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Abstract. We study a family of spheres with constant mean curvature (CMC)

in the Riemannian Heisenberg group H1. These spheres are conjectured to be the

isoperimetric sets of H1. We prove several results supporting this conjecture. We

also focus our attention on the sub-Riemannian limit.
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1. Introduction

In this paper, we study a family of spheres with constant mean curvature (CMC) in

the Riemannian Heisenberg group H1. We introduce in H1 two real parameters that

can be used to deform H1 to the sub-Riemannian Heisenberg group, on the one hand,

and to the Euclidean space, on the other hand. Even though we are not able to prove

that these CMC spheres are in fact isoperimetric sets, we obtain several partial results

in this direction. Our motivation comes from the sub-Riemannian Heisenberg group,

where it is conjectured that the solution of the isoperimetric problem is obtained

rotating a Carnot-Carathéodory geodesic around the center of the group, see [17].

This set is known as Pansu’s sphere. The conjecture is proved only assuming some

regularity (C2-regularity, convexity) or symmetry, see [4, 7, 15, 16, 18, 19].
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Given a real parameter τ ∈ R, let h = span{X, Y, T} be the three-dimensional real

Lie algebra spanned by three elements X, Y, T satisfying the relations [X, Y ] = −2τT

and [X,T ] = [Y, T ] = 0. When τ 6= 0, this is the Heisenberg Lie algebra and we

denote by H1 the corresponding Lie group. We will omit reference to the parameter

τ 6= 0 in our notation. In suitable coordinates, we can identify H1 with C × R and

assume that X, Y, T are left-invariant vector fields in H1 of the form

X =
1

ε

( ∂
∂x

+ σy
∂

∂t

)
, Y =

1

ε

( ∂
∂y
− σx ∂

∂t

)
, and T = ε2 ∂

∂t
, (1.1)

where (z, t) ∈ C× R and z = x + iy. The real parameters ε > 0 and σ 6= 0 are such

that

τε4 = σ. (1.2)

Let 〈·, ·〉 be the scalar product on h making X, Y, T orthonormal, that is extended to

a left-invariant Riemannian metric g = 〈·, ·〉 in H1. The Riemannian volume of H1

induced by this metric coincides with the Lebesgue measure L 3 on C×R and, in fact,

it turns out to be independent of ε and σ (and hence of τ). When ε = 1 and σ → 0,

the Riemannian manifold (H1, g) converges to the Euclidean space. When σ 6= 0 and

ε→ 0+, then H1 endowed with the distance function induced by the rescaled metric

ε−2〈·, ·〉 converges to the sub-Riemannian Heisenberg group.

The boundary of an isoperimetric region is a surface with constant mean curvature.

In this paper, we study a family of CMC spheres ΣR ⊂ H1, with R > 0, that foliate

H1
∗ = H1 \ {0}, where 0 is the neutral element of H1. Each sphere ΣR is centered

at 0 and can be described by an explicit formula that was first obtained by Tomter

[20], see Theorem 2.1 below. We conjecture that, within its volume class and up to

left translations, the sphere ΣR is the unique solution of the isoperimetric problem in

H1. When ε = 1 and σ → 0, the spheres ΣR converge to the standard sphere of the

Euclidean space. When σ 6= 0 is fixed and ε → 0+, the spheres ΣR converge to the

Pansu’s sphere.

In Section 3, we study some preliminary properties of ΣR, its second fundamental

form and principal curvatures. A central object in this setting is the left-invariant

1-form ϑ ∈ Γ(T ∗H1) defined by

ϑ(V ) = 〈V, T 〉 for any V ∈ Γ(TH1). (1.3)

The kernel of ϑ is the horizontal distribution. Let N be the north pole of ΣR and

S = −N its south pole. In Σ∗R = ΣR \ {±N} there is an orthonormal frame of vector

fields X1, X2 ∈ Γ(TΣ∗R) such that ϑ(X1) = 0, i.e., X1 is a linear combination of X

and Y . In Theorem 3.1, we compute the second fundamental form of ΣR in this

frame. We show that the principal directions of ΣR are given by a rotation of the

frame X1, X2 by a constant angle depending on the mean curvature of ΣR.
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In Section 4, we link in a continuous fashion the foliation property of the Pansu’s

sphere with the foliation by meridians of the round sphere in the Euclidean space.

The foliation H1
∗ =

⋃
R>0 ΣR determines a unit vector field N ∈ Γ(TH1

∗ ) such that

N (p) ⊥ TpΣR for any p ∈ ΣR and R > 0. The covariant derivative ∇N N , where

∇ denotes the Levi-Civita connection induced by the metric g, measures how far the

integral lines of N are from being geodesics of H1 (i.e., how far the CMC spheres ΣR

are from being metric spheres). In space forms, we would have∇N N = 0, identically.

Instead, in H1 the normalized vector field

M (z, t) = sgn(t)
∇N N

|∇N N |
, (z, t) ∈ Σ∗R,

is well-defined and smooth outside the center of H1. In Theorem 4.3, we prove that

for any R > 0 we have

∇ΣR
M M = 0 on Σ∗R,

where ∇ΣR denotes the restriction of ∇ to ΣR. This means that the integral lines of

M are Riemannian geodesics of ΣR. In the coordinates associated with the frame

(1.1), when ε = 1 and τ = σ → 0 the integral lines of M converge to the meridians of

the Euclidean sphere. When σ 6= 0 is fixed and ε→ 0+, the vector field M properly

normalized converges to the line flow of the geodesic foliation of the Pansu’s sphere,

see Remark 4.5.

In Section 5, we give a proof of a known result that is announced in [1, Theorem

6] in the setting of three-dimensional homogeneous spaces (see also [13]). Namely, we

show that any topological sphere with constant mean curvature in H1 is isometric to

a CMC sphere ΣR. The proof follows the scheme of the fundamental paper [2].

The surface ΣR is not totally umbilical and, for large enough R > 0, it even has

negative Gauss curvature near the equator, see Remark 3.2. As a matter of fact, the

distance from umbilicality is measured by a linear operator built up on the 1-form

ϑ. We can restrict the tensor product ϑ ⊗ ϑ to any surface Σ in H1 with constant

mean curvature H and then define, at any point p ∈ Σ, a symmetric linear operator

k ∈ Hom(TpΣ;TpΣ) by setting

k = h+
2τ 2

√
H2 + τ 2

qH ◦ (ϑ⊗ ϑ) ◦ q−1
H ,

where h is the shape operator of Σ and qH is a rotation of each tangent plane TpΣ by

an angle that depends only on H, see formula (5.1).

In Theorem 5.7, we prove that for any topological sphere Σ ⊂ H1 with constant

mean curvature H, the linear operator k on Σ satisfies the equation k0 = 0. This

follows from the Codazzi’s equations using Hopf’s argument on holomorphic quadratic

differentials, see [9]. The fact that Σ is a left translation of ΣR now follows from the

analysis of the Gauss extension of the topological sphere, see Theorem 5.9.
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In some respect, it is an interesting issue to link the results of Section 5 with the

mass-transportation approach recently developed in [3].

In Section 6, we prove a stability result for the spheres ΣR. Let ER ⊂ H1 be the

region bounded by ΣR and let Σ ⊂ H1 be the boundary of a smooth open set E ⊂ H1,

Σ = ∂E, such that L 3(E) = L 3(ER). Denoting by A (Σ) the Riemannian area of

Σ, we conjecture that

A (Σ)−A (ΣR) ≥ 0. (1.4)

We also conjecture that a set E is isoperimetric (i.e., equality holds in (1.4)) if and

only if it is a left translation of ER. We stress that if isoperimetric sets are topological

spheres, this statement would follow from Theorem 5.9.

It is well known that isoperimetric sets are stable for perturbations fixing the vol-

ume: in other words, the second variation of the area is nonnegative. On the other

hand, using Jacobi fields arising from right-invariant vector fields of H1, it is possi-

ble to show that the spheres ΣR are stable with respect to variations supported in

suitable hemispheres, see Section 6.

In the case of the northern and southern hemispheres, we can prove a stronger form

of stability. Namely, using the coordinates associated with the frame (1.1), for R > 0

and 0 < δ < R we consider the cylinder

Cδ,R =
{

(z, t) ∈ H1 : |z| < R, t > f(R− δ;R)
}
,

where f(·;R) is the profile function of ΣR, see (2.2). Assume that the closure of

E∆ER = ER \ E ∪ E \ ER is a compact subset of Cδ,R. In Theorem 6.1, we prove

that there exists a positive constant CRτε > 0 such that the following quantitative

isoperimetric inequality holds:

A (Σ)−A (ΣR) ≥
√
δCRτεL

3(E∆ER)2. (1.5)

The proof relies on a sub-calibration argument. This provides further evidence on the

conjecture that isoperimetric sets are precisely left translations of ΣR. When ε = 1

and σ → 0, inequality (1.5) becomes a restricted form of the quantitative isoperimetric

inequality in [8]. For fixed σ 6= 0 and ε→ 0+ the rescaled area εA converges to the

sub-Riemannian Heisenberg perimeter and εCRτε converges to a positive constant,

see Remark 6.2. Thus inequality (1.5) reduces to the isoperimetric inequality proved

in [7].

2. Foliation of H1
∗ by concentric stationary spheres

In this section, we compute the rotationally symmetric compact surfaces in H1 that

are area-stationary under a volume constraint. We show that, for any R > 0, there

exists one such a sphere ΣR centered at 0. We will also show that H1
∗ = H1 \ {0} is
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foliated by the family of these spheres, i.e.,

H1
∗ =

⋃
R>0

ΣR. (2.1)

Each ΣR is given by an explicit formula that is due to Tomter, see [20].

