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ABSTRACT. We study a family of spheres with constant mean curvature (CMC)
in the Riemannian Heisenberg group H'. These spheres are conjectured to be the
isoperimetric sets of H'. We prove several results supporting this conjecture. We

also focus our attention on the sub-Riemannian limit.
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1. INTRODUCTION

In this paper, we study a family of spheres with constant mean curvature (CMC) in
the Riemannian Heisenberg group H'. We introduce in H! two real parameters that
can be used to deform H* to the sub-Riemannian Heisenberg group, on the one hand,
and to the Euclidean space, on the other hand. Even though we are not able to prove
that these CMC spheres are in fact isoperimetric sets, we obtain several partial results
in this direction. Our motivation comes from the sub-Riemannian Heisenberg group,
where it is conjectured that the solution of the isoperimetric problem is obtained
rotating a Carnot-Carathéodory geodesic around the center of the group, see [17].
This set is known as Pansu’s sphere. The conjecture is proved only assuming some
regularity (C%-regularity, convexity) or symmetry, see [4, 7, 15, 16, 18, 19].
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Given a real parameter 7 € R, let h = span{X,Y, T} be the three-dimensional real
Lie algebra spanned by three elements X, Y, T satisfying the relations [X,Y] = —27T
and [X,T] = [Y,T] = 0. When 7 # 0, this is the Heisenberg Lie algebra and we
denote by H! the corresponding Lie group. We will omit reference to the parameter
7 # 0 in our notation. In suitable coordinates, we can identify H' with C x R and
assume that X, Y, T are left-invariant vector fields in H' of the form

1,0 0 1,0 0 0
X:—(— —), Y:—(—— —), d T=22 1.1
\or T o oy " o) o 0
where (z,t) € C x R and z = x + iy. The real parameters € > 0 and o # 0 are such
that

Tet = 0. (1.2)

Let (-, ) be the scalar product on h making X, Y, T orthonormal, that is extended to
a left-invariant Riemannian metric g = (-,-) in H'. The Riemannian volume of H*
induced by this metric coincides with the Lebesgue measure %3 on C x R and, in fact,
it turns out to be independent of € and o (and hence of 7). When € =1 and o — 0,
the Riemannian manifold (H', g) converges to the Euclidean space. When o # 0 and
e — 0%, then H' endowed with the distance function induced by the rescaled metric
e72(.,-) converges to the sub-Riemannian Heisenberg group.

The boundary of an isoperimetric region is a surface with constant mean curvature.
In this paper, we study a family of CMC spheres Xz C H', with R > 0, that foliate
H} = H'\ {0}, where 0 is the neutral element of H'. Each sphere Y is centered
at 0 and can be described by an explicit formula that was first obtained by Tomter
[20], see Theorem 2.1 below. We conjecture that, within its volume class and up to
left translations, the sphere ¥ is the unique solution of the isoperimetric problem in
H'. When € = 1 and ¢ — 0, the spheres ¥ converge to the standard sphere of the
Euclidean space. When o # 0 is fixed and ¢ — 0%, the spheres ¥y converge to the
Pansu’s sphere.

In Section 3, we study some preliminary properties of Yy, its second fundamental
form and principal curvatures. A central object in this setting is the left-invariant
1-form ¥ € T(T*H") defined by

I(V)=(V,T) forany V e ['(TH"). (1.3)

The kernel of ¢ is the horizontal distribution. Let N be the north pole of Xz and
S = —N its south pole. In 3% = Xg \ {N} there is an orthonormal frame of vector
fields X1, Xy € T'(T'%%) such that ¥(X;) = 0, i.e., X is a linear combination of X
and Y. In Theorem 3.1, we compute the second fundamental form of ¥y in this
frame. We show that the principal directions of ¥ are given by a rotation of the
frame X7, Xo by a constant angle depending on the mean curvature of ¥g.
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In Section 4, we link in a continuous fashion the foliation property of the Pansu’s
sphere with the foliation by meridians of the round sphere in the Euclidean space.
The foliation H} = (Jz.oXr determines a unit vector field 4" € T'(T'H}) such that
N (p) L T,XR for any p € ¥ and R > 0. The covariant derivative V ,.4", where
V denotes the Levi-Civita connection induced by the metric g, measures how far the
integral lines of .4 are from being geodesics of H' (i.e., how far the CMC spheres Y p
are from being metric spheres). In space forms, we would have V , .4 = 0, identically.
Instead, in H' the normalized vector field

VN
VN

is well-defined and smooth outside the center of H!. In Theorem 4.3, we prove that

M (z,t) = sgn(t) (2,t) € Xy,

for any R > 0 we have
VEM =0 on Xy,

where V*% denotes the restriction of V to . This means that the integral lines of
A are Riemannian geodesics of Y. In the coordinates associated with the frame
(1.1), when € = 1 and 7 = 0 — 0 the integral lines of .# converge to the meridians of
the Euclidean sphere. When o # 0 is fixed and € — 0%, the vector field .# properly
normalized converges to the line flow of the geodesic foliation of the Pansu’s sphere,
see Remark 4.5.

