξ,η+h(t))− f(t, yξη(t)) =
(
yξ,η+h(t)− yξη(t)

)∂f
∂y

(t, ȳh(t)).

Let ϕ ∈ C1(I; R) be the solution of the Cauchy Problem (4.4.14). We drop the

index i, because n = 1. We also drop the dependence on ξ and η. The initial data

reads ϕ(ξ) = 1. Then ϕ solves the integral equation

ϕ(x) = 1 +

∫ x

ξ

ϕ(t)
∂f

∂y
(t, yξη(t)) dt. (4.4.16)

Subtracting (4.4.16) from (4.4.15) we obtain

R(x, h) : =
yξ,η+h(x)− yξη(x)

h
− ϕ(x)

=

∫ x

ξ

(
yξ,η+h(t)− yξη(t)

h

∂f

∂y
(t, ȳh(t))− ϕ(t)

∂f

∂y
(t, yξη(t))

)
dt,

(4.4.17)

where we dropped the reference to ξ and η.
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We claim that there exists a constant C > 0 such that for any ε > 0 there exists

h̄ > 0 such that |R(x, h)| ≤ Cε for all 0 < |h| ≤ h̄ and for all x ∈ I. The constant C

does not depend on x, ξ, η. This will show that

lim
h→0

yξ,η+h(x)− yξη(x)

h
= ϕ(x), (4.4.18)

with convergence uniform in x, ξ, η. The uniform convergence implies in particular

that
∂Φ(x, ξ, η)

∂η
exists and is continuous.

Indeed, adding and subtracting ϕ(t)∂f
∂y

(t, ȳh(t)) inside the integral in the right

hand side of (4.4.17), we get

R(x, h) =

∫ x

ξ

∂f

∂y
(t, ȳh(t))R(t, h) dt+

∫ x

ξ

ϕ(t)

(
∂f

∂y
(t, ȳh(t))−

∂f

∂y
(t, yξη(t))

)
dt.

There exists a constant M > 0, which is uniform in a neighborhood of (ξ, η), such

that

sup
t∈I
|ϕ(t)| ≤M and sup

|h|≤h0,t∈I

∣∣∣∂f
∂y

(t, ȳh(t))
∣∣∣ ≤M.

Moreover, for ∂f/∂y is continuous in Ω, it is uniformly continuous on compact subsets

of Ω. Thus there exists σ > 0 depending on ε such that∣∣∣∂f
∂y

(t, ȳh(t))−
∂f

∂y
(t, yξη(t))

∣∣∣ ≤ ε

as soon as |yξ,η+h(t)− yξη(t)| ≤ σ. By Theorem 4.3.1, this estimate holds for all t ∈ I
as soon as |h| ≤ h̄ for some h̄ > 0 depending on σ.

Eventually, for all |h| ≤ h̄ and x ∈ I there holds

|R(x, h)| ≤ 2εδM +M
∣∣∣ ∫ x

ξ

|R(t, h)| dt
∣∣∣,

and by Gronwall’s Lemma it follows that |R(x, h)| ≤ 2εδMeM |x−ξ|. This finishes the

proof of (4.4.18).

Now we show that

lim
h→0

yξ+h,η(x)− yξη(x)

h
= ψ(x), (4.4.19)

where ψ is the solution to the Cauchy Problem (4.4.12). We have

yξ+h,η(x)− yξη(x)

h
=

1

h

[
η +

∫ x

ξ+h

f(t, yξ+h,η(t)) dt− η −
∫ x

ξ

f(t, yξη(t)) dt

]
=

∫ x

ξ

f(t, yξ+h,η(t))− f(t, yξη(t))

h
dt− 1

h

∫ ξ+h

ξ

f(t, yξ+h,η(t)) dt

=

∫ x

ξ

yξ+h,η(t)− yξη(t)
h

∂f

∂y
(t, ȳh(t)) dt−

1

h

∫ ξ+h

ξ

f(t, yξ+h,η(t)) dt,

(4.4.20)
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for some (new) ȳh(t) ∈ (yξ+h,η(t), yξη(t)). Let ψ ∈ C1(I; R) be the solution of the

Cauchy Problem (4.4.12). Then ψ solves the integral equation

ψ(x) = −f(ξ, yξη(ξ)) +

∫ x

ξ

ψ(t)
∂f

∂y
(t, yξη(t)) dt. (4.4.21)

Subtracting (4.4.21) from (4.4.20) we obtain

S(x, h) : =
yξ+h,η(x)− yξη(x)

h
− ψ(x)

=

∫ x

ξ

(
yξ+h,η(t)− yξη(t)

h

∂f

∂y
(t, ȳh(t))− ψ(t)

∂f

∂y
(t, yξη(t))

)
dt+

− 1

h

∫ ξ+h

ξ

{
f(t, yξ+h,η(t))− f(ξ, yξη(ξ))

}
dt

=

∫ x

ξ

S(t, h)
∂f

∂y
(t, ȳh(t))− ψ(t)

(∂f
∂y

(t, yξη(t))−
∂f

∂y
(t, ȳh(t))

)
dt+

− 1

h

∫ ξ+h

ξ

{
f(t, yξ+h,η(t))− f(ξ, yξη(ξ))

}
dt.

Now, using the uniform continuity of f and ∂f
∂y

, we have as above that for any ε > 0

there is h̄ > 0 such that for all |h| ≤ h̄ and x ∈ I there holds

|S(x, h)| ≤ 2εδ(M + 1) +M
∣∣∣ ∫ x

ξ

|S(t, h)| dt
∣∣∣,

where M is now a bound for ψ and ∂f
∂y

. The claim follows. �

5. Flow of a vector field

In this section we change our notation. We denote by t ∈ R the “time variable”

and by x ∈ Rn the “space variable”. By γ̇ we mean the derivative of γ w.r.t. t.