We work in the coordinates associated with the frame (1.1), where the parameters

ε > 0 and σ ∈ R are related by (1.2). For any point (z, t) ∈ H1, we set r = |z| =√
x2 + y2.

Theorem 2.1. For any R > 0 there exists a unique compact smooth embedded surface

ΣR ⊂ H1 that is area stationary under volume constraint and such that

ΣR = {(z, t) ∈ H1 : |t| = f(|z|;R)}

for a function f(·;R) ∈ C∞([0, R)) continuous at r = R with f(R) = 0. Namely, for

any 0 ≤ r ≤ R the function is given by

f(r;R) =
ε2

2τ

[
ω(R)2 arctan(p(r;R)) + ω(r)2p(r;R)

]
, (2.2)

where

ω(r) =
√

1 + τ 2ε2r2 and p(r;R) = τε

√
R2 − r2

ω(r)
.

Proof. LetDR = {z ∈ C : |z| < R} and for a nonnegative radial function f ∈ C∞(DR)

consider the graph Σ = {(z, f(z)) ∈ H1 : z ∈ DR}. A frame of tangent vector fields

V1, V2 ∈ Γ(TΣ) is given by

V1 = εX + ε−2(fx − σy)T and V2 = εY + ε−2(fy + σx)T. (2.3)

Let gΣ = 〈·, ·〉 be the restriction of the metric g of H1 to Σ. Using the entries of gΣ

in the frame V1, V2, we compute the determinant

det(gΣ) = ε4 + ε−2
{
|∇f |2 + σ2|z|2 + 2σ(xfy − yfx)

}
, (2.4)

where ∇f = (fx, fy) is the standard gradient of f and |∇f | is its length. We clearly

have xfy − yfx = 0 by the radial symmetry of f . Therefore, the area of Σ is given by

A(f) = A (Σ) =

∫
DR

√
det(gΣ) dz =

1

ε

∫
DR

√
ε6 + |∇f |2 + σ2|z|2 dz, (2.5)

where dz is the Lebesgue measure in the xy-plane.

Thus, if Σ is area stationary under a volume constraint, then for any test function

ϕ ∈ C∞c (DR) that is radially symmetric and with vanishing mean (i.e.,
∫
DR

ϕdz = 0)

we have

0 =
d

ds
A(f + sϕ)

∣∣∣∣
s=0

= −1

ε

∫
DR

ϕ div
( ∇f√

ε6 + |∇f |2 + σ2|z|2
)
dz,
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where div denotes the standard divergence in the xy-plane. It follows that there exists

a constant H ∈ R such that

−1

ε
div
( ∇f√

ε6 + |∇f |2 + σ2|z|2
)

= H. (2.6)

With abuse of notation we let f(|z|) = f(z). Using the radial variable r = |z| and

the short notation

g(r) =
fr

r
√
ε6 + fr

2 + σ2r2
,

the above equation reads as follows:

1

r

d

dr

(
r2g(r)

)
=

1

r

(
r2gr(r) + 2rg(r)

)
= −εH.

Then there exists a constant K ∈ R such that r2g = −εr2H +K. Since g is bounded

at r = 0, it must be K = 0 and thus g = −εH, and we get

fr

r
√
ε6 + fr

2 + σ2r2
= −εH.

From this equation, we see that fr has a sign. Since ΣR is compact, it follows that

H 6= 0. Since f ≥ 0 we have fr < 0 and therefore H > 0.

The surface ΣR is smooth at the “equator” (i.e., where |z| = R and t = 0) and thus

we have fr(R) = −∞. As we will see later, this is implied by the relation

εHR = 1, (2.7)

that will be assumed throughout the paper. Integrating the above equation we find

fr(r) = −ε4Hr

√
1 + τ 2ε2r2

1− ε2H2r2
= −ε3r

√
1 + τ 2ε2r2

R2 − r2
, 0 ≤ r < R. (2.8)

Integrating this expression on the interval [r, R] and using f(R) = 0 we finally find

f(r;R) = ε3

∫ R

r

√
1 + τ 2ε2s2

R2 − s2
sds. (2.9)

After some computations, we obtain the explicit formula

f(r;R) =
ε2

2τ

[
ω(R)2 arctan

(
τε

√
R2 − r2

ω(r)

)
+ τεω(r)

√
R2 − r2

]
, 0 ≤ r ≤ R,

with ω(r) =
√

1 + τ 2ε2r2. This is formula (2.2). �

Remark 2.2. The function f(·;R) = f(·;R; τ ; ε) depends also on the parameters τ

and ε, that are omitted in our notation. With ε = 1, we find

lim
τ→0

f(r;R; τ ; 1) =
√
R2 − r2.

When τ → 0, the spheres ΣR converge to Euclidean spheres with radius R > 0 in the

three-dimensional space.
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With τ = σ/ε4 as in (1.2), we find the asymptotic

lim
ε→0

f(r;R;σ/ε4; ε) =
σ

2

[
R2 arctan

(√R2 − r2

r

)
+ r
√
R2 − r2

]
=
σ

2

[
R2 arccos

( r
R

)
+ r
√
R2 − r2

]
,

which gives the profile function of the Pansu’s sphere, the conjectured solution to the

sub-Riemannian Heisenberg isoperimetric problem, see e.g. [16] or [15], with R = 1

and σ = 2.

Remark 2.3. Starting from formula (2.2), we can compute the derivatives of f(·;R)

in the variable R. The first order derivative is given by

fR(r;R) = τε4R
[

arctan
(
p(r;R)

)
+

1

p(r;R)

]
=

σR

p(r;R)`(p(r;R))
, (2.10)

where ` : [0,∞)→ R is the function defined as

`(p) =
1

1 + p arctan(p)
. (2.11)

The geometric meaning of ` will be clear in formula (4.1).

We now establish the foliation property (2.1).

Proposition 2.4. For any nonzero (z, t) ∈ H1 there exists a unique R > 0 such that

(z, t) ∈ ΣR.

Proof. Without loss of generality we can assume that t ≥ 0. After an integration by

parts in (2.9), we obtain the formula

f(r;R) = ε3

{
√
R2 − r2ω(r) +

∫ R

r

√
R2 − s2ωr(s)ds

}
, 0 ≤ r ≤ R.

Since ωr(r) > 0 for r > 0, we deduce that the function R 7→ f(r;R) is strictly

increasing for R ≥ r. Moreover, we have

lim
R→∞

f(r;R) =∞,

and hence for any r ≥ 0 there exists a unique R ≥ r such that f(r;R) = t. �

Remark 2.5. By Proposition 2.4, we can define the function R : H1 → [0,∞) by

letting R(0) = 0 and R(z, t) = R if and only if (z, t) ∈ ΣR for R > 0. The function

R(z, t), in fact, depends on r = |z| and thus we may consider R(z, t) = R(r, t)

as a function of r and t. This function is implicitly defined by the equation |t| =

f(r;R(r, t)). Differentiating this equation, we find the derivatives of R, i.e.,

Rr = − fr
fR

and Rt =
sgn(t)

fR
, (2.12)

where fR is given by (2.10).
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3. Second fundamental form of ΣR

In this section, we compute the second fundamental form of the spheres ΣR. In

fact, we will see that H = 1/(εR) is the mean curvature of ΣR, as already clear

from (2.6) and (2.7). Let N = (0, f(0;R)) ∈ ΣR be the north pole of ΣR and let

S = −N = (0,−f(0;R)) be its south pole. In Σ∗R = ΣR \ {±N} there is a frame of

tangent vector fields X1, X2 ∈ Γ(TΣ∗R) such that

|X1| = |X2| = 1, 〈X1, X2〉 = 0, ϑ(X1) = 0, (3.1)

where ϑ is the left-invariant 1-form introduced in (1.3). Explicit expressions for X1

and X2 are given in formula (3.9) below. This frame is unique up to the sign ±X1 and

±X2. Here and in the rest of the paper, we denote by N the exterior unit normal to

the spheres ΣR.

The second fundamental form h of ΣR with respect to the frame X1, X2 is given by

h = (hij)i,j=1,2, hij = 〈∇XiN , Xj〉, i, j = 1, 2,

where ∇ denotes the Levi-Civita connection of H1 endowed with the left-invariant

metric g. The linear connection ∇ is represented by the linear mapping h × h 7→ h,

(V,W ) 7→ ∇VW . Using the fact that the connection is torsion free and metric, it can

be seen that ∇ is characterized by the following relations:

∇XX = ∇Y Y = ∇TT = 0,

∇YX = τT and ∇XY = −τT,

∇TX = ∇XT = τY,

∇TY = ∇Y T = −τX.

(3.2)

Here and in the rest of the paper, we use the coordinates associated with the frame

(1.1). For (z, t) ∈ H1, we set r = |z| and use the short notation

% = τεr. (3.3)

Theorem 3.1. For any R > 0, the second fundamental form h of ΣR with respect to

the frame X1, X2 in (3.1) at the point (z, t) ∈ ΣR is given by

h =
1

1 + %2

(
H(1 + 2%2) τ%2

τ%2 H

)
, (3.4)

where R = 1/Hε and H is the mean curvature of ΣR. The principal curvatures of

ΣR are given by

κ1 = H +
%2

1 + %2

√
H2 + τ 2,

κ2 = H − %2

1 + %2

√
H2 + τ 2.