In Section 5, we give a proof of a known result that is announced in [1, Theorem
6] in the setting of three-dimensional homogeneous spaces (see also [13]). Namely, we
show that any topological sphere with constant mean curvature in H' is isometric to
a CMC sphere Y. The proof follows the scheme of the fundamental paper [2].

The surface Y is not totally umbilical and, for large enough R > 0, it even has
negative Gauss curvature near the equator, see Remark 3.2. As a matter of fact, the
distance from umbilicality is measured by a linear operator built up on the 1-form
9. We can restrict the tensor product ¥ ® ¢ to any surface ¥ in H' with constant
mean curvature H and then define, at any point p € ¥, a symmetric linear operator
k € Hom(T,%;T,%) by setting

2
k:h+\/H22;7+T2qu(19®l9)oq;{1,
where h is the shape operator of ¥ and gy is a rotation of each tangent plane 7,% by
an angle that depends only on H, see formula (5.1).

In Theorem 5.7, we prove that for any topological sphere ¥ C H' with constant
mean curvature H, the linear operator k on ¥ satisfies the equation kg = 0. This
follows from the Codazzi’s equations using Hopf’s argument on holomorphic quadratic
differentials, see [9]. The fact that 3 is a left translation of ¥ now follows from the
analysis of the Gauss extension of the topological sphere, see Theorem 5.9.
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In some respect, it is an interesting issue to link the results of Section 5 with the
mass-transportation approach recently developed in [3].

In Section 6, we prove a stability result for the spheres ¥p. Let Er C H' be the
region bounded by ¥y and let ¥ C H' be the boundary of a smooth open set £ C H*!,
Y = JF, such that £3(F) = £3(ER). Denoting by &7 (X) the Riemannian area of
Y., we conjecture that

() — o (Sg) > 0. (1.4)

We also conjecture that a set E is isoperimetric (i.e., equality holds in (1.4)) if and
only if it is a left translation of Er. We stress that if isoperimetric sets are topological
spheres, this statement would follow from Theorem 5.9.

It is well known that isoperimetric sets are stable for perturbations fixing the vol-
ume: in other words, the second variation of the area is nonnegative. On the other
hand, using Jacobi fields arising from right-invariant vector fields of H?, it is possi-
ble to show that the spheres > are stable with respect to variations supported in
suitable hemispheres, see Section 6.

In the case of the northern and southern hemispheres, we can prove a stronger form
of stability. Namely, using the coordinates associated with the frame (1.1), for R > 0
and 0 < 0 < R we consider the cylinder

Csr = {(z,t) € H :|z| <R,t> f(R—é;R)},

where f(-; R) is the profile function of ¥g, see (2.2). Assume that the closure of
EAER = Egr\ EUE\ Ef is a compact subset of Csg. In Theorem 6.1, we prove
that there exists a positive constant C'r.. > 0 such that the following quantitative

isoperimetric inequality holds:
(L) — o (Sg) > VOCr L (EAER). (1.5)

The proof relies on a sub-calibration argument. This provides further evidence on the
conjecture that isoperimetric sets are precisely left translations of Xz. When ¢ = 1
and o — 0, inequality (1.5) becomes a restricted form of the quantitative isoperimetric
inequality in [8]. For fixed o # 0 and ¢ — 07 the rescaled area 47 converges to the
sub-Riemannian Heisenberg perimeter and Cg,. converges to a positive constant,
see Remark 6.2. Thus inequality (1.5) reduces to the isoperimetric inequality proved
in [7].

2. FOLIATION OF H! BY CONCENTRIC STATIONARY SPHERES

In this section, we compute the rotationally symmetric compact surfaces in H! that
are area-stationary under a volume constraint. We show that, for any R > 0, there
exists one such a sphere Y centered at 0. We will also show that H! = H'\ {0} is
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foliated by the family of these spheres, i.e.,

H! = | Sk (2.1)
R>0
Each Y is given by an explicit formula that is due to Tomter, see [20].
We work in the coordinates associated with the frame (1.1), where the parameters
e > 0 and o € R are related by (1.2). For any point (z,t) € H', we set r = |2| =

vV + 2.

Theorem 2.1. For any R > 0 there exists a unique compact smooth embedded surface
Yz C H' that is area stationary under volume constraint and such that

Sr={(z,t) € H" : |t| = f(]z|: R)}

for a function f(-; R) € C*°([0, R)) continuous at r = R with f(R) = 0. Namely, for
any 0 < r < R the function is given by
2
F(r; R) = — [w(R)” arctan(p(r; B)) +w(r)*p(r; R)], (2.2)
where
V=P

w(r)

w(r) = V147222 and p(r; R) = 7¢

Proof. Let D = {z € C: |z| < R} and for a nonnegative radial function f € C*°(Dg)
consider the graph ¥ = {(z, f(z)) € H' : z € Dg}. A frame of tangent vector fields
Vi, Vo € T(TX) is given by

Vi=eX+e *(fe—oy)T and Vp=¢eY +e2(f, +ox)T. (2.3)

Let gs = (-,-) be the restriction of the metric g of H' to X. Using the entries of gx

in the frame V, V5, we compute the determinant
det(gs) = e* + 872{‘Vf|2 + o?|2)* + 20 (2 f, — yfx)}, (2.4)

where Vf = (fs, f,) is the standard gradient of f and |V f| is its length. We clearly
have z f, — yf, = 0 by the radial symmetry of f. Therefore, the area of X is given by

A(f) = (%) = /D Vdet(gs) dz = é VES + |V fI2 + 02|z|? dz, (2.5)

Dgr

where dz is the Lebesgue measure in the xy-plane.