A vector field in Rn is a mapping F : Rn → Rn. The vector field is Lipschitz

continuous if there exists a constant L > 0 such that

|F (x1)− F (x2)| ≤ L|x1 − x2| for all x1, x2 ∈ Rn. (4.5.22)

In this case, the Cauchy Problem {
γ̇ = F (γ)

γ(0) = x.
(4.5.23)

has a unique (local) solution γ ∈ C1 for any x ∈ Rn, by Theorem 2.4.2. By Theorem

2.8.1, the solution is actually defined for all t ∈ R because |F (x)| ≤ |F (0)|+ L|x| for

all x ∈ Rn. We denote by γx ∈ C1(R; Rn) the unique global solution to the Cauchy

Problem (4.5.23).

Definition 4.5.1 (Flow). The flow of a Lipschitz continuous vector field F :

Rn → Rn is the mapping Φ : R × Rn → Rn defined by Φ(t, x) = γx(t), where

γx ∈ C1(R; Rn) is the solution of (4.5.23). For any t ∈ R, we define the mapping

Φt : Rn → Rn by Φt(x) = Φ(t, x).
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Proposition 4.5.2. Let Φ be the flow of a Lipschitz continuous vector field F .

Then:

i) Φ is locally Lipschitz continuous, i.e., for any compact set K ⊂ R×Rn there

is L > 0 such that for (t1, x1), (t2, x2) ∈ K

|Φ(t1, x1)− Φ(t2, x2)| ≤ L(|t1 − t2|+ |x1 − x2|). (4.5.24)

Moreover, if F ∈ C1(Rn; Rn) then Φ ∈ C1(R× Rn Rn).

ii) It is Φ(0, x) = x for all x ∈ Rn, i.e., Φ0 = Id.

iii) The flow has the group property Φt+s = Φt ◦Φs for all s, t ∈ R. In particular,

we have Φ−1
t = Φ−t.

Proof. The first statement in i) follows from Gronwall’s Lemma. We leave the

details to the reader. If F ∈ C1 then Φ ∈ C1 by Theorem 4.4.1.

The group property iii) follows from the uniqueness of the Cauchy Problem. �

Definition 4.5.3. The Jacobi matrix of a mapping Φ = (Φ1, ...,Φn) ∈ C1(Rn; Rn)

is the n× n matrix

JΦ(x) =
(∂Φi(x)

∂xj

)
i,j=1,...,n

.

The divergence of a vector field F = (F1, ..., Fn) ∈ C1(Rn; Rn) is

divF (x) = trJF (x) =
∂F1(x)

∂x1

+ ...+
∂Fn(x)

∂xn
.

Proposition 4.5.4. Let Φ be the flow of a (Lipschitz) vector field F ∈ C1(Rn; Rn).

Then the Jacobi determinant wx(t) = det(JΦt(x)) solves for any x ∈ Rn the differ-

ential equation

ẇx(t) = divF (Φt(x))wx(t), t ∈ R. (4.5.25)

Proof. We prove (4.5.25) in the case t = 0 first. In this case, Φ0(x) = x and

thus wx(0) = det(JΦ0(x)) = 1. We have to show that

∂

∂t
det(JΦt(x))

∣∣∣∣
t=0

= divF (x), x ∈ Rn, (4.5.26)

where

det(JΦt(x)) =
∑
σ∈Sn

(−1)sgn(σ)

n∏
i=1

∂Φi(t, x)

∂xσ(i)

,

and therefore

∂

∂t
det(JΦt(x)) =

∑
σ∈Sn

(−1)sgn(σ)

n∑
j=1

( ∂
∂t

∂Φj(t, x)

∂xσ(j)

)∏
i 6=j

∂Φi(t, x)

∂xσ(i)

.

For Φ(x, 0) = x, we have∏
i 6=j

∂Φi(0, x)

∂xσ(i)

= 0 if σ ∈ Sn is not the identity.
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Moreover, for any j = 1, ..., n the function

∂Φj(t, x)

∂xj
= 1 +

∫ t

0

∇Fj(Φ(s, x)) · ∂Φ(s, x)

∂xj
ds

is differentiable in t and

∂

∂t

∂Φ(t, x)

∂xj

∣∣∣∣
t=0

= ∇Fj(Φ(t, x))
∂Φ(t, x)

∂xj

∣∣∣∣
t=0

=
∂Fj(x)

∂xj
.

The claim (4.5.26) follows.

Now let t ∈ R. Using the group property for the flow Φt+s(x) = Φs(Φt(x)) we get

JΦt+s(x) = JΦs(Φt(x))JΦt(x) and thus

ẇx(t) = lim
s→0

det(JΦt+s(x))− det(JΦt(x))

s

= det(JΦt(x)) lim
s→0

det(JΦs(Φt(x)))− 1

s
= det(JΦt(x))divF (Φt(x)).

In the last equality we used (4.5.26). �



CHAPTER 5

Existence of solutions under the continuity assumption

In this chapter, we prove some results concerning ordinary differential equations

which rely on Ascoli-Arzelà theorem.

1. Existence of solutions by polygonal approximation

Theorem 5.1.1. Let f ∈ C(I ×Rn; Rn), I = [a, b] ⊂ R, be a continuous function

such that

M = sup
(x,y)∈I×Rn

|f(x, y)| < +∞. (5.1.27)

For any x0 ∈ I and y0 ∈ Rn there exists a solution y ∈ C1(I; Rn) to the Cauchy

Problem {
y′ = f(x, y)

y(x0) = y0.
(5.1.28)

Proof. Without loss of generality we assume that I = [0, 1] and x0 = 0. For any

k ∈ N and i = 0, 1, ..., k − 1 let

xik =
i

k
and I ik = [xik, x

i+1
k ].