(3.5)
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Outside the north and south poles, principal directions are given by

K1 = cos βX1 + sin βX2,

K2 = − sin βX1 + cos βX2,
(3.6)

where β = βH ∈ (−π/4, π/4) is the angle

βH = arctan

(
τ

H +
√
H2 + τ 2

)
. (3.7)

Proof. Let a, b : Σ∗R → R and c, p : ΣR → R be the following functions depending on

the radial coordinate r = |z|:

a = a(r;R) =
ω(r)

rω(R)
, b = b(r;R) = ±

√
R2 − r2

rRω(R)
,

c = c(r;R) =
rω(R)

Rω(r)
, p = p(r;R) = ±τε

√
R2 − r2

ω(r)
.

(3.8)

In fact, b and p also depend on the sign of t. Namely, in b and p we choose the sign

+ in the northern hemisphere, that is for t ≥ 0, while we choose the sign − in the

southern hemisphere, where t ≤ 0. Our computations are in the case t ≥ 0.

The vector fields

X1 = −a
(
(y − xp)X − (x+ yp)Y

)
,

X2 = −b
(
(x+ yp)X + (y − xp)Y

)
+ cT

(3.9)

form an orthonormal frame for TΣ∗R satisfying (3.1). This frame can be computed

starting from (2.3). The outer unit normal to ΣR is given by

N =
1

R

{
(x+ yp)X + (y − xp)Y +

p

τε
T
}
. (3.10)

Notice that this formula is well defined also at the poles.

We compute the entries h11 and h12. Using X1R = 0, we find

∇X1N =
1

R

{
X1(x+ yp)X +X1(y − xp)Y +X1

( p
τε

)
T

+ (x+ yp)∇X1X + (y − xp)∇X1Y +
p

τε
∇X1T

}
,

(3.11)

where, by the fundamental relations (3.2),

∇X1X = τa(x+ yp)T,

∇X1Y = τa(y − xp)T,

∇X1T = −τa
[
(y − xp)Y + (x+ yp)X

]
.

(3.12)

Using the formulas

X1x = −a
ε

(y − xp) and X1y =
a

ε
(x+ yp),
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we find the derivatives

X1(x+ yp) =
a

ε

(
2xp+ y(p2 − 1)

)
+ yX1p,

X1(y − xp) =
a

ε

(
2yp+ x(1− p2)

)
− xX1p.

(3.13)

Inserting (3.13) and (3.12) into (3.11), we obtain

∇X1N =
1

R

{[
− a

ε
(y − xp) + yX1p

]
X +

[a
ε

(x+ yp)− xX1p
]
Y

+
[X1p

τε
+ τr2a(p2 + 1)

]
T
}
.

(3.14)

From this formula we get

h11 = 〈∇X1N , X1〉 =
r2a

Rε

{
a(p2 + 1)− εX1p

}
,

where p2 + 1 = ω(R)2/ω(r)2 and X1p can be computed starting from

pr(r;R) = −τεr ω(R)2

√
R2 − r2ω(r)3

. (3.15)

Namely, also using the formula for a and p in (3.8), we have

X1p =
ra

ε
ppr = −τ 2εr

ω(R)

ω(r)3
.

With (2.7) and (3.3), we finally find

h11 =
1

Rε

(
1 +

τ 2ε2r2

ω(r)2

)
= H

(
1 +

%2

1 + %2

)
.

From (3.14) we also deduce

h12 = 〈∇X1N , X2〉 = − b

R
r2pX1p+

c

R

{X1p

τε
+ τr2a(1 + p2)

}
,

and using the formula for X1p and the formulas in (3.8) we obtain

h12 =
τ%2

1 + %2
.

To compute the entry h22, we start from

∇X2N =
1

R

{
X2(x+ yp)X +X2(y − xp)Y +

X2(p)

τε
T

+ (x+ yp)∇X2X + (y − xp)∇X2Y +
p

τε
∇X2T

}
,

(3.16)

where, by (3.2) we have

∇X2X = −τb(y − xp)T + τcY,

∇X2Y = τb(x+ yp)T − τcX,

∇X2T = −τb(x+ yp)Y + τb(y − xp)X.
(3.17)
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Since X2x = −b(x+ yp)/ε and X2y = −b(y − xp)/ε, we get

X2(x+ yp) = −b
ε

(
2yp+ x(1− p2)

)
− yX2p,

X2(y − xp) =
b

ε

(
2xp+ y(p2 − 1)

)
+ xX2p.

(3.18)

Inserting (3.17) and (3.18) into (3.16) we obtain

∇X2N =
1

R

{
−
[b
ε

(x+ yp) + yX2p+ τc(y − xp)
]
X

+
[
− b

ε
(y − xp) + xX2p+ τc(x+ yp)

]
Y − X2p

τε
T
}
,

and thus

h22 = 〈∇X2N , X2〉 =
br2

εR

{
b(1 + p2) + εpX2p

}
− cX2p

τεR
.

Now X2p can be computed by using (3.15) and the formulas (3.8), and we obtain

X2p = −τrω(R)

Rω(r)3
.

By (2.7) and (3.3) we then conclude that

h22 =
H

1 + %2
.

The principal curvatures κ1, κ2 of ΣR are the solutions to the system κ1 + κ2 = tr(h) = 2H

κ1κ2 = det(h) =
H2(1 + 2%2)− τ 2%4

(1 + %2)2
.

They are given explicitly by the formulas (3.5).

Now letK1, K2 be tangent vectors as in (3.6). We identify h with the shape operator

h ∈ Hom(TpΣR;TpΣR), h(K) = ∇KN , at any point p ∈ ΣR and K ∈ TpΣR. When

% 6= 0 (i.e., outside the north and south poles), the system of equations

h(K1) = κ1K1 and h(K2) = κ2K2

is satisfied if and only if the angle β = βH is chosen as in (3.7). The argument of

arctan in (3.7) is in the interval (−1, 1) and thus βH ∈ (−π/4, π/4). �

Remark 3.2. When 2H2 < (
√

5− 1)τ 2, the set of points (z, t) ∈ ΣR such that

%2 >
H√

H2 + τ 2 −H
is nonempty. The inequality above is equivalent to κ2 < 0 at the point (z, t) ∈ ΣR.

This means that, for large enough R, points in ΣR near the equator have strictly

negative Gauss curvature.

Remark 3.3. The convergence of the Riemannian second fundamental form towards

its sub-Riemannian counterpart is studied in [5], in the setting of Carnot groups.
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4. Geodesic foliation of ΣR

We prove that each CMC sphere ΣR is foliated by a family of geodesics of ΣR

joining the north to the south pole. In fact, we show that the foliation is governed

by the normal N to the foliation H1
∗ =

⋃
R>0 ΣR. In the sub-Riemannian limit, we

recover the foliation property of the Pansu’s sphere. In the Euclidean limit, we find

the foliation of the round sphere with meridians.

We need two preliminary lemmas. We define a function R : H1 → [0,∞) by letting

R(0) = 0 and R(z, t) = R if and only if (z, t) ∈ ΣR. In fact, R(z, t) depends on r = |z|
and t. The function p in (3.8) is of the form p = p(r, R(r, t)).

Now, we compute the derivative of these functions in the normal direction N .

Lemma 4.1. The derivative along N of the functions R and p are, respectively,

N R =
`(p)

ε
, (4.1)

and

N p = ετ 2R
2ω(r)2`(p)− r2ω(R)2

Rω(r)4p
, (4.2)

where `(p) = (1 + p arctan p)−1, as in (2.11).

Proof. We start from the following expression for the unit normal (in the coordinates

(x, y, t)):

N =
1

R

{r
ε
∂r +

p

ε
(y∂x − x∂y) + sgn(t)ε2ω(r)

√
R2 − r2∂t

}
.

We just consider the case t ≥ 0. Using (2.12), we obtain

N R =
1

R

{r
ε
Rr + ε2ω(r)

√
R2 − r2Rt

}
=

1

RfR

{
ε2ω(r)

√
R2 − r2 − r

ε
fr

}
.

Inserting into this formula the expression in (2.8) for fr we get

N R =
ε2Rω(r)

fR
√
R2 − r2

,

and using formula (2.10) for fR, namely,

fR = τε4R
[

arctan(p) +
1

p

]
=
τε4R

p`(p)
,

we obtain formula (4.1).

To compute the derivatives of p in r and t, we have to consider p = p(r;R) and

R = R(r, t). Using the formula in (3.8) for p and the expression (2.12) for Rr yields

pr = − τεrω(R)2

ω(r)3
√
R2 − r2

, pR =
τεR

ω(r)
√
R2 − r2

, Rr = − fr
fR

=
ε3rω(r)√
R2 − r2fR

,
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and thus

∂

∂r
p(r, R(r, t)) = pr(r, R(r, t)) + pR(r, R(r, t))Rr(r, t)

=
τεr

ω(r)3
√
R2 − r2

[
ω(r)2`(p)− ω(R)2

]
.

Similarly, we compute

∂

∂t
p(r;R(r, t)) = pR(r;R(r, t))Rt(r, t) =

τ`(p)

ε2ω(r)2
.

The derivative of p along N is thus as in (4.2), when t ≥ 0. The case t < 0 is

analogous.

�

In the next lemma, we compute the covariant derivative ∇N N . The resulting

vector field in H1
∗ is tangent to each CMC sphere ΣR, for any R > 0.

Lemma 4.2. At any point in (z, t) ∈ H1
∗ we have

∇N N (z, t) = N
( p
R

)[
(y + xΦ)X − (x− yΦ)Y +

1

τε
T
]
, (4.3)

where Φ = Φ(r;R) is the function defined as

Φ = −ω(r)2p

τ 2ε2r2
,

and the derivative N (p/R) is given by

N
( p
R

)
= −

ετ 2r2
(
ω(R)2 − `(p)ω(r)2

)
R2ω(r)4p

,

with ` as in (2.11).