Thus, if ¥ is area stationary under a volume constraint, then for any test function
© € C°(Dg) that is radially symmetric and with vanishing mean (i.e., fDR pdz=0)
we have

d

0= £A(f—|—sg0)

1 . \Ji
:——/ godlv( = > - 2) dz
s=0  €Jpg Vel + VP + 0?2
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where div denotes the standard divergence in the xy-plane. It follows that there exists
a constant H € R such that

! v/ -
d <\/56+|Vf]2+02|z\2> H (2:6)

With abuse of notation we let f(|z|) = f(z). Using the radial variable r = |z| and

the short notation

fr
r/eb + f,.2+ o022

g(r) =

the above equation reads as follows:
L.,
_— = — r 2 = — H
"L (r29(r)) = L (%0 (r) + 2rg(r)) = —=
Then there exists a constant K € R such that r2g = —er?H + K. Since g is bounded
at r = 0, it must be K = 0 and thus g = —eH, and we get
Jr
r\/e8 + f,.2 + o2r?
From this equation, we see that f, has a sign. Since X is compact, it follows that
H # 0. Since f > 0 we have f,. < 0 and therefore H > 0.
The surface Yg is smooth at the “equator” (i.e., where |z| = R and ¢ = 0) and thus

= —¢H.

we have f,(R) = —oo. As we will see later, this is implied by the relation
eHR =1, (2.7)
that will be assumed throughout the paper. Integrating the above equation we find

1+ 72272 147 &?27’2
fo(r) = —"Hry\| s——7m55 = e 0Sr<R(28)
Integrating this expression on the interval [r, R] and using f(R) = 0 we finally find

14+7 5232
f(rmR)=¢ / o ds. (2.9)

After some computations, we obtain the explicit formula

2 \/W

f(rR) = ;T [ (R)? arctan <T€W> + Tew(r)V R? — 7“2], 0<r<R,
with w(r) = V1 + 72¢2r2. This is formula (2.2). O

Remark 2.2. The function f(; R) = f(+; R;7;¢) depends also on the parameters 7
and ¢, that are omitted in our notation. With € = 1, we find

lim f(r; R;7;1) = VR? — r2.
T—0

When 7 — 0, the spheres ¥ converge to Euclidean spheres with radius R > 0 in the
three-dimensional space.
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With 7 = ¢/e* as in (1.2), we find the asymptotic

JR2 2
lin(l) f(r;Ryo/et;e) = %[R2 arctan (L> +rvVR? — 7"2]
e—

r
= % [RQ arccos <%> +rvR?— 7"2],

which gives the profile function of the Pansu’s sphere, the conjectured solution to the
sub-Riemannian Heisenberg isoperimetric problem, see e.g. [16] or [15], with R =1
and o = 2.

Remark 2.3. Starting from formula (2.2), we can compute the derivatives of f(-; R)

in the variable R. The first order derivative is given by

1 oR
r: R) = 7e*R| arctan (p(r; R)) + = ) 2.10
fulrs 0 = vt avten 00 F0) + e y| = e ey 410
where £ : [0,00) — R is the function defined as
1
£(p) 211)

It parctan(p)’

The geometric meaning of ¢ will be clear in formula (4.1).
We now establish the foliation property (2.1).

Proposition 2.4. For any nonzero (z,t) € H' there exists a unique R > 0 such that
(Z,t) S ER.

Proof. Without loss of generality we can assume that ¢ > 0. After an integration by

parts in (2.9), we obtain the formula
R
f(rR) = 53{\/]%2 — r2w(r) +/ VR? — s%;r(s)ds}, 0<r<R.

Since w,(r) > 0 for r > 0, we deduce that the function R — f(r; R) is strictly

increasing for R > r. Moreover, we have

lim f(r; R) = oo,

R—o0
and hence for any r > 0 there exists a unique R > r such that f(r; R) = t. U
Remark 2.5. By Proposition 2.4, we can define the function R : H' — [0,00) by
letting R(0) = 0 and R(z,t) = R if and only if (2,t) € ¥ for R > 0. The function
R(z,t), in fact, depends on r = |z| and thus we may consider R(z,t) = R(r,t)

as a function of r and ¢. This function is implicitly defined by the equation [t| =
f(r; R(r,t)). Differentiating this equation, we find the derivatives of R, i.e.,

I _ sgn(?)
R, = T and R; = T (2.12)

where fg is given by (2.10).
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3. SECOND FUNDAMENTAL FORM OF Xp

In this section, we compute the second fundamental form of the spheres YXr. In
fact, we will see that H = 1/(¢R) is the mean curvature of g, as already clear
from (2.6) and (2.7). Let N = (0, f(0; R)) € ¥r be the north pole of X and let
S =—N = (0,—f(0; R)) be its south pole. In X5 = Xg \ {£N} there is a frame of
tangent vector fields Xy, Xy € I'(T'2%,) such that

1 X1 =Xl =1, (X1,X5) =0, 9(X;)=0, (3.1)

where ¥ is the left-invariant 1-form introduced in (1.3). Explicit expressions for X
and X are given in formula (3.9) below. This frame is unique up to the sign £X; and
+X,. Here and in the rest of the paper, we denote by .4 the exterior unit normal to
the spheres Y.