Then we have I = I0
k∪ ...∪Ik−1

k and the intervals meet only at consecutive end-points.

We define recursively ϕik : I ik → Rn in the following way

ϕ0
k(x) = y0 + (x− x0)f(x0, y0) with x ∈ I0

k

ϕik(x) = ϕi−1
k (xik) + (x− xik)f(xik, ϕ

i−1
k (xik)) with x ∈ I ik, i = 1, ..., k − 1,

and then we let ϕk : I → Rn be the polygonal function

ϕk(x) = ϕik(x) if and only if x ∈ I ik.

Let ψk : [0, 1]→ Rn be the function{
ψk(ξ) = f(x0, y0) if ξ ∈ I0

k ,

ψk(ξ) = f(xik, ϕ
i−1
k (xik)) if ξ ∈ [xik, x

i+1
k ), i = 1, ..., k − 1,

with [xk−1
k , 1] replacing [xk−1

k , 1). Then we have the identity

ϕk(x) = y0 +

∫ x

x0

ψk(ξ)dξ, x ∈ I. (5.1.29)

This identity can be checked recursively.

47
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By (5.1.27), it is |ψk(ξ)| ≤ M for all ξ and for all k ∈ N. It follows that the

sequence of functions (ϕk)k∈N is equi-Lipschitz. In fact,

|ϕk(x)− ϕk(x̄)| ≤
∣∣∣ ∫ x

x̄

ψk(ξ)dξ
∣∣∣ ≤M |x− x̄|.

Because ϕk(x0) = y0 for all k ∈ N, the sequence is also equibounded.

By Ascoli-Arzelà Theorem, there exists a subsequence - which is still denoted by

(ϕk)k∈N - which converges uniformly to a function y ∈ C(I; Rn). We claim that

lim
k→+∞

ψk(x) = f(x, y(x)) (5.1.30)

with uniform convergence on [0, 1). Taking the limit in the integral identity (5.1.29)

we then get

y(x) = y0 +

∫ x

x0

f(ξ, y(ξ))dξ,

showing that y ∈ C1(I; Rn) is a solution to the Cauchy Problem (5.1.28).

We preliminarly notice that

|ϕk(x)− y0| ≤
∣∣∣ ∫ x

x0

ψk(ξ)dξ
∣∣∣ ≤M,

and then, with K = I × B̄(y0,M), we have (x, ϕk(x)) ∈ K for all x ∈ I and k ∈ N.

The set K is compact and f is continuous on K. It is therefore uniformly continuous

on K, i.e., for any ε > 0 there eixsts σ > 0 such that

|x− x̄| ≤ σ, |y − ȳ| ≤ σ ⇒ |f(x, y)− f(x̄, ȳ)| ≤ ε.

Now fix k̄ such that 1/k̄ ≤ σ, M/k̄ ≤ σ, and |ϕk(x)− y(x)| ≤ σ for all x ∈ I and

for all k ≥ k̄. This is possible thanks to the uniform convergence. Take x ∈ I and

assume that x ∈ I ik. Then we have

|f(x, y(x))− ψk(x)| = |f(x, y(x))− f(xik, ϕ
i−1
k (xik))|

≤ |f(x, y(x))− f(xik, ϕ
i
k(x))|+ |f(xik, ϕ

i
k(x))− f(xik, ϕ

i−1
k (xik))|,

where |x− xik| ≤ 1/k ≤ σ and

|ϕik(x)− ϕi−1
k (xik)| = |ϕik(x)− ϕik(xik)| ≤M |x− xik| ≤

M

k
≤ σ.

It follows that |f(x, y(x))− ψk(x)| ≤ 2ε for all k ≥ k̄ and for all x ∈ [0, 1).

�

Theorem 5.1.2. Let Ω ⊂ Rn+1 be an open set and let f ∈ C(Ω; Rn) be a contin-

uous function. For any (x0, y0) ∈ Ω there exist δ > 0 and y ∈ C1([x0 − δ, x0 + δ]; Rn)

solution to the Cauchy Problem {
y′ = f(x, y)

y(x0) = y0.
(5.1.31)
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Proof. Fix η > 0 such that [x0 − η, x0 + η] × {y ∈ Rn : |y − y0| ≤ η} ⊂ Ω. Let

I = [x0 − η, x0 + η]. We define g : I × Rn → Rn in the following way

g(x, y) =

 f(x, y) if |y − y0| ≤ η

f
(
x, y0 + η

y − y0

|y − y0|

)
if |y − y0| ≥ η.

The function g is continuous and bounded. The Cauchy Problem y′ = g(x, y) and

y(x0) = y0 has a solutions y ∈ C1(I; Rn). For δ > 0 small enough and x ∈ [x0 −
δ, x0 + δ], it is |y(x)− y0| ≤ η. Then y solves (5.1.31) on the interval [x0 − δ, x0 + δ].

�

2. Maximal and minimal solution

In this section, we consider only the case n = 1.

Theorem 5.2.1. Let f ∈ C(I × R; R), I = [a, b] ⊂ R, be a continuous function

such that

sup
(x,y)∈I×R

|f(x, y)| ≤M < +∞, (5.2.32)

and let x0 ∈ I and y0 ∈ R. Then there exist two solutions y+, y− ∈ C1(I; R) to the

Cauchy Problem {
y′ = f(x, y)

y(x0) = y0
(5.2.33)

with the following properties:

i) Any solution y ∈ C1(I; R) to the Cauchy Problem satisfies y−(x) ≤ y(x) ≤
y+(x) for all x ∈ I.

ii) For any point (x1, y1) ∈ I × R such that y−(x1) ≤ y1 ≤ y+(x1), there exists

a solution y ∈ C1(I; R) to the Cauchy Problem such that y(x1) = y1.