Proof. Starting from formula (3.10) for N , we find that

∇N N = N
(x+ yp

R

)
X + N

(y − xp
R

)
Y + N

( p

τεR

)
T

+
1

R

(
(x+ yp)∇N X + (y − xp)∇N Y +

p

τε
∇N T

)
,

(4.4)

where, by the fundamental relations (3.2), we have

(x+ yp)∇N X + (y − xp)∇N Y +
p

τε
∇N T =

2p

εR

(
− (y − xp)X + (x+ yp)Y

)
. (4.5)

From the elementary formulas

N x =
1

Rε
(x+ yp) and N y =

1

Rε
(y − xp),

we find

N (x+ yp) =
1

εR

(
x(1− p2) + 2yp

)
+ yN p,

N (y − xp) =
1

εR

(
y(1− p2)− 2xp

)
− xN p.

(4.6)
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Inserting (4.5) and (4.6) into (4.4) we obtain the following expression

∇N N =
1

R2

[{
x(ε−1(1 + p2)−N R) + y(RN p− pN R)

}
X

+
{
y(ε−1(1 + p2)−N R)− x(RN p− pN R)

}
Y

+
1

τε
(RN p− pN R)T

]
.

(4.7)

From (4.1) and (4.2) we compute

RN p− pN R = − ετ 2r2

ω(r)4p

[
ω(R)2 − `(p)ω(r)2

]
.

Inserting this formula into (4.7) and using 1 +p2 = ω(R)2/ω(r)2 yields the claim. �

Let N ∈ Γ(TH1
∗ ) be the exterior unit normal to the family of CMC spheres ΣR

centered at 0 ∈ H1. The vector field ∇N N is tangent to ΣR for any R > 0, and for

(z, t) ∈ ΣR we have

∇N N (z, t) = 0 if and only if z = 0 or t = 0.

However, it can be checked that the normalized vector field

M (z, t) = sgn(t)
∇N N

|∇N N |
∈ Γ(TΣ∗R)

is smoothly defined also at points (z, t) ∈ ΣR at the equator, where t = 0. We denote

by ∇ΣR the restriction of the Levi-Civita connection ∇ to ΣR.

Theorem 4.3. Let ΣR ⊂ H1 be the CMC sphere with mean curvature H > 0. Then

the vector field ∇M M is smoothly defined on ΣR and for any (z, t) ∈ ΣR we have

∇M M (z, t) = − H

ω(r)2
N . (4.8)

In particular, ∇ΣR
M M = 0 and the integral curves of M are Riemannian geodesics of

ΣR joining the north pole N to the south pole S.

Proof. From (4.3) we obtain the following formula for M :

M = (xλ− yµ)X + (yλ+ xµ)Y − µ

τε
T, (4.9)

where λ, µ : Σ∗R → R are the functions

λ = λ(r) = ±
√
R2 − r2

rR
and µ = µ(r) =

τεr

Rω(r)
, (4.10)

with r = |z| and R = 1/(εH). The functions λ and µ are radially symmetric in z.

In defining λ we choose the sign +, when t ≥ 0, and the sign −, when t < 0. In the

coordinates (x, y, t), the vector field M has the following expression

M =
1

ε

(
λr∂r + µ(x∂y − y∂x)− µ

ε2ω(r)2

τ
∂t

)
, (4.11)
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where r∂r = x∂x + y∂y, and so we have

∇M M =(xλ− yµ)∇MX + (yλ+ xµ)∇MY − µ

τε
∇MT

+ M (xλ− yµ)X + M (yλ+ xµ)Y −M
( µ
τε

)
T.

(4.12)

Using (4.11), we compute

Mx =
1

ε
(xλ− yµ) and M y =

1

ε
(yλ+ xµ), (4.13)

and so we find

M (xλ− yµ) =
1

ε
(xλ− yµ)λ+ xMλ− 1

ε
(yλ+ xµ)µ− yMµ,

M (yλ+ xµ) =
1

ε
(yλ+ xµ)λ+ yMλ+

1

ε
(xλ− yµ)µ+ xMµ.

(4.14)

Now, inserting (4.13) and (4.14) into (4.12), we get

∇M M =
(x
ε

(λ2 + µ2) + xMλ− yMµ
)
X

+
(y
ε

(λ2 + µ2) + yMλ+ xMµ
)
Y − 1

τε
MµT.

The next computations are for the case t ≥ 0. Again from (4.11), we get

Mλ =
λr

ε
∂rλ = − Rλ

εr
√
R2 − r2

, and Mµ =
λr

ε
∂rµ =

τrλ

Rω(r)3
. (4.15)

From (4.10) and (4.15) we have

1

ε
(λ2 + µ2) + Mλ = − 1

εR2ω(r)2
,

and so we finally obtain

∇M M = (xΛ− yM)X + (yΛ + xM)Y − M

τε
T, (4.16)

where we have set

Λ = − 1

εR2ω(r)2
, M = τ

√
R2 − r2

R2ω(r)3
. (4.17)

Comparing with (3.10), we deduce that

∇M M = − 1

εRω(r)2
N .

The claim ∇ΣR
M M = 0 easily follows from the last formula.

�
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Figure 1. The plotted curve is an integral curve of the vector field M

for R = 2, ε = 0.5, and σ = 0.5.

Remark 4.4. We compute the pointwise limit of M in (4.9) when σ → 0, for t ≥ 0.

In the southern hemisphere the situation is analogous. By (4.11), the vector field M

is given by

M =
1

εR

(√R2 − r2

r
(x∂x + y∂y) +

σr√
ε6 + σ2r2

(x∂y − y∂x)− r
√
ε6 + σ2r2∂t

)
.

With ε = 1 we have

M̂ = lim
σ→0

M =

√
R2 − r2

rR
(x∂x + y∂y)−

r

R
∂t.

Clearly, the vector field M̂ is tangent to the round sphere of radius R > 0 in the

three-dimensional Euclidean space and its integral lines turn out to be the meridians

from the north to the south pole.

Remark 4.5. We study the limit of εM when ε→ 0, in the northern hemisphere.

The frame of left-invariant vector fields X̄ = εX, Ȳ = εY and T̄ = ε−2T is

independent of ε. Moreover, the linear connection ∇ restricted to the horizontal

distribution spanned by X̄ and Ȳ is independent of the parameter ε. Indeed, from

the fundamental relations (3.2) and from (1.2) we find

∇X̄X̄ = ∇Ȳ Ȳ = 0,

∇X̄ Ȳ = −σT̄ and ∇Ȳ X̄ = σT̄ .

Now, it turns out that

M̄ = lim
ε→0

εM =
1

R

[(
x

√
R2 − r2

r
− y
)
∂x +

(
y

√
R2 − r2

r
+ x
)
∂y − σr2∂t

]
= (xλ̄− yµ̄)X̄ + (yλ̄+ xµ̄)Ȳ ,

where

λ̄ = λ =

√
R2 − r2

rR
, µ̄ =

1

R
.
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The vector field M̄ is horizontal and tangent to the Pansu’s sphere.

We denote by J the complex structure J(X̄) = Ȳ and J(Ȳ ) = −X̄. A computation

similar to the one in the proof of Theorem 4.3 shows that

∇M̄ M̄ =
2

R
J(M̄ ). (4.18)

This is the equation for Carnot-Carathéodory geodesics in H1 for the sub-Riemannian

metric making X̄ and Ȳ orthonormal, see [19, Proposition 3.1].

Thus, we reached the following conclusion. The integral curves of M are Riemann-

ian geodesics of ΣR and converge to the integral curves of M̄ . These curves foliate

the Pansu’s sphere and are Carnot-Carathéodory geodesics (not only of the Pansu’s

sphere but also) of H1.

Using (4.18) we can pass to the limit as ε → 0 in equation (4.8), properly scaled.

An inspection of the right hand side in (4.16) shows that the right hand side of (4.8)

is asymptotic to ε4. In fact, starting from (4.17) we get

− lim
ε→0

H

ε4ω(r)2
N =

1

Rσ2r2

[
− (xµ̄+ yλ̄)X̄ + (xλ̄− yµ̄)Ȳ

]
=

1

Rσ2r2
J(M̄ ). (4.19)

From (4.8), (4.18), and (4.19) we deduce that

lim
ε→0

ε−4∇M M =
1

2σ2r2
∇M̄ M̄ .

5. Topological CMC spheres are left translations of ΣR

In this section, we prove that any topological sphere in H1 having constant mean

curvature is congruent to a sphere ΣR for some R > 0. This result was announced, in

wider generality, in [1]. As in [2], our proof relies on the identification of a holomorphic

quadratic differential for CMC surfaces in H1.