The second fundamental form h of X with respect to the frame Xy, X, is given by

h = (hij)i,jzl,% hZ] = <le</V7X]>7 Z)] = ]-727

where V denotes the Levi-Civita connection of H! endowed with the left-invariant
metric g. The linear connection V is represented by the linear mapping b x b — b,
(VW) — VyW. Using the fact that the connection is torsion free and metric, it can
be seen that V is characterized by the following relations:

VxX =VyY =V,T =0,

VyX =7T and VyY = —7T,
VX =VxT =71Y,

VY =VyT = —7X.

(3.2)

Here and in the rest of the paper, we use the coordinates associated with the frame
(1.1). For (2,t) € H', we set r = |z| and use the short notation

0 = Ter. (3.3)

Theorem 3.1. For any R > 0, the second fundamental form h of X g with respect to
the frame X1, Xo in (3.1) at the point (z,t) € Xg is given by

L1 (H(1+2Q2) o’ ) (5.4)

:1—1-@2 T0? H

where R = 1/He and H is the mean curvature of ¥r. The principal curvatures of
Y.gr are given by
2

k= H+ ——VH 72,
140
2

ko= H— —2VHZ+ 72,

1+ 0?
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Outside the north and south poles, principal directions are given by

Ky = cos X7 + sin 5 X,

(3.6)
Ky = —sin BX; + cos fXs,
where 8 = By € (—m/4,7/4) is the angle
Bu = arctan . (3.7)
" H+VH +72) '

Proof. Let a,b: X5 — R and ¢,p : ¥ — R be the following functions depending on

the radial coordinate r = |z|:

— a(r R = w(r) b R = R? — 2
a=a(r; R) rw(R)’ b="b(r; R) =+ rRw(R) ’ (3.8)
c=c(r;R) = rw(R) p=np(r;R) = j:T&?—Rz — Tz.

w(r)

In fact, b and p also depend on the sign of £. Namely, in b and p we choose the sign
+ in the northern hemisphere, that is for ¢ > 0, while we choose the sign — in the
southern hemisphere, where ¢t < 0. Our computations are in the case ¢ > 0.

The vector fields
X1 =—a((y —zp)X — (x+yp)Y), 39)
Xo==b((z+yp)X + (y —ap)Y) + T .

form an orthonormal frame for 7Y}, satisfying (3.1). This frame can be computed
starting from (2.3). The outer unit normal to X is given by

N = %{(z +yp) X + (y — zp)Y + %T}. (3.10)

Notice that this formula is well defined also at the poles.
We compute the entries hy; and hqys. Using X1 R = 0, we find

1
Vi, N = E{Xl(:c Fyp)X + Xa(y — ap)Y + X, (-p )T
Te (3.11)

+ (& +yp) VX + (g —2p)Vx,Y + 2Vx T},
where, by the fundamental relations (3.2),
Vx, X =7a(z+yp)T,
Vx,Y = ra(y — ap)T, (3.12)
Vx,T =—7a[(y — zp)Y + (z + yp) X].
Using the formulas

a a
Xlx:—g(y—xp) and X1y=g(:r+yp),
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we find the derivatives

a
Xi(z+yp) = 5(25629 +y(p* — 1)) + yXip,

€ (3.13)
2
Xily —ap) = Z(2yp + 2(1 = p7)) — 2 Xap.
Inserting (3.13) and (3.12) into (3.11), we obtain
1 a a
Vx, N = }—%{ [ — 2y —ap)+ yle]X + [g(l’ +yp) — l’le]Y
(3.14)
X
+ [_1]0 + 7ra(p® + 1)} T}.
TE
From this formula we get
r’a )
hll = <VX1</V7X1> - E{a(p + 1) - €X1p}7
where p? + 1 = w(R)?/w(r)? and X;p can be computed starting from
w(R)*
(r; R) = —T1er . 3.15
orlri B) VR = ) (3.15)
Namely, also using the formula for a and p in (3.8), we have

ra w(R
Xip = —pp, = —7’er ( l
€ w(r)

With (2.7) and (3.3), we finally find

1 22,2 02
e T (12,
e Rt w(r)? 7 + 0?

From (3.14) we also deduce

Xip

b c
hia = (Vx, A, Xo) = ——T2pX1p+ —{?

R R

and using the formula for X;p and the formulas in (3.8) we obtain

+ Tr2a(1 + pQ)},

70

ZTQQ.