Proof. The proof of the theorem is based on the following construction. Assume

w.l.g. that I = [0, 1], x0 = y0 = 0, and M = 1. Then the graph of any solution

y ∈ C1([0, 1]; R) of the Cauchy Problem is contained in the rectangle [0, 1]× [−1, 1].

For n ∈ N, i ∈ {0, 1, ..., 2n − 1} and j ∈ Z define the squares

Qn
ij =

[ i
2n
,
i+ 1

2n

)
×
[ j

2n
,
j + 1

2n

)
.

We agree that for i = 2n − 1 (resp. j = 2n − 1) the half open interval in x (resp. in

y) is replaced by a closed interval.

Then we have

Q = [0, 1]× [−1, 1] =
2n−1⋃
i=0

2n−1⋃
j=−2n

Qn
ij.

We also define the rectangles Rn
ij = Qn

i,j−1 ∪Qn
ij ∪Qn

i,j+1 and we define the numbers

mn
ij = inf

(x,y)∈Rnij
f(x, y), Mn

ij = sup
(x,y)∈Rnij

f(x, y).
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These numbers satisfy −1 ≤ mn
ij ≤Mn

ij ≤ 1. The function f is uniformly continuous

on compact sets. Then there is an increasing function ω : R+ → R+ such that

ω(t)→ 0 as t→ 0+ and

Mn
ij −mn

ij ≤ ω(1/2n) (5.2.34)

for al n ∈ N, i = 0, 1, ..., 2n − 1 and j = −2n, ..., 2n − 1.

Now choose numbers µnij ∈ [mn
ij,M

n
ij] and define the functions fn : Q→ [−1, 1] on

letting

fn(x, y) = µnij if and only if (x, y) ∈ Qn
ij.

From (5.2.34) it follows that

lim
n→+∞

sup
(x,y)∈Q

|fn(x, y)− f(x, y)| = 0. (5.2.35)

Now consider the Cauchy problem{
y′n = fn(x, yn), x ∈ [0, 1)

yn(0) = 0.
(5.2.36)

This problem has a unique solution. The solution yn : [0, 1] → R is a function

which is piecewise of class C1. The solution is actually a polygonal curve. The

differential equations is solved for all x ∈ [0, 1) but for a finite number of points. In

fact, fn(x, yn(x)) is a step function. Integrating the differential equation we get the

integral equation

yn(x) =

∫ x

0

fn(t, yn(t))dt, n ∈ N. (5.2.37)

Because |fn(x, y)| ≤ 1, the solution yn is 1-Lipschitz continuous, i.e., |yn(x1) −
yn(x2)| ≤ |x1 − x2| for all x1, x2 ∈ [0, 1).

The sequence of functions (yn)n∈N is equibounded and equi-Lipschitz on [0, 1].

Then there exists a subsequence – by abuse of notation we denote it by (yn)n∈N –

which converges uniformly to a 1-Lipschitz function y : [0, 1]→ R, i.e.,

lim
n→+∞

sup
x∈[0,1)

|yn(x)− y(x)| = 0. (5.2.38)

By (5.2.35) and (5.2.38), we can pass to the limit in the integral in (5.2.37) and we

obtain

y(x) =

∫ x

0

f(t, y(t)) dt, x ∈ [0, 1].

Then y ∈ C1([0, 1]; R) is a solution to the Cauchy Problem. The solution depends on

the choice of the numbers µnij.

We denote by y+
n the sequence obtained with the choice µnij = Mn

ij, and by y+ the

corresponding limit functions. We shall see later that this limit function is unique,

i.e., it does not depend on the subsequence given by Ascoli-Arzelà theorem. We

denote by y−n the sequence obtained with the choice µnij = mn
ij. The limit function is

denoted by y−.
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We claim that for any solution y ∈ C1([0, 1]; R) to the Cauchy problem, there

exists a choice of the numbers µnij such that the corresponding sequence (yn)n∈N
converges uniformly to y.

For a fixed n ∈ N consider the points pi = (xi, yi) ∈ Q with xi = i/2n and

yi = y(xi), i = 0, 1, ..., 2n. Notice that

pi ∈ Qn
ij ⇒ pi+1 ∈ Rn

ij = Qn
i,j−1 ∪Qn

ij ∪Qn
i,j+1.

More precisely, in this case we have {(x, y(x)) ∈ Q : xi ≤ x < xi+1} ⊂ Rn
ij. This

follows from y′ = f(x, y) with |f(x, y)| ≤ 1.

Assume that pi ∈ Qn
ij. By Lagrange theorem there exists ξi ∈ [xi, xi+1] such that

y(xi+1)− y(xi)

xi+1 − xi
= y′(ξi) = f(ξi, y(ξi)), i = 0, 1, ..., 2n − 1.

Moreover, we have (ξi, y(ξi)) ∈ Rn
ij and thus we can choose

µnij = y′(ξi) = f(ξi, y(ξi)) ∈ [mn
ij,M

n
ij].

We also let µni,j−1 = µni,j+1 = µnij. This choice is also admissible. The choice of µnij′ for

j′ 6= j − 1, j, j + 1 is free.

The polygonal curve yn : [0, 1]→ R has then the property yn(i/2n) = y(i/2n) for

all n ∈ N and for all i = 0, 1, ..., 2n. Then

a) yn(i/2m) → y(i/2m) as n → +∞, for all m ∈ N and i = 0, 1, ..., 2m. In fact,

it holds yn(i/2m) = y(i/2m) for n ≥ m.

b) The sequence (yn)n∈N has a subsequence which converges uniformly.