For an oriented surface Σ in H1 with unit normal vector N , we denote by h ∈
Hom(TpΣ;TpΣ) the shape operator h(W ) = ∇WN , at any point p ∈ Σ. The 1-

form ϑ in H1, defined by ϑ(W ) = 〈W,T 〉 for W ∈ Γ(TH1), can be restricted to the

tangent bundle TΣ. The tensor product ϑ⊗ϑ ∈ Hom(TpΣ;TpΣ) is defined, as a linear

operator, by the formula

(ϑ⊗ ϑ)(W ) = ϑ(W )(ϑ(X1)X1 + ϑ(X2)X2), W ∈ Γ(TΣ),

where X1, X2 is any (local) orthonormal frame of TΣ. Finally, for any H ∈ R with

H 6= 0, let αH ∈ (−π/4, π/4) be the angle

αH =
1

2
arctan

( τ
H

)
, (5.1)

and let qH ∈ Hom(TpΣ;TpΣ) be the (counterclockwise) rotation by the angle αH of

each tangent plane TpΣ with p ∈ Σ.
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Definition 5.1. Let Σ be an (immersed) surface in H1 with constant mean curvature

H 6= 0. At any point p ∈ Σ, we define the linear operator k ∈ Hom(TpΣ;TpΣ) by

k = h+
2τ 2

√
H2 + τ 2

qH ◦ (ϑ⊗ ϑ) ◦ q−1
H . (5.2)

The operator k is symmetric, i.e., 〈k(V ),W 〉 = 〈V, k(W )〉. The trace-free part of

k is k0 = k − 1
2
tr(k)Id. In fact, we have

k0 = h0 +
2τ 2

√
H2 + τ 2

qH ◦ (ϑ⊗ ϑ)0 ◦ q−1
H . (5.3)

Formula (5.2) is analogous to the formula for the quadratic holomorphic differential

discovered in [2].

In the following, we identify the linear operators h, k, ϑ⊗ϑ with the corresponding

bilinear forms (V,W ) 7→ h(V,W ) = 〈h(V ),W 〉, and so on.

The structure of k in (5.2) can be established in the following way. Let ΣR be the

CMC sphere with R = 1/εH. From the formula (3.4), we deduce that, in the frame

X1, X2 in (3.1), the trace-free shape operator at the point (z, t) ∈ ΣR is given by

h0 =
%2

1 + %2

(
H τ

τ −H

)
,

where % = τε|z|. On the other hand, from (3.9) and (3.8), we get

ϑ(X1) = 0 and ϑ(X2) =
%
√
τ 2 +H2

τ
√

1 + %2
,

and we therefore obtain the following formula for the trace-free tensor (ϑ⊗ϑ)0 in the

frame X1, X2:

(ϑ⊗ ϑ)0 = −(τ 2 +H2)

2τ 2

%2

1 + %2

(
1 0

0 −1

)
.

Now, in the unknowns c ∈ R and q (that is a rotation by an angle β), the system

of equations h0 + cq(ϑ ⊗ ϑ)0q
−1 = 0 holds independently of % if and only if c =

2τ 2/
√
H2 + τ 2 and β is the angle in (5.1). We record this fact in the next:

Proposition 5.2. The linear operator k on the sphere ΣR with mean curvature H,

at the point (z, t) ∈ ΣR, is given by

k =
(
H +

%2

1 + %2

√
τ 2 +H2

)
Id.

In particular, ΣR has vanishing k0 (i.e., k0 = 0).

In Theorem 5.7, we prove that any topological sphere in H1 with constant mean

curvature has vanishing k0. We need to work in a conformal frame of tangent vector

fields to the surface.
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Let z = x1 + ix2 be the complex variable. Let D ⊂ C be an open set and, for a

given map F ∈ C∞(D;H1), consider the immersed surface Σ = F (D) ⊂ H1. The

parametrization F is conformal if there exists a positive function E ∈ C∞(D) such

that, at any point in D, the vector fields V1 = F∗
∂
∂x1

and V2 = F∗
∂
∂x2

satisfy:

|V1|2 = |V2|2 = E, 〈V1, V2〉 = 0. (5.4)

We call V1, V2 a conformal frame for Σ and we denote by N the normal vector field

to Σ such that triple V1, V2,N forms a positively oriented frame, i.e.,

N =
1

E
V1 ∧ V2. (5.5)

The second fundamental form of Σ in the frame V1, V2 is denoted by

h = (hij)i,j=1,2 =

(
L M

M N

)
, hij = 〈∇iN , Vj〉, (5.6)

where ∇i = ∇Vi for i = 1, 2. This notation differs from (3.4), where the fixed frame

is X1, X2,N . Finally, the mean curvature of Σ is

H =
L+N

2E
=
h11 + h22

2E
. (5.7)

By Hopf’s technique on holomorphic quadratic differentials, the validity of the

equation k0 = 0 follows from the Codazzi’s equations, which involve curvature terms.

An interesting relation between the 1-form ϑ and the Riemann curvature operator,

defined as

R(U, V )W = ∇U∇VW −∇V∇UW −∇[U,V ]W

for any U, V,W ∈ Γ(TH1), is described in the following:

Lemma 5.3. Let V1, V2 be a conformal frame of an immersed surface Σ in H1 with

conformal factor E and unit normal N . Then, we have

〈R(V2, V1)N , V2〉 = 4τ 2Eϑ(V1)ϑ(N ). (5.8)

Proof. We use the notation

Vi = V X
i X + V Y

i Y + V T
i T, i = 1, 2,

N = N XX + N Y Y + N TT.
(5.9)
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From the fundamental relations (3.2), we obtain:

〈R(V2, V1)N , V2〉 = V X
2 V Y

1 N Y V X
2 · (−3τ 2) (1)

+V X
2 V Y

1 N XV Y
2 · (3τ 2) (2)

+V X
2 V T

1 N TV X
2 · (τ 2) (3)

+V X
2 V T

1 N XV T
2 · (−τ 2) (4)

+V Y
2 V

X
1 N XV Y

2 · (−3τ 2) (5)

+V Y
2 V

X
1 N Y V X

2 · (3τ 2) (6)

+V Y
2 V

T
1 N TV Y

2 · (τ 2) (7)

+V Y
2 V

T
1 N Y V T

2 · (−τ 2) (8)

+V T
2 V

X
1 N XV T

2 · (τ 2) (9)

+V T
2 V

X
1 N TV X

2 · (−τ 2) (10)

+V T
2 V

Y
1 N Y V T

2 · (τ 2) (11)

+V T
2 V

Y
1 N TV Y

2 · (−τ 2). (12)

Now, we have (9) + (10) + (11) + (12) = 0. In fact:

(9) + (11) = τ 2V T
2 V

T
2 (V X

1 N X + V Y
1 N Y ) = −τ 2V T

2 V
T

2 V
T

1 N T ,

(10) + (12) = −τ 2V T
2 N T (V X

1 V X
2 + V Y

1 V
Y

2 ) = τ 2V T
2 N TV T

1 V
T

2 ,

where we used 〈V1,N 〉 = 〈V1, V2〉 = 0 to deduce V X
1 N X + V Y

1 N Y = −V T
1 N T and

V X
1 V X

2 + V Y
1 V

Y
2 = −V T

1 V
T

2 . Moreover, we have (3) + (4) + (7) + (8) = τ 2EV T
1 N T .

Indeed,

(3) + (7) = τ 2V T
1 N T (V X

2 V X
2 + V Y

2 V
Y

2 ) = τ 2V T
1 N T (E − V T

2 V
T

2 ),

(4) + (8) = −τ 2V T
1 V

T
2 (V X

2 N X + V Y
2 N Y ) = τ 2V T

1 V
T

2 V
T

2 N T ,

where we used 〈V2, V2〉 = E and 〈V2,N 〉 = 0 to deduce V X
2 V X

2 +V Y
2 V

Y
2 = E−V T

2 V
T

2

and V X
2 N X + V Y

2 N Y = −V T
2 N T . Indeed,

(1) + (5) = −3τ 2(V X
2 V Y

1 N Y V X
2 + V Y

2 V
X

1 N XV Y
2 )

= 3τ 2[V T
1 N T (V X

2 V X
2 + V Y

2 V
Y

2 ) + V X
2 V X

1 N XV X
2 + V Y

2 V
Y

1 N Y V Y
2 ]

= 3τ 2[V T
1 N T (E − V T

2 V
T

2 ) + V X
2 V X

1 N XV X
2 + V Y

2 V
Y

1 N Y V Y
2 ]

(2) + (6) = 3τ 2[V X
2 V Y

1 N XV Y
2 + V Y

2 V
X

1 N Y V X
2 ]

= −3τ 2[V T
1 V

T
2 (V X

2 N X + V Y
2 N Y ) + V X

2 V X
1 N XV X

2 + V Y
2 V

Y
1 N Y V Y

2 ]

= −3τ 2[−V T
1 V

T
2 N TV T

2 + V X
2 V X

1 N XV X
2 + V Y

2 V
Y

1 N Y V Y
2 ],

where we used 〈V1,N 〉 = 〈V1, V2〉 = 0 to deduce V Y
1 N Y = −V X

1 N X − V T
1 N T ,

V Y
1 V

Y
2 = −V X

1 V X
2 − V T

1 V
T

2 and V X
1 V X

2 = −V X
1 V X

2 − V T
1 V

T
2 . Equation (5.8) follows.

�

For an immersed surface with conformal frame V1, V2, we use the notation ViE = Ei,

ViH = Hi, ViN = Ni, ViM = Mi, ViL = Li, i = 1, 2.
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Theorem 5.4 (Codazzi’s Equations). Let Σ = F (D) be an immersed surface in H1

with conformal frame V1, V2, conformal factor E and unit normal N . Then, we have

H1 =
1

E

{L1 −N1

2
+M2 − 4τ 2Eϑ(V1)ϑ(N )

}
, (5.10)

H2 =
1

E

{N2 − L2

2
+M1 − 4τ 2Eϑ(V2)ϑ(N )

}
, (5.11)

where L,M,N,H are as in (5.6) and (5.7).

Proof. We start from the following well-known formulas for the derivatives of the

mean curvature:

H1 =
1

E

{L1 −N1

2
+M2 + 〈R(V1, V2)N , V2〉

}
, (5.12)

H2 =
1

E

{N2 − L2

2
+M1 + 〈R(V2, V1)N , V1〉

}
. (5.13)

Our claims (5.10) and (5.11) follow from these formulas and Lemma 5.3.