To compute the entry hog, we start from

h12

1 X
Vol = L Xala 4 yp)X + Xaly - ep)y + 227
R Te (3.16)

+(@+yp)Vx, X+ (y —2p)Vx,Y + %VXQT},
where, by (3.2) we have
Vx,X = —7b(y — xp)T + 7¢Y,
Vx,Y =7b(z + yp)T — 7cX, (3.17)
Vx,T = —7b(x +yp)Y + 7b(y — p) X.
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Since Xox = —b(xz + yp)/c and Xy = —b(y — zp)/e, we get

b
—=(2yp + (1 — p*)) — yXop,
c (3.18)

b
Xo(y — xp) = E(pr +y(p* — 1)) + 2 Xap.
Inserting (3.17) and (3.18) into (3.16) we obtain

Xo(z +yp) =

1 b
Vi, N = E{_ [g(rr +yp) + yXop + Tc(y — xp)]X

b X
+[— g(y—xp) +xX2p+Tc(x+yp)]Y— T—Qng},

and thus

br? ; cXop
hos = (Vx, N, Xo) = E{b(1 +p°) + €pX2p} -

Now Xyp can be computed by using (3.15) and the formulas (3.8), and we obtain
Trw(R)
Ruw(r)?

Xop =

By (2.7) and (3.3) we then conclude that
_H
g
The principal curvatures k1, kg of X are the solutions to the system
K1+ Ko = tl‘(h) =2H
H2 1 2 2\ _ 2.4
R1Ro = det(h) = ( + e ) Te
(1+0%)?
They are given explicitly by the formulas (3.5).

h22

Now let K7, K5 be tangent vectors as in (3.6). We identify h with the shape operator
h € Hom(T,Xg; T,XR), h(K) = Vg4, at any point p € ¥z and K € T,Xz. When
0 # 0 (i.e., outside the north and south poles), the system of equations

h(Kl) = K}lKl and h(KQ) = K}QKQ
is satisfied if and only if the angle 5 = [y is chosen as in (3.7). The argument of
arctan in (3.7) is in the interval (—1,1) and thus Sy € (—7/4,7/4). O

Remark 3.2. When 2H? < (v/5 — 1)72, the set of points (z,t) € X such that
2o H
S VR H

is nonempty. The inequality above is equivalent to ko < 0 at the point (z,t) € Xg.

This means that, for large enough R, points in X near the equator have strictly

negative Gauss curvature.

Remark 3.3. The convergence of the Riemannian second fundamental form towards

its sub-Riemannian counterpart is studied in [5], in the setting of Carnot groups.
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4. GEODESIC FOLIATION OF Xp

We prove that each CMC sphere Yy is foliated by a family of geodesics of g
joining the north to the south pole. In fact, we show that the foliation is governed
by the normal .4 to the foliation H! = |Jz.,X&. In the sub-Riemannian limit, we
recover the foliation property of the Pansu’s sphere. In the Euclidean limit, we find
the foliation of the round sphere with meridians.

We need two preliminary lemmas. We define a function R : H' — [0, c0) by letting
R(0) = 0and R(z,t) = Rif and only if (z,t) € ¥g. In fact, R(z,t) depends on r = |z|
and t. The function p in (3.8) is of the form p = p(r, R(r,t)).

Now, we compute the derivative of these functions in the normal direction .4".

Lemma 4.1. The derivative along A" of the functions R and p are, respectively,
NR=——=, (4.1)

and
R2w(r)%(p) — r*w(R)?
Ruw(r)*p ’

where ((p) = (1 + parctanp)™!, as in (2.11).

Np=cer? (4.2)

Proof. We start from the following expression for the unit normal (in the coordinates
(z,y,1)):

1
N = ﬁ{gar + g(yﬁz — 20,) + sgn(t)e2w(r)VRE — r23t}.
We just consider the case t > 0. Using (2.12), we obtain

N R= l{gRr + 52w(r)\/mRt} = L{azcu(r)\/m - ng}.

R ~ Rfz
Inserting into this formula the expression in (2.8) for f, we get
VR g2 Rw(r)

VR

and using formula (2.10) for fg, namely,

1 'R
fr=T1e*R| arctan(p) + —| = ,
" ©)F 3] = pi)

we obtain formula (4.1).
To compute the derivatives of p in r and ¢, we have to consider p = p(r; R) and
R = R(r,t). Using the formula in (3.8) for p and the expression (2.12) for R, yields

Terw(R)? TeR Ir e3rw(r)

r = ) - T = RT:__:—7
b w(r)?’\/m PR w(r)\/m fr VR®—r2fg
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and thus

Seplr R, 0) = o, RO 1))+ pilr, RO ) R,

- W(T)3 Ti; 2 [M(T)2E(p) — CU(R)ﬂ,

Similarly, we compute

o B ‘ _ Tlp)
ap(r, R(r,t)) = pr(r; R(r,t))Ry(r,t) = ()

The derivative of p along .4 is thus as in (4.2), when ¢ > 0. The case t < 0 is
analogous.

O

In the next lemma, we compute the covariant derivative Vy.4". The resulting
vector field in H! is tangent to each CMC sphere X, for any R > 0.