It follows that yn → y uniformly as n→ +∞.

Now we have y−n ≤ yn ≤ y+
n for all n ∈ N. This implies that y− ≤ y ≤ y+. This

argument also shows that y− and y+ are unique. This finishes the proof of statement

i).

In order to prove ii), consider the (left) Cauchy Problem{
y′ = f(x, y), x0 ≤ x ≤ x1

y(x1) = y1.
(5.2.39)

A solution y must intersect y− or y+. A gluing argument provides the desired solution.

�

3. Comparison theorem

Let f, F : [0, 1] × R → R be two continuous functions and consider the Cauchy

problems {
y′ = f(x, y)

y(0) = y0,
(5.3.40)

and {
Y ′ = F (x, Y )

Y (0) = Y0,
(5.3.41)
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where y0, Y0 ∈ R.

Theorem 5.3.1. Let y, Y ∈ C1([0, 1]) be solutions to the Cauchy problems (5.3.40)

and (5.3.41). Assume that:

i) The solution to the problem (5.3.40) is unique;

ii) F (x, y) ≥ 0 for all x ∈ [0, 1] and y ∈ R;

iii) |f(x, y)| ≤ F (x, |y|) for all x ∈ [0, 1] and y ∈ R;

iv) F (x, y1) ≤ F (x, y2) for all 0 ≤ y1 ≤ y2 and x ∈ [0, 1];

v) |y0| ≤ Y0.

Then it is |y(x)| ≤ Y (x) for all x ∈ [0, 1].

Proof. For k ∈ N define recursively the function yk : [0, 1]→ R

yk(x) =


y0 if x ∈ [0, 1/k],

y0 +

∫ x− 1
k

0

f(ξ, yk(ξ))dξ if x ∈ [i/k, (i+ 1)/k], i = 1, ..., k − 1.

We show that |yk(x)| ≤ Y (x) for all x ∈ [0, 1] and k ∈ N. The proof is by induction

on i = 0, 1, ..., k − 1, with x ∈ [i/k, (i+ 1)/k]. For i = 0, we have by ii) and v)

|yk(x)| = |y0| ≤ Y0 ≤ Y0 +

∫ x

0

F (ξ, Y (ξ))dξ = Y (x).

Assume the claim holds for all x ∈ [0, i/k] and let x ∈ [i/k, (i+ 1)/k]. Then, by ii)–v)

we get

|yk(x)| =

∣∣∣∣∣y0 +

∫ x− 1
k

0

f(ξ, yk(ξ))dξ

∣∣∣∣∣ ≤ |y0|+
∫ x− 1

k

0

|f(ξ, yk(ξ))|dξ

≤ Y0 +

∫ x− 1
k

0

F (ξ, |yk(ξ)|)dξ ≤ Y0 +

∫ x− 1
k

0

F (ξ, Y (ξ))dξ

≤ Y0 +

∫ x

0

F (ξ, Y (ξ))dξ = Y (x).

The sequence of functions (yk)k∈N is uniformly bounded. Moreover, there exists

M > 0 such that |f(x, yk(x))| ≤ M for any x ∈ [0, 1] and all k ∈ N. The sequence

is therefore equi-Lipschitz. By Ascoli-Arzelà theorem there exists a subsequence that

converges uniformly to a continuous function y : [0, 1] → R. This functions satisfies

|y(x)| ≤ Y (x). We assume that (yk)k∈N converges to y.

The function y is the unique solution of the problem (5.3.40). In fact, we have

y(0) = y0 and using the uniform continuity of f on compact sets, we obtain

y(x) = lim
k→∞

yk(x) = y0 + lim
k→∞

∫ x− 1
k

0

f(ξ, yk(ξ))dξ = y0 +

∫ x

0

f(ξ, y(ξ))dξ,

i.e., y ∈ C1([0, 1]) solves the differential equation. �
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4. Periodic solutions

Definition 5.4.1. A function f : R × Rn → Rn is peridodic in the variable x if

there exists T > 0 such that

f(x+ T, y) = f(x, y)

for all x ∈ R and y ∈ Rn. The number T is said to be (a) period of f in the variable

x.

Theorem 5.4.2. Let f : R× R→ R be a function such that:

i) f is continuous and locally Lipschitz continuous in y;

ii) f is periodic in the variable x.

Then, the differential equation y′ = f(x, y) has periodic solutions if and only if it has

bounded solutions.

Proof. Periodic solutions are clearly bounded. Assume that there exists a func-

tion y ∈ C1(R) which solves the differential equation and such that |y(x)| ≤ M for

all x ∈ R and for some M < +∞. Define the sequence of function (yn)n∈N on letting

yn(x) = y(x+ nT ) for x ∈ R and n ∈ N. Here, T > 0 is the period of f in x. Thanks

to the periodicity of f , we have

y′n(x) = y′(x+ nT ) = f(x+ nT, y(x+ nT )) = f(x, yn(x)).

Consider the functions y and y1. There are two cases:

1) there is x0 ∈ R such that y(x0) = y1(x0) = y0;

2) we have y(x) 6= y1(x) for all x ∈ R.

In the first case, both y and y1 are solutions to the Cauchy Problem{
y′ = f(x, y)

y(x0) = y0.

Because of i), the solution is unique and thus y = y1. It follows that y is T–periodic,

i.e., y(x+ T ) = y(x) for x ∈ R.

In the second case, we have y1 < y or y < y1 on the whole real line. Assume

e.g. that y1(x) < y(x) for all x ∈ R. Then we have for any n ∈ N and x ∈ R

yn+1(x) = y1(x+ nT ) < y(x+ nT ) = yn(x).