For the reader’s convenience, we give a short sketch of the proof of (5.12), see

e.g. [12] for the flat case. For any i, j, k = 1, 2, we have

Vkhij − Vihkj = 〈R(Vk, Vi)N , Vj〉+ 〈∇iN ,∇kVj〉 − 〈∇kN ,∇iVj〉. (5.14)

Setting i = j = 2 and k = 1 in (5.14), and using (5.7) we obtain

V1(2EH) = L1 +M2 + 〈R(V1, V2)N , V2〉+ 〈∇2N ,∇1V2〉 − 〈∇1N ,∇2V2〉. (5.15)

Using the expression of ∇iN in the conformal frame, we find

〈∇2N ,∇1V2〉 − 〈∇1N ,∇2V2〉 = HE1, (5.16)

and from (5.15) and (5.16) we deduce that

H1 =
1

2E
{L1 − E1H +M2 + 〈R(V1, V2)N , V2〉}. (5.17)

From (5.7), we have the further equation

L1 − E1H =
L1 −N1

2
+ EH1,

that, inserted into (5.17), gives claim (5.12).

�

Now we switch to the complex variable z = x1 + ix2 ∈ D and define the complex

vector fields

Z =
1

2
(V1 − iV2) = F∗

( ∂
∂z

)
,

Z̄ =
1

2
(V1 + iV2) = F∗

( ∂
∂z̄

)
.
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Equations (5.10)-(5.11) can be transformed into one single equation:

E(ZH) = Z̄
(L−N

2
− iM

)
− 4τ 2Eϑ(N )ϑ(Z). (5.18)

Now consider the trace-free part of b = k − h, i.e.,

b0 =
2τ 2

√
H2 + τ 2

qH ◦ (ϑ⊗ ϑ)0 ◦ q−1
H

The entries of b0 as a quadratic form in the conformal frame V1, V2, with ϑi = ϑ(Vi)

and cH = 2τ2

H2+τ2
, are given by

A = b0(V1, V1) = cH

(
H
ϑ2

1 − ϑ2
2

2
− τϑ1ϑ2

)
,

B = b0(V1, V2) = cH

(
Hϑ1ϑ2 + τ

ϑ2
1 − ϑ2

2

2

)
.

(5.19)

These entries can be computed starting from qH(ϑ⊗ϑ)0q
−1
H = q2

H(ϑ⊗ϑ)0, where q2
H is

the rotation by the angle 2αH that, by (5.1), satisfies cos(2αH) = H/
√
H2 + τ 2 and

sin(2αH) = τ/
√
H2 + τ 2.

Lemma 5.5. Let Σ be an immersed surface in H1 with constant mean curvature H

and unit normal N such that V1, V2,N is positively oriented. Then, on Σ we have

Z̄(A− iB) = −4τ 2Eϑ(N )ϑ(Z). (5.20)

Proof. The complex equation (5.20) is equivalent to the system of real equations

A1 +B2 = −4τ 2Eϑ(N )ϑ(V1),

A2 −B1 = 4τ 2Eϑ(N )ϑ(V2),
(5.21)

where Ai = ViA and Bi = ViB, i = 1, 2.

We check the first equation in (5.21). Since H is constant, we have

A1 +B2 = cHH
{
V1

(ϑ2
1 − ϑ2

2

2

)
+ V2(ϑ1ϑ2)

}
+ τcH

{
V2

(ϑ2
1 − ϑ2

2

2

)
− V1(ϑ1ϑ2)

}
,

where

V1

(ϑ2
1 − ϑ2

2

2

)
+ V2(ϑ1ϑ2) = ϑ1(V1ϑ1 + V2ϑ2) + ϑ2(V2ϑ1 − V1ϑ2),

V2

(ϑ2
1 − ϑ2

2

2

)
− V1(ϑ1ϑ2) = ϑ1(V2ϑ1 − V1ϑ2)− ϑ2(V1ϑ1 + V2ϑ2).

For i, j = 1, 2, we have

Viϑj = 〈∇iT, Vj〉+ 〈T,∇iVj〉, (5.22)

where, with the notation (5.9) and by the fundamental relations (3.2),

〈∇iT, Vj〉 = 〈τV X
i Y − τV Y

i X, Vj〉 = τV X
i V

Y
j − τV Y

i V
X
j . (5.23)
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From (5.22), (5.23), (5.5), and

∇2V1 −∇1V2 = [V2, V1] =
[
F∗

∂

∂x2

, F∗
∂

∂x1

]
= F∗

[ ∂

∂x2

,
∂

∂x1

]
= 0,

we deduce

V2ϑ1 − V1ϑ2 = 2τ(V Y
1 V

X
2 − V X

1 V Y
2 ) + 〈T,∇2V1 −∇1V2〉 = −2τEϑ(N ). (5.24)

By the definition (5.7) and (5.4), we have

∇1V1 +∇2V2 = 〈∇1V1 +∇2V2,N 〉N = −2EHN ,

and thus, again from (5.22) and (5.23), we obtain

V1ϑ1 + V2ϑ2 = ϑ(∇1V1 +∇2V2) = −2EHϑ(N ). (5.25)

From (5.25) and (5.24) we deduce that

V1

(ϑ2
1 − ϑ2

2

2

)
+ V2(ϑ1ϑ2) = −2Eϑ(N )[Hϑ(V1) + τϑ(V2)],

V2

(ϑ2
1 − ϑ2

2

2

)
− V1(ϑ1ϑ2) = −2Eϑ(N )[τϑ(V1)−Hϑ(V2)],

(5.26)

and finally

A1 +B2 = −2cH(H2 + τ 2)Eϑ(N )ϑ(V1) = −4τ 2Eϑ(N )ϑ(V1).

In order to prove the second equation in (5.21), notice that

B1 − A2 = cHH
{
V1(ϑ1ϑ2)− V2

(ϑ2
1 − ϑ2

2

2

)}
+ cHτ

{
V2(ϑ1ϑ2) + V1

(ϑ2
1 − ϑ2

2

2

)}
.

By (5.26) we hence obtain

B1 − A2 = cHH
{

2Eϑ(N )[τϑ(V1)−Hϑ(V2)]
}
− cHτ

{
2Eϑ(N )[Hϑ(V1) + τϑ(V2)]

}
= −2cH(H2 + τ 2)Eϑ(N )ϑ(V1) = −4τ 2Eϑ(N )ϑ(V2).

�

Let Σ be an immersed surface in H1 defined in terms of a conformal parametrization

F ∈ C∞(D;H1). Let f ∈ C∞(D;C) be the function of the complex variable z ∈ D
given by

f(z) =
L−N

2
− iM + A− iB, (5.27)

where L,M,M,A,B are defined as in (5.6) and (5.19) via the conformal frame V1, V2

and are evaluated at the point F (z).

Proposition 5.6. If Σ has constant mean curvature H then the function f in (5.27)

is holomorphic in D.
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Proof. From (5.18) with ZH = 0 and (5.20), we obtain the equation on Σ = F (D)

Z̄
(L−N

2
− iM + A− iB

)
= 0,

that is equivalent to ∂z̄f = 0 in D. �

Now, by a standard argument of Hopf, see [9] Chapter VI, for topological spheres

the function f is identically zero. By Liouville’s theorem, this follows from the esti-

mate

|f(z)| ≤ C

|z|4
, z ∈ C,

that can be obtained expressing the second fundamental forms in two different charts

without the north and south pole, respectively. We skip the details of the proof of

the next:

Theorem 5.7. A topological sphere Σ immersed in H1 with constant mean curvature

has vanishing k0.

In the rest of this section, we show how to deduce from the equation k0 = 0 that

any topological sphere is congruent to a sphere ΣR. Differently from [2], we do not

use the fact that the isometry group of H1 is four-dimensional.

Let h be the Lie algebra of H1 and let 〈·, ·〉 be the scalar product making X, Y, T

orthonormal. We denote by S2 = {ν ∈ h : |ν| =
√
〈ν, ν〉 = 1} the unit sphere in

h. For any p ∈ H1, let τ p : H1 → H1 be the left-translation τ p(q) = p−1 · q by the

inverse of p, where · is the group law of H1, and denote by τ p∗ ∈ Hom(TpH
1; h) its

differential.

For any point (p, ν) ∈ H1×S2 there is a unique N ∈ TpH1 such that ν = τ p∗N and

we define T νpH
1 = {W ∈ TpH1 : 〈W,N 〉 = 0}. Depending on the point (p, ν) and

on the parameters H, τ ∈ R, with H2 + τ 2 6= 0, below we define the linear operator

LH ∈ Hom(T νpH
1;TνS

2). The definition is motivated by the proof of Proposition 5.8.

For any W ∈ T νpM , we let

LHW = τ p∗

(
HW − 2τ 2

√
H2 + τ 2

qH(ϑ⊗ ϑ)0q
−1
H W

)
+ (∇W τ

p
∗ )(N ),

where ∇W τ
p
∗ ∈ Hom(TpH

1; h) is the covariant derivative of τ p∗ in the direction W and

the trace-free operator (ϑ⊗ ϑ)0 ∈ Hom(T νpH
1;T νpH

1) is

(ϑ⊗ ϑ)0 = ϑ⊗ ϑ− 1

2
tr(ϑ⊗ ϑ)Id.

The operator qH ∈ Hom(T νpH
1;T νpH

1) is the rotation by the angle αH in (5.1). The

operator LH is well-defined, i.e., LHW ∈ h and 〈LHW, ν〉 = 0 for any W ∈ T νpH1.
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This can be checked using the identity |N | = 1 and working with the formula

(∇W τ
p
∗ )(N ) =

3∑
i=1

〈N ,∇WYi〉Yi(0),

where Y1, Y2, Y3 is any frame of orthonormal left-invariant vector fields.