Lemma 4.2. At any point in (z,t) € H! we have

1
VN (2 1) = /(3) [(y 4 2®)X — (z— y®)Y + —T), (4.3)
R TE
where ® = ®(r; R) is the function defined as
w(r)’p
®=- 2,272

and the derivative A (p/R) is given by

P\ eT2r? (w(R)2 — E(p)w(r)Q)
JV(f_%) T R2w(r)*p 7

with ¢ as in (2.11).
Proof. Starting from formula (3.10) for .4, we find that

VN :W(x;yp)x+ﬂ<y _Rxp>Y+</V<T%%>T

4.4)
1 (
7 ((33 +yp)Ny X + (y — 2p)\iyY + %V/VT>,
where, by the fundamental relations (3.2), we have
2
(@ +yp)Ny X + (y —ap)VyY + %WT = ﬁ( —(y—ap)X + (z+ yp)Y)- (4.5)
From the elementary formulas
1 1
Ne=p-(z+yp) and Ay=-(y—ap),
we find
1
N (x+yp) = — (2(1 = p*) + 2yp) +yAp,
ek (4.6)

N (y — xp) = %(y(l —p*) = 2xp) — 2N p.



14 V. FRANCESCHI, F. MONTEFALCONE, AND R. MONTI

Inserting (4.5) and (4.6) into (4.4) we obtain the following expression

VN = % el (0497~ N B) +y(RAD—p ¥ R)}X

+H{ye A+ 55 = N B) = 2(RAp—p N R)}Y (4.7)
1
+—(RANp— p,/VR)T} .
TE
From (4.1) and (4.2) we compute
eT?r? 5 5
W[W(R) — Up)w(r)?].
Inserting this formula into (4.7) and using 1+ p* = w(R)?/w(r)? yields the claim. O

RANp—p ANV R=—

Let 4 € T(TH}) be the exterior unit normal to the family of CMC spheres Xr
centered at 0 € H'. The vector field V4.4 is tangent to X i for any R > 0, and for
(z,t) € ¥ g we have

VyAN(z,t)=0 ifandonlyif z=0 ort=0.
However, it can be checked that the normalized vector field
\4
\e
is smoothly defined also at points (z,t) € 3 at the equator, where t = 0. We denote

M (z,t) = sgn(t) e N(TXR)

by V> the restriction of the Levi-Civita connection V to Xg.

Theorem 4.3. Let Xz C H' be the CMC sphere with mean curvature H > 0. Then
the vector field V 4. M is smoothly defined on Y.g and for any (z,t) € X we have
H

w(r)?

In particular, Vif%/ = 0 and the integral curves of M are Riemannian geodesics of

Vot (z,t)=— (4.8)

Y r joining the north pole N to the south pole S.

Proof. From (4.3) we obtain the following formula for .
0

M = (2 =y X + (yA+op)Y — =T, (4.9)
where A, i1 : X3 — R are the functions
R? —r? TET
A=Ar)=t——5— d pu= = ——— 4.1

with = |2z| and R = 1/(¢H). The functions A and p are radially symmetric in z.
In defining A we choose the sign +, when ¢t > 0, and the sign —, when ¢ < 0. In the
coordinates (z,y,t), the vector field .# has the following expression

2 2
M= %(wr + (2d, — o) — =) at), (4.11)

T



CMC SPHERES 15

where 70, = 20, + y0,, and so we have

Vol =(xX —yp)VaX + (YA +2p)VgY — T%V%T
(4.12)
+ M (X —y) X + M (y\+zp)Y — ///(%)T

Using (4.11), we compute

1(y)\ + ), (4.13)

1
Mz = g(x)\—yu) and Ay = B

and so we find

1
M (X —yp) = Z (@A —yp)A + M = (YA + zp)p — yA p,

(4.14)

1
MY\ + xp) = = (YA + xp) X\ + y M\ + g(x)\ — Yy + M .

M= M|

Now, inserting (4.13) and (4.14) into (4.12), we get
\x /A :<§()\2 + p?) + N — y///,u)X
Y2 2 1
+<g()\ b p2) by N+ x///,u)Y — — T,

The next computations are for the case t > 0. Again from (4.11), we get

A1 R A1 TrA
MN = —0O N = ————, d Hpu=—0u= .
€ ervV R —r? an A € a Rw(r)?’

From (4.10) and (4.15) we have

(4.15)

1

1 2 2 _

and so we finally obtain

M
Vol = (xA—yM)X + (yA+a2M)Y — —T, (4.16)

TE

where we have set
1 2 _ 2
S S VA Ltk
eR?w(r)? R2w(r)3

Comparing with (3.10), we deduce that

A= (4.17)

1
eRw(r)?

NVuyl = —

The claim Vif/// = 0 easily follows from the last formula.
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{0.5=€,0.5=0}

F1GURE 1. The plotted curve is an integral curve of the vector field .#
for R=2,e=0.5,and o = 0.5.