Because |yn(x)| ≤ M for all n ∈ N and for all x ∈ R, we can define the function

y∞ : R→ R
y∞(x) = lim

n→∞
yn(x).

For any k ∈ N and |x| ≤ k we have

|y′n(x)| = |f(x, yn(x))| ≤ max
|x|≤k,|z|≤M

|f(x, z)| < +∞,

because f is continuous.
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The sequence (yn)n∈N is then equicontinuous and equibounded on the interval

[−k, k]. By Ascoli–Arzelà Theorem, the sequence (yn)n∈N has a subsequence converg-

ing uniformly on [−k, k]. As (yn)n∈N is already converging pointwise, it follows that

yn → y∞ as n→∞ uniformly on compact sets. In particular, it is y∞ ∈ C(R).

Each yn, n ∈ N, solves the integral equation

yn(x) = yn(0) +

∫ x

0

f(ξ, yn(ξ))dξ, x ∈ R. (5.4.42)

The function f : [−k, k]×[−M,M ]→ R is continuous, and thus uniformly continuous.

It follows that all ε > 0 there is δ > 0 such that for (x, y1), (x, y2) ∈ [−k, k]× [−M,M ]

we have

|y1 − y2| ≤ δ ⇒ |f(x, y1)− f(x, y2)| ≤ ε

By the uniform convergence of (yn)n∈N there exists N ∈ N such that for n ≥ N and

|x| ≤ k we have |yn(x)− y∞(x)| ≤ δ and thus∣∣∣ ∫ x

0

{
f(ξ, yn(ξ))− f(ξ, yn(ξ))

}
dξ
∣∣∣ ≤ εk, for |x| ≤ k and n ≥ N.

Taking the limit as n→∞ in (5.4.42) we obtain

y∞(x) = y∞(0) +

∫ x

0

f(ξ, y∞(ξ))dξ, x ∈ R. (5.4.43)

Then it is y∞ ∈ C1(R) and y′∞ = f(x, y∞).

Finally, we show that the function y∞ is periodic with period T :

y∞(x+ T ) = lim
n→∞

yn(x+ T ) = lim
n→∞

yn+1(x) = y∞(x).

�

Example 5.4.3 (Small perturbations of periodic solutions). Let f ∈ C1(Rn+2; Rn)

be a function such that for some T > 0

f(x+ T, ε, y) = f(x, ε, y), x ∈ R, ε ∈ R, y ∈ Rn, (5.4.44)

and for η ∈ Rn consider the Cauchy Problem{
y′ = f(x, ε, y)

y(0) = η.
(5.4.45)

Here, ε is a real parameter which is “small”. Denote by yεη the solution of the Problem

depending on ε and η.

Assume that:

i) For some y0 ∈ Rn we have y0y0(T ) = y0y0(0) = y0, i.e., for y0 and ε = 0 the

solution of the Cauchy Problem is periodic with period T . This follows from

(5.4.44). In particular, the solution is defined for all x ∈ R.

ii) For some r0 > 0 we have yεη ∈ C1([0, T ]; Rn) for all |ε| < r0 and for all

η ∈ Rn with |η−y0| < r0, i.e., the solutions are defined on the whole interval

[0, T ].
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Then we can define the function F : {|ε| < r0} × {|η| < r0} → Rn on letting

F (ε, η) = yεη(T )− η. The function F has the following properties:

a) F (0, y0) = 0, by ii).

b) F ∈ C1({|ε| < r0} × {|η| < r0}; Rn). This follows from Theorem 4.4.1. The

differentiability with respect to the parameter ε is left as an exercise. In

particular, ϕεη = ∂yεη/∂η is the solution of the Cauchy Problem ϕ′εη =
∂f(x, ε, yεη)

∂η
ϕεη

ϕεη(0) = In.
(5.4.46)

Then we have,
∂F (ε, η)

∂η
=
∂yεη(T )

∂η
− In = ϕεη(T )− In.

Now assume that:

iii) The matrix ϕ0y0(T )− In is invertible.

Then, by the implicit function theorem there exist δ > 0 and g ∈ C1((−δ, δ); Rn),

with g(0) = y0, such that F (ε, g(ε)) = 0 for all ε ∈ (−δ, δ).
Conclusion: under the assumptions i), ii), and iii), for small perturbations of the

function, there still exist periodic solutions of the differential equation.





CHAPTER 6

First order partial differential equations

1. Quasilinear differential equations

Let Ω ⊂ Rn+1 be an open set and let ai, b ∈ C(Ω), i = 1, ..., n, be continuous

functions. A first order partial differential equation of the form

Lu =
n∑
i=1

ai(x, u)
∂u

∂xi
= b(x, u) (6.1.1)

is called quasilinear. The differential operator L is called quasilinear, as well.

A function u ∈ C1(U) is a solution of the quasilinear equation (6.1.1) if:

i) U ⊂ Rn is an open set;

ii) gr(u) = {(x, u(x)) ∈ Rn+1 : x ∈ U} ⊂ Ω;

iii) Lu(x) = b(x, u(x)) for all x ∈ U .

The differential equation (6.1.1) has the following geometric interpretation. De-

note by a = (a1, ..., an) ∈ C(Ω; Rn) the vector of the coefficients of L. Then equation

(6.1.1) can be written in the following way〈
(∇u,−1), (a(x, u), b(x, u))

〉
= 0, (6.1.2)

where ∇u is the gradient of u in the variable x. The function g ∈ C1(U × R),

g(x, y) = u(x)− y, is a defining function for the graph of u, i.e.,

gr(u) =
{

(x, y) ∈ U × R : g(x, y) = 0
}
.