Finally, for any point (p, ν) ∈ H1 × S2, define

EH(p, ν) =
{

(W,LHW ) : W ∈ T νpH1
}
⊂ TpH

1 × TνS2.

Then (p, ν) 7→ EH(p, ν) is a distribution of two-dimensional planes in H1 × S2. The

distribution EH origins from CMC surfaces with mean curvature H and vanishing k0.

Let Σ be a smooth oriented surface immersed in H1 given by a parameterization

F ∈ C∞(D;H1) where D ⊂ C is an open set. We denote by N (F (z)) ∈ TpH1, with

p = F (z), the unit normal of Σ at the point z ∈ D. The normal section is given by

the mapping G : D → S2 defined by G(z) = τ
F (z)
∗ N (F (z)), and we can define the

Gauss section Φ : D → H1 × S2 letting Φ(z) = (F (z), G(z)). Then Σ = Φ(D) is a

two-dimensional immersed surface in H1 × S2, called the Gauss extension of Σ.

Proposition 5.8. Let Σ be an oriented surface immersed in H1 with constant mean

curvature H and vanishing k0. Then the Gauss extension Σ is an integral surface of

the distribution EH in H1 × S2.

Proof. Let N be the unit normal to Σ. For any tangent section W ∈ Γ(TΣ), we have

W (τF∗ (N )) = τF∗ (∇WN ) + (∇W τ
F
∗ )(N )

= τF∗ (h(W )) + (∇W τ
F
∗ )(N ),

where h(W ) = ∇WN is the shape operator. Therefore, the set of all sections of the

tangent bundle of Σ is

Γ(TΣ) =
{(
W, τF∗ (h(W )) + (∇W τ

F
∗ )(N )

)
: W ∈ Γ(TΣ)

}
.

The equation k0 = 0 is equivalent to h = HId− b0 where, by (5.3),

b0 =
2τ 2

√
H2 + τ 2

qH

(
ϑ⊗ ϑ− tr(ϑ⊗ ϑ)

2
Id
)
q−1
H ,

and thus the sections of Σ are of the form

(W,LHW ) ∈ Γ(TΣ) with W ∈ Γ(TΣ).

This concludes the proof. �

Theorem 5.9. Let Σ be a topological sphere in H1 with constant mean curvature H.

Then there exist a left translation ι and R > 0 such that ι(Σ) = ΣR.
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Proof. Let H > 0 be the mean curvature of Σ, let R = 1/Hε, and recall that the

sphere ΣR has mean curvature H.

Let TΣ(p) ∈ TpΣ be the orthogonal projection of the vertical vector field T onto

TpΣ. Since Σ is a topological sphere, there exists a point p ∈ Σ such that TΣ(p) = 0.

This implies that either T = N or T = −N at the point p, where N is the outer

normal to Σ at p. Assume that T = N .

Let ι be the left translation such that ι(p) = N , where N is the north pole of ΣR.

At the point N the vector T is the outer normal to ΣR. Since ι∗T = T (this holds for

any isometry), we deduce that ΣR and ι(Σ) are two surfaces such that:

i) They have both constant mean curvature H.

ii) They have both vanishing k0, by Proposition 5.2 and Theorem 5.7.

iii) N ∈ ΣR ∩ ι(Σ) with the same (outer) normal at N .

Let M1 = ΣR and M2 = ι(Σ) be the Gauss extensions of ΣR and ι(Σ), respectively.

Let ν = τN∗ N ∈ S2. From i), ii) and Proposition 5.8 it follows that M1 and M2

are both integral surfaces of the distribution EH . From iii), it follows that (N, ν) ∈
M1 ∩ M2. Being the two surfaces complete, this implies that M1 = M2 and thus

ΣR = ι(Σ).

�

6. Quantitative stability of ΣR in vertical cylinders

In this section, we prove a quantitative isoperimetric inequality for the CMC spheres

ΣR with respect to compact perturbations in vertical cylinders, see Theorem 6.1. This

is a strong form of stability of ΣR in the northern and southern hemispheres.

A CMC surface Σ in H1 with normal N is stable in an open region A ⊂ Σ if for

any function g ∈ C∞c (A) with
∫

Σ
gdA = 0, where A is the Riemannian area measure

of Σ, we have

S (g) =

∫
Σ

{
|∇g|2 −

(
|h|2 + Ric(N )

)
g2
}
dA ≥ 0.

The functional S (g) is the second variation, with fixed volume, of the area of Σ

with respect to the infinitesimal deformation of Σ in the direction gN . Above, |∇g|
is the length of the tangential gradient of g, |h|2 is the squared norm of the second

fundamental form of Σ and Ric(N ) is the Ricci curvature of H1 in the direction N .

The Jacobi operator associated with the second variation functional S is

L g = ∆g + (|h|2 + Ric(N ))g,

where ∆ is the Laplace-Beltrami operator of Σ. As a consequence of Theorem 1 in

[6], if there exists a strictly positive solution g ∈ C∞(A) to equation L g = 0 on A,

then Σ is stable in A (even without the restriction
∫
A
gdA = 0).
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Now consider in H1 the right-invariant vector fields

X̂ =
1

ε

( ∂
∂x
− σy ∂

∂t

)
, Ŷ =

1

ε

( ∂
∂y

+ σx
∂

∂t

)
, and T̂ = ε2 ∂

∂t
.

These are generators of left-translations in H1, and the functions

gX̂ = 〈X̂,N 〉, gŶ = 〈Ŷ ,N 〉, gT̂ = 〈T̂ ,N 〉

are solutions to L g = 0. By the previous discussion, the CMC sphere ΣR is stable

in the hemispheres

AX̂ =
{

(z, t) ∈ ΣR : gX̂ > 0
}
,

AŶ =
{

(z, t) ∈ ΣR : gŶ > 0
}
,

AT̂ =
{

(z, t) ∈ ΣR : gT̂ > 0
}
.

In particular, ΣR is stable in the northern hemisphere AT̂ = {(z, t) ∈ ΣR : t > 0}.
In fact, we believe that the whole ΣR is stable. Actually, this would follow from

the isoperimetric property for ΣR. The proof of the stability of ΣR requires a deeper

analysis and it is not yet clear. However, in the case of the northern (or southern)

hemisphere we can prove a strong form of stability in terms of a quantitative isoperi-

metric inequality. Some stability results in various sub-Riemannian settings have

been recently obtained in [14, 10, 11].

For R > 0, let ER ⊂ H1 be the open domain bounded by the CMC sphere ΣR,

ER = {(z, t) ∈ H1 : |t| < f(|z|;R), |z| < R},

where f(·;R) is the profile function of ΣR in (2.2). For 0 ≤ δ < R, we define the

half-cylinder

CR,δ = {(z, t) ∈ H1 : |z| < R and t > tR,δ},

where tR,δ = f(rR,δ;R) and rR,δ = R− δ. In the following, we use the short notation

kRετ = ε3ω(R)
√
R,

CRετ =
1

4πεR3(RkRετ + f(0;R))
,

DRετ =
1

12επ2R5(4Rk2
Rετ + f(0;R)2)

.

(6.1)

We denote by A the Riemannian surface-area measure in H1.

Theorem 6.1. Let R > 0, 0 ≤ δ < R, ε > 0, and τ ∈ R be as in (1.2). Let E ⊂ H1

be a smooth open set such that L 3(E) = L 3(ER) and Σ = ∂E.

(i) If E∆ER ⊂⊂ CR,δ with 0 < δ < R then we have

A (Σ)−A (ΣR) ≥
√
δCRετL

3(E∆ER)2. (6.2)
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(ii) If E∆ER ⊂⊂ CR,0 then we have

A (Σ)−A (ΣR) ≥ DRετL
3(E∆ER)3. (6.3)

Remark 6.2. When Σ ⊂ H1 is a t-graph, Σ = {(z, f(z)) ∈ H1 : z ∈ D} for some

f ∈ C1(D), from (2.4) and (2.5) we see that the Riemannian area of Σ is

A (Σ) =
1

ε

∫
D

√
ε6 + |∇f |2 + σ2|z|2 + 2σ(xfy − yfx) dz,

and so

lim
ε→0

εA (Σ) =

∫
D

√
|∇f |2 + σ2|z|2 + 2σ(xfy − yfx) dz.

The integral in the right-hand side is the sub-Riemannian area of Σ.

On the other hand, the constants CRετ and DRετ in (6.1) are also asymptotic to

1/ε. Thus, multiplied by ε, inequalities (6.2) and (6.3) pass to the sub-Riemannian

limit, see [7].

The proof of Theorem 6.1 is based on the foliation of the cylinder CR,δ by a family

of CMC surfaces with quantitative estimates on the mean curvature.

Theorem 6.3. For any R > 0 and 0 ≤ δ < R, there exists a continuous function

u : CR,δ → R with level sets Sλ =
{

(z, t) ∈ CR,δ : u(z, t) = λ
}

, λ ∈ R, such that the

following claims hold:

(i) u ∈ C1(CR,δ ∩ ER) ∩ C1(CR,δ \ ER) and the normalized Riemannian gradient

∇u/|∇u| is continuously defined on CR,δ.

(ii)
⋃
λ>R Sλ = CR,δ ∩ ER and

⋃
λ≤R Sλ = CR,δ \ ER.