Remark 4.4. We compute the pointwise limit of .# in (4.9) when o — 0, for ¢ > 0.
In the southern hemisphere the situation is analogous. By (4.11), the vector field .#Z

is given by
1 R2 — 2
_ E(gm F10,) + (a0, — ) — VB0,
With € = 1 we have
— R2 _ 12 ,
% - 511}(1)% o T('raﬂ? + yay) - Eat

Clearly, the vector field M is tangent to the round sphere of radius R > 0 in the
three-dimensional Euclidean space and its integral lines turn out to be the meridians
from the north to the south pole.

Remark 4.5. We study the limit of e.#Z when € — 0, in the northern hemisphere.

The frame of left-invariant vector fields X = X, Y = ¢Y and T = 2T is
independent of . Moreover, the linear connection V restricted to the horizontal
distribution spanned by X and Y is independent of the parameter . Indeed, from
the fundamental relations (3.2) and from (1.2) we find

VX = Vyl¥ =0,
ViY =—0T and VyX =0T.

Now, it turns out that

o L V-2 g )
M = ll_r}r&&//l =5 [(avf — y)@x + (yT +x>8y —or 8t]
= (2A =y X + (YA + 2p)Y,
where
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The vector field .# is horizontal and tangent to the Pansu’s sphere.
We denote by J the complex structure J(X) =Y and J(Y) = —X. A computation
similar to the one in the proof of Theorem 4.3 shows that

Vil = %J(//Z). (4.18)

This is the equation for Carnot-Carathéodory geodesics in H* for the sub-Riemannian
metric making X and Y orthonormal, see [19, Proposition 3.1].

Thus, we reached the following conclusion. The integral curves of .Z are Riemann-
ian geodesics of i and converge to the integral curves of .#Z. These curves foliate
the Pansu’s sphere and are Carnot-Carathéodory geodesics (not only of the Pansu’s
sphere but also) of H'.

Using (4.18) we can pass to the limit as ¢ — 0 in equation (4.8), properly scaled.
An inspection of the right hand side in (4.16) shows that the right hand side of (4.8)
is asymptotic to €. In fact, starting from (4.17) we get

— lim H = L

e—0 gtw(r)? Ro?r?

From (4.8), (4.18), and (4.19) we deduce that

1
Ro?r?

[— (e +yN)X + (A —yp)Y] = J(A). (4.19)

1
lime™*V =

e—0 20272

\ 2

5. TorPOLOGICAL CMC SPHERES ARE LEFT TRANSLATIONS OF Xj

In this section, we prove that any topological sphere in H' having constant mean
curvature is congruent to a sphere X for some R > 0. This result was announced, in
wider generality, in [1]. Asin [2], our proof relies on the identification of a holomorphic
quadratic differential for CMC surfaces in H*.

For an oriented surface ¥ in H! with unit normal vector .4, we denote by h €
Hom(7,%; T,X) the shape operator h(W) = Vy A", at any point p € ¥. The 1-
form 9 in H', defined by 9(W) = (W, T) for W € T'(T'H"), can be restricted to the
tangent bundle TX. The tensor product Y®9 € Hom(7,%;T,X) is defined, as a linear

operator, by the formula
(V@ )W) = d(W)(I(X1) X1 + P X2)X2), W eTI(TY),

where X3, X5 is any (local) orthonormal frame of TY. Finally, for any H € R with
H #0, let ag € (—7n/4,7/4) be the angle

1
am =5 arctan (%), (5.1)

and let ¢y € Hom(7,%;T,%) be the (counterclockwise) rotation by the angle oy of
each tangent plane 7,3 with p € 3.
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Definition 5.1. Let 3 be an (immersed) surface in H' with constant mean curvature
H # 0. At any point p € X, we define the linear operator k¥ € Hom(7,,2; T,X) by

272

k=h+————quo(W®V)oqy. 5.2
\/WQH ( ) du ( )
The operator k is symmetric, i.e., (k(V), W) = (V,k(W)). The trace-free part of
kis ko = k — 3tr(k)Id. In fact, we have
272 1
k0:h0+ qHO(’l9®19)OOqH . (53)

Formula (5.2) is analogous to the formula for the quadratic holomorphic differential
discovered in [2].

In the following, we identify the linear operators h, k, 9 ® ¢ with the corresponding
bilinear forms (V, W) +— h(V, W) = (h(V), W), and so on.

The structure of k in (5.2) can be established in the following way. Let Xz be the
CMC sphere with R = 1/¢H. From the formula (3.4), we deduce that, in the frame
X1, Xy in (3.1), the trace-free shape operator at the point (z,t) € Xy is given by

0* H 7
h'(] = )
1+0*\ 7 —H
where ¢ = 7¢|z|. On the other hand, from (3.9) and (3.8), we get
oV + H?
1+ 0%

and we therefore obtain the following formula for the trace-free tensor (9 ® 1), in the

frame X5, Xo:
2 2 2 1
(e, =T ¢ ( 0 )

19(X1) =0 and 19(X2) =

272 1402\ 0 —1
Now, in the unknowns ¢ € R and ¢ (that is a rotation by an angle /), the system

of equations hy + cq(¥ @ ¥)og~' = 0 holds independently of ¢ if and only if ¢ =
272 /v/H? 4+ 72 and f3 is the angle in (5.1). We record this fact in the next:

Proposition 5.2. The linear operator k on the sphere X with mean curvature H,
at the point (z,t) € Xg, is given by

k::(H+ ¢ m)m.