Then, the gradient of g in the variables x, y, i.e., the vector N = (∇u,−1), is orthog-

onal to the graph of u. In fact, a basis of tangent vectors to the graph of u is given

by

Ti =
(

0, ..., 1, ..., 0︸ ︷︷ ︸
ith

,
∂u

∂xi

)
, i = 1, ..., n,

and we have 〈N, Ti〉 = 0 for all i = 1, ..., n. By (6.1.2), the vector field X ∈ C(U ×
R; Rn+1), defined by

X =
(
a(x, u), b(x, u)

)
(6.1.3)

is tangent to the graph of u. We call X the characteristic vector field of the equation

Lu = b.

Definition 6.1.1 (Characteristic curves). The integral curves of the vector field

X =
(
a(x, u), b(x, u)

)
, i.e., the solutions of the ordinary differential equation γ̇ =

X(γ), are called characteristic curves of the differential equation Lu = b.

57
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Definition 6.1.2 (Integral surface). A C1 hypersurface S ⊂ Ω of the form S =

gr(u) = {(x, u(x)) ∈ Ω : x ∈ U} for some u ∈ C1(U), U ⊂ Rn open set, is called

integral surface for the equation Lu = b if the vector
(
a(x, u(x)), b(x, u(x)

)
∈ Rn+1 is

tangent to S at the point (x, u(x)) ∈ S for all x ∈ U .

Proposition 6.1.3. Let u ∈ C1(U), U ⊂ Rn open set. The following statements

are equivalent:

i) The function u solves the differential equation Lu = b;

ii) The hypersurface S = {(x, u(x)) ∈ Ω : x ∈ U} is an integral surface for the

equation Lu = b;

iii) For any x0 ∈ U there is δ > 0 such that any characteristic curve γ ∈
C1
(
(−δ, δ); Rn+1

)
of X with γ(0) = (x0, u(x0)) ∈ S is contained in S.

Proof. i)⇒ ii). This is the discussion made above. ii)⇒iii) The Cauchy problem

γ̇ = X(γ) with γ(0) = (x0, u(x0)) has a solution defined on the interval (−δ, δ). Let

us write γ(s) = (x(s), z(s)) ∈ Rn × R. Then we have{
ẋ(s) = a(γ(s)), x(0) = x0

ż(s) = b(γ(s)), z(0) = u(x0).

Consider the function ϕ ∈ C1(−δ, δ), ϕ(s) = u(x(s)) − z(s). We have ϕ(0) = 0 and

moreover

ϕ̇(s) = 〈∇u(x(s)), ẋ(s)〉 − ż(s) =
〈
(∇u(x(s)),−1), (a(γ(s)), b(γ(s))

〉
= 0,

because N = (∇u(x(s)),−1) and X =
(
a(γ(s)), b(γ(s)

)
are by assumption orthogo-

nal. It follows that ϕ(s) = ϕ(0) = 0 for all s ∈ (−δ, δ) and this implies γ(s) ∈ S for

all s ∈ (−δ, δ).
iii)⇒ii) For any x0 ∈ U , let γ = (x, z) be a curve as in iii). Then we have

u(x(s))− z(s) = 0 for all s ∈ (−δ, δ) and differentiating this identity at s = 0 we get

Lu(x0) = b(x0, u(x0)). �

2. Cauchy Problem for quasilinear equations

Let Γ ⊂ Rn be a hypersurface of class C1. By definition, for any x0 ∈ Γ there are

an open set V ⊂ Rn−1, an open set U ⊂ Rn with x0 ∈ U and a bijective mapping

Φ ∈ C1(V ;U ∩Γ) such that the Jacobi matrix JΦ(v) has maximal rank for all v ∈ V .

Then the vectors
∂Φ(v)

∂v1

, ...,
∂Φ(v)

∂vn−1

∈ Rn

are linearly independent and are a basis for the tangent space of Γ at the point

Φ(v) ∈ Γ. Φ is called C1-parameterization of U ∩ Γ.

Let ϕ : Γ → R be a function of class C1. This means that the function ϕ ◦ Φ :

V → R is of class C1 for any (local) parameterization Φ of Γ. We write ϕ ∈ C1(Γ).

We are interested in the Cauchy Problem{
Lu(x) = b(x, u) x ∈ U
u(x) = ϕ(x) x ∈ Γ ∩ U (6.2.4)



2. CAUCHY PROBLEM FOR QUASILINEAR EQUATIONS 59

where U is an open subset of Rn.

Definition 6.2.1 (Noncharacteristic manifold). Let Γ ⊂ Rn be be a C1 hy-

persurface and let ϕ ∈ C1(Γ). The pair (Γ, ϕ) is noncharacteristic for the quasi-

linear differential operator L =
∑n

i=1 ai(x, u) ∂
∂xi

at the point x0 ∈ Γ, if the vector

a(x0, ϕ(x0)) =
(
a1(x0, ϕ(x0)), ..., an(x0, ϕ(x0))

)
∈ Rn is not tangent at Γ at the point

x0.

Equivalently, the pair (Γ, ϕ) is non characteristic at x0 = Φ(v0) for L if

det
[∂Φ(v0)

∂v1

. . .
∂Φ(v0)

∂vn−1

, a(x0, ϕ(x0))
]
6= 0, (6.2.5)

where the vectors in [. . .] are thought of as column vectors.

Theorem 6.2.2. Let L =
∑n

i=1 ai(x, u) ∂
∂xi

be a quasilinear differential operator

in the open set Ω ⊂ Rn+1, let Γ ⊂ Rn be a hypersurface of class C1 and ϕ ∈ C1(Γ)

with (x0, ϕ(x0)) ∈ Ω. Assume that:

i) b, a1, ..., an ∈ C1(Ω);

ii) The pair (Γ, ϕ) is non characteristic at x0 ∈ Γ for L.