(iii) Each Sλ is a smooth surface with constant mean curvature Hλ = 1/(ελ) for

λ > R and Hλ = 1/(εR) for λ ≤ R.

(iv) For any point (z, f(|z|;R)− t) ∈ Sλ with λ > R we have

1− εRHλ(z, f(|z|;R)− t) ≥ t2

4Rk2
Rετ + f(0;R)2

, when δ = 0, (6.4)

and

1− εRHλ(z, f(|z|;R)− t) ≥
√
δt

RkRετ + f(0;R)
, when 0 < δ < R. (6.5)

Proof of Theorem 6.3. For points (z, t) ∈ CR,δ \ ER we let

u(z, t) = f(|z|;R)− t+R.

Then u satisfies u(z, t) ≤ R for t ≥ f(|z|;R) and u(z, t) = R if t = f(|z|;R). In order

to define u in the set CR,δ ∩ ER, for 0 ≤ r < rR,δ, tR,δ < t < f(r;R), and λ > R we

consider the function

F (r, t, λ) = f(r;λ)− f(rR,δ;λ) + tR,δ − t. (6.6)
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The function F also depends on δ. We claim that for any point (z, t) ∈ CR,δ ∩ ER
there exists a unique λ > R such that F (|z|, t, λ) = 0. In this case, we can define

u(z, t) = λ if and only if F (|z|, t, λ) = 0. (6.7)

We prove the previous claim. Let (z, t) ∈ CR,δ ∩ ER and use the notation r = |z|.
First of all, we have

lim
λ→R+

F (r, t, λ) = f(r;R)− t > 0. (6.8)

We claim that we also have

lim
λ→∞

F (r, t, λ) = tR,δ − t < 0. (6.9)

To prove this, we let f(r;λ)− f(rR,δ;λ) = ε2

2τ
[f1(λ) + f2(λ)], where

f1(λ) = ω(λ)2
[

arctan(p(r;λ))− arctan(p(rR,δ;λ))
]
,

f2(λ) = ω(r)2
(
p(r;λ)− p(rR,δ;λ)

)
.

Using the asymptotic approximation

arctan(s) =
π

2
− 1

s
+

1

3s3
+ o
( 1

s3

)
, as s→∞,

we obtain for λ→∞
f1(λ) = λετ(ω(rR,δ)− ω(r))) + o(1),

f2(λ) = λετ(ω(r)− ω(rR,δ)) + o(1),

and thus f(r;λ)− f(rR,δ;λ) = o(1), where o(1)→ 0 as λ→∞. Since λ 7→ F (r, t, λ)

is continuous, (6.8) and (6.9) imply the existence of a solution λ of F (r, t, λ) = 0.

The uniqueness follows from ∂λF (r, t, λ) < 0. This inequality can be proved starting

from (2.10) and we skip the details. This finishes the proof of our initial claim.

Claims (i) and (ii) can be checked from the construction of u. Claim (iii) follows,

by Theorem 3.1, from the fact that Sλ for λ > R is a vertical translation (this is an

isometry of H1) of the t-graph of z 7→ f(z;λ).

We prove Claim (iv). For any (z, t) ∈ H1 such that r = |z| < rR,δ and 0 ≤ t <

f(r;R)− tR,δ, we define

gz(t) = u(z, f(r;R)− t) = λ, (6.10)

where λ ≥ R is uniquely determined by the condition (z, f(r;R)−t) ∈ Sλ. Notice that

gz(0) = u(z, f(r;R)) = R. We estimate the derivative of the function t 7→ gz(t). From

the identity F (r, t, u(z, t)) = 0, see (6.7), we compute ∂tu(z, t) = (∂λF (r, t, u(z, t)))−1

and so, also using (6.6), we find

g′z(t) = −∂tu(z, f(r;R)− t) =
−1

∂λF (r, f(r;R)− t, gz(t))
. (6.11)
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Now from (2.9) we compute

∂λF (r, t, λ) = −ε3λ

∫ rR,δ

r

sω(s)

(λ2 − s2)3/2
ds

≥ −ε3λω(rR,δ)

∫ rR,δ

0

s

(λ2 − s2)3/2
ds

= −ε3ω(rR,δ)

 λ√
λ2 − r2

R,δ

− 1


≥ −ε3ω(R)

√
R√

λ− rR,δ
.

(6.12)

In the last inequality, we used rR,δ < R ≤ λ. From (6.11), (6.12) and with kRετ as in

(6.1), we deduce that

g′z(t) ≥
1

kRετ

√
gz(t)− rR,δ. (6.13)

In the case δ = 0, (6.13) reads g′z(t) ≥
√
gz(t)−R/kRετ . Integrating this differential

inequality we obtain gz(t) ≥ R + t2/(4k2
Rετ ), and thus

1− εRHλ(z, f(r;R)− t) = 1− R

gz(t)
≥ t2

4Rk2
Rετ + f(0;R)2

,

that is Claim (6.4).

If 0 < δ < R, (6.13) implies g′z(t) ≥
√
δ/kRετ and an integration gives gz(t) ≥√

δ t+R/kRετ . Then we obtain

1− εRHλ(z, f(r;R)− t) = 1− R

gz(t)
≥

√
δ

RkRετ + f(0;R)
t,

that is Claim (6.5).

�

We can now prove Theorem 6.1, the last result of the paper. The proof follows the

lines of [7].

Proof of Theorem 6.1. Let u : CR,δ → R, 0 ≤ δ < 1, be the function constructed in

Theorem 6.3 and let Sλ = {(z, t) ∈ CR,δ : u(z, t) = λ}, λ ∈ R, be the leaves of the

foliation. Let ∇u be the Riemannian gradient of u. The vector field

V (z, t) = − ∇u(z, t)

|∇u(z, t)|
, (z, t) ∈ CR,δ,

satisfies the following properties:

i) |V | = 1.

ii) For (z, t) ∈ ΣR ∩ CR,δ we have V (z, t) = νΣR(z, t), where νΣR = N is the

exterior unit normal to ΣR.
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iii) For any point (z, t) ∈ Sλ, λ ∈ R, the Riemannian divergence of V satisfies

1

2
divV (z, t) = Hλ(z, t) ≤

1

εR
for λ > R,

1

2
divV (z, t) = Hλ(z, t) =

1

εR
for 0 < λ ≤ R.

(6.14)

Let νΣ be the exterior unit normal to the surface Σ = ∂E. By the Gauss-Green

formula and (6.14) it follows that

L 3(ER \ E) ≥ εR

2

∫
ER\E

divV dL 3

=
εR

2

(∫
ΣR\Ē
〈V, νΣR〉 dA −

∫
Σ∩ER

〈V, νΣ〉 dA
)

≥ εR

2

(
A (ΣR \ Ē)−A (Σ ∩ ER)

)
.

In the last inequality we used the Cauchy-Schwarz inequality and the fact that

〈V, νΣR〉 = 1 on ΣR \ Ē. By a similar computation we also have

L 3(E \ ER) =
εR

2

∫
E\ER

divV dL 3

=
εR

2

{∫
Σ\ĒR
〈V, νΣ〉dA −

∫
ΣR∩E

〈V, νΣR〉dA
}

≤ εR

2

(
A (Σ \ ĒR)−A (ΣR ∩ E)

)
.

Using the inequalities above and the fact that L 3(E) = L 3(ER), it follows that:

εR

2

(
A (ΣR \ Ē)−A (Σ ∩ ER)

)
≤ εR

2

∫
ER\E

divV dL 3

= L 3(E \ ER)−
∫
ER\E

(
1− εR

2
divV

)
dL 3

≤ εR

2

(
A (Σ \ ĒR)−A (ΣR ∩ E)

)
− G (ER \ E),

where we let

G (ER \ E) =

∫
ER\E

(
1− εR

2
divV

)
dL 3.

Hence, we obtain

A (Σ)−A (ΣR) ≥ 2

εR
G (ER \ E). (6.15)

For any z with |z| < R−δ, we define the vertical sections Ez
R = {t ∈ R : (z, t) ∈ ER}

and Ez = {t ∈ R : (z, t) ∈ E}. By Fubini-Tonelli theorem, we have

G (ER \ E) =

∫
{|z|<R}

∫
EzR\Ez

(
1− εR

2
divV (z, t)

)
dt dz.
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The function t 7→ divV (z, t) is increasing, and thus letting m(z) = L 1(Ez
R \ Ez), by

monotonicity we obtain

G (ER \ E) ≥
∫
{|z|<1}

∫ f(|z|;R)

f(|z|;R)−m(z)

(
1− εR

2
divV (z, t)

)
dt dz

=

∫
{|z|<1}

∫ m(z)

0

(
1− R

gz(t)

)
dt dz,

where gz(t) = u(z, f(|z|;R)− t) is the function introduced in (6.10).

When δ = 0, by the inequality (6.4) and by Hölder inequality we find

G (ER \ E) ≥ 1

4Rk2
Rετ + f(0;R)2

∫
{|z|<R}

∫ m(z)

0

t2dt dz

≥ 1

24π2R4(4Rk2
Rετ + f(0;R)2)

L 3(E∆ER)3.

(6.16)

From (6.16) and (6.15) we obtain (6.3).

By (6.5), when 0 < δ < 1 the function gz satisfies the estimate 1 − 1/gz(t) ≥
(
√
δ/(kRετ + f(0;R)))t and we find

G (ER \ E) ≥
√
δ

RkRετ + f(0;R)

∫
{|z|<R}

∫ m(z)

0

t dt dz

≥
√
δ

8πR2(RkRετ + f(0;R))
L 3(E∆ER)2.

(6.17)

From (6.17) and (6.15) we obtain Claim (6.2).

�
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