Then there exists u ∈ C1(U), U ⊂ Rn open neighborhood of x0, solution to the Cauchy

Problem (6.2.4). The solution is unique in a neighborhood of x0.

Proof. Let X =
(
a(x, u), b(x, u)

)
be the characteristic vector field of the equa-

tion Lu = b, and let Φ : V → U ∩ Γ be a parameterization of Γ in a neighborhood of

x0 ∈ U . We can w.l.g. assume that V = (−η, η)n−1 for some η > 0 and Φ(0) = x0.

For any p in a neighborhood of (x0, ϕ(x0)) ∈ Rn+1 consider the Cauchy Problem{
γ̇(s) = X(γ(s))

γ(0) = p.
(6.2.6)

The solution γp is (uniquely) defined on the interval (−δ, δ) for some δ > 0 indepen-

dent from p. Because a ∈ C1(Ω; Rn) and b ∈ C1(Ω), the mapping (p, s) 7→ γp(s) is of

class C1, by Theorem 4.4.1.

By abuse of notation, we define γv to be the curve γp with p = (Φ(v), ϕ(Φ(v)) ∈ Γ×
R for v ∈ V . The mapping (v, s) 7→ γv(s) is of class C1, because it is the composition

of C1 mappings. The curve γv is of the form γv(s) = (xv(s), zv(s)) ∈ Rn × R, where

ẋv(s) = a(γv(s)), xv(0) = Φ(v)

żv(s) = b(γv(s)), zv(0) = ϕ(Φ(v)).

Define the function F : V × (−δ, δ)→ Rn

F (v, s) = xv(s).

Then we have F ∈ C1
(
V × (−δ, δ); Rn

)
and moreover

∂F

∂s
(v, s) = ẋv(s) = a(γv(s)),
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and for s = 0 and i = 1, ..., n− 1

∂F

∂vi
(v, 0) =

∂xv(0)

∂vi
=
∂Φ(v)

∂vi
.

In particular, at the point v = 0 and s = 0 the Jacobi matrix of F satisfies

det JF (0) = det
[ ∂Φ

∂v1

(0), . . . ,
∂Φ

∂vn−1

(0), a(x0, ϕ(x0))
]
6= 0,

because the pair (Γ, ϕ) is non characteristic for L at the point x0 ∈ Γ.

By the Inverse Function Theorem, the mapping F : V × (−δ, δ) → U = F (V ×
(−δ, δ)) ⊂ Rn is a diffeomorphism of class C1, provided that δ > 0 and η > 0

are small enough. The inverse function F−1 : U → V × (−δ, δ) is of the form

F−1(x) = (v(x), s(x)), where the functions x 7→ v(x), s(x) are both of class C1.

Define the function u : U → R on letting u(x) = zv(x)(s(x)), x ∈ U . Then:

i) We have u ∈ C1(U), because it is a composition of C1 functions.

ii) If x = Φ(v) ∈ Γ then s(x) = 0 and v(x) = v ∈ V . Thus

u(x) = zv(0) = ϕ(Φ(v)) = ϕ(x).

iii) The graph S =
{

(x, u(x)) ∈ Rn+1 : x ∈ U
}

is the union of integral curves of

the characteristic vector field X. In fact, we have

x = F (F−1(x)) = F (v(x), s(x)) = xv(x)(s(x)),

and thus

(x, u(x)) =
(
xv(x)(s(x)), zv(x)(s(x))

)
= γv(x)(s(x)).

This shows that for any x ∈ U , the integral curve of X passing through the

point (x, u(x)) lies entirely in the graph of u. Then, by Proposition 6.1.3 we

have Lu(x) = b(x, u(x)) for all x ∈ U .

We proved that u is a solution to the Cauchy problem (6.2.4). The solution is

unique, because of the uniqueness of the characteristic curves of the equation Lu = b.

�

Example 6.2.3. We look for a solution u ∈ C1(U) for some open set U ⊂ R2

with 0 ∈ U (and possibly the largest one) of the Cauchy Problem u
∂u

∂x
+
∂u

∂y
= 0, (x, y) ∈ U

u(x, 0) = x, (x, 0) ∈ U.

The quasi linear differential operator

Lu = u
∂u

∂x
+
∂u

∂y

is known as Burgers’ operator. The vector of the coefficients is a(x, y, u) = (u, 1), we

have b(x, y, u) = 0, and the characteristic vector field of the equation is X = (u, 1, 0).
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We have Γ =
{

(x, 0) ∈ R2 : x ∈ R
}

and ϕ(x) = x. A normal vector to Γ is the

constant vector N = (0, 1). For any (x, 0) ∈ Γ we have

〈N, a((x, 0), ϕ(x))〉 = 1 6= 0.

Then the pair (Γ, ϕ) in non characteristic for the equation Lu = 0 at any point of Γ.

By Theorem 6.2.2 we can find a (unique) local solution.

For a fixed (x0, 0) ∈ Γ consider the Cauchy problem

γ̇ = X(γ), γ(0) = (x0, 0, ϕ(x0)).

The system of differential equations is

γ̇1 = γ3, γ̇2 = 1, γ̇3 = 0,

which yields, along with the initial conditions,

γ1(s) = sϕ(x0) + x0 = (s+ 1)x0, γ2(s) = sγ3(s) = ϕ(x0) = x0,

where s ∈ R. The solution u to the Cauchy problem satisfies

u(γ1(s), γ2(s)) = γ3(s) ⇔ u((s+ 1)x0, s) = ϕ(x0) = x0.

Letting x = (s+ 1)x0 and y = s we find

u(x, y) =
x

y + 1
.

The “maximal” solution u of the Cauchy problem is defined in the half plane U =

{(x, y) ∈ R2 : y > −1}.