1+ ¢?

In particular, ¥r has vanishing ko (i.e., kg =0).

In Theorem 5.7, we prove that any topological sphere in H' with constant mean
curvature has vanishing ky. We need to work in a conformal frame of tangent vector
fields to the surface.
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Let z = x; + ixy be the complex variable. Let D C C be an open set and, for a
given map F € C*°(D; H'), consider the immersed surface 3 = F(D) C H'. The
parametrization F' is conformal if there exists a positive function E € C'*°(D) such
that, at any point in D, the vector fields V; = F*a%l and Vp = F*a%2 satisfy:

Vif? = V2> = E, (1, V5) =0. (5.4)

We call Vi, V5 a conformal frame for ¥ and we denote by .4#” the normal vector field
to X such that triple Vi, V5, A4 forms a positively oriented frame, i.e.,

1
N ==V1 AV, (5.5)
E
The second fundamental form of ¥ in the frame Vi, V5, is denoted by

L M

h = (hij)ij=12 = (
where V; = Vy. for i = 1,2. This notation differs from (3.4), where the fixed frame
is X1, Xs, /. Finally, the mean curvature of ¥ is

L+ N hig+ ha

H
2F 2K

(5.7)

By Hopf’s technique on holomorphic quadratic differentials, the validity of the
equation ky = 0 follows from the Codazzi’s equations, which involve curvature terms.
An interesting relation between the 1-form ¢ and the Riemann curvature operator,
defined as

R(U, VYW = VuVyW — Vy VW — Vi W
for any U, V,W € T'(TH"'), is described in the following:

Lemma 5.3. Let Vi, Vy be a conformal frame of an immersed surface 3 in H' with

conformal factor E and unit normal A . Then, we have
(R(Va, Vi) AN, Vo) = AT ED(V1)O(A). (5-8)
Proof. We use the notation

Vi=V XX+ VY + VT, i=1,2,

5.9
N =N XX+ NYY + NTT. (5:9)
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From the fundamental relations (3.2), we obtain:

(R(Vo, Vi)' Vo) = VEVY AV (=37%) (1)
HEVAEVY (377 (2)
HVE VATV - (72 (3)
HVE VANV (=77 (4)
HR VANV (=37%) (5)
HV VRNV (37%) (6)
HV VATV (72) (7)
HV VIV (=) (8)
HV VATV (72) 9)
AV VATV - (=2) - (10)
VATV () (1)
HVIVIEATV - (=7%). (12)

Now, we have (9) + (10) + (11) + (12) = 0. In fact:
(9)+ (1) = PV V(A 4 W) = PV VIV,
(10) + (12) = =PV AT (VVE + VIV = VATV

(
1) =

where we used (V;, 4") = (V1,V3) = 0 to deduce VX A/X + VY #Y = VI AT and
VAV + VYVY = —VIV,E. Moreover, we have (3) + (4) + (7) + (8) = T?EVI AT,
Indeed,
(3) + (7) = PV ATV + V'V ) = PV TH(E = V'),
(4 + () = VIV VA V) = VIV
where we used (V,, Vo) = E and (Va, A#) = 0 to deduce VSV +VYVY = E—-VIVE
and Vi¥ /X + V¥ /Y = —V,J 4T, Indeed,
(1) + (5) = =37 (Vs V' AV + Vy V)
— BTZ[WTJVT(%X‘/ZX + VYVY) + VX‘/lXJVXV'QX 4 ‘/QY‘/lyf/VY‘/QY]
— 372[‘/1T¢/VT(E o ‘/'2T‘/2 )_'_VXva/’/X‘/QX +‘/2Y‘/'1Y(/VY‘/2Y]
(2) +(6) = 32V VY AV 4+ VAN
— _BTQ[‘/'IT‘/'QT(‘/QXJ/X Yt/VY) + VXVXJVX‘/QX + ‘/QY‘/lyf/I/Y‘/QY]
— —37—2[—‘/Y1T‘/Y2T¢/VT‘/2T XVXJVX‘/Q + VYVYWYX/Q ]’
where we used (Vy, 4) = (V1,V5) = 0 to deduce V¥ /Y = —VE/X — VI NT

VYVY = —VAVX — VIV and VXV = VXV — VIVE. Equation (5.8) follows.
U

For an immersed surface with conformal frame V7, V5, we use the notation V;E = E;,
ViH = H;, ViN = N;, ViM = M;, V,L = L;, 1 = 1,2.
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Theorem 5.4 (Codazzi’s Equations). Let ¥ = F(D) be an immersed surface in H*

with conformal frame Vi, Vs, conformal factor E and unit normal A". Then, we have

(L - N o

H, = E{ My —4r Eﬁ(\/l)ﬁ(ﬂ)}, (5.10)
_ l No — Ly 42

Hy = {2522+ M — 4P B0V |, (5.11)

where L, M, N, H are as in (5.6) and (5.7).

Proof. We start from the following well-known formulas for the derivatives of the

mean curvature:

1 (L~ N

= G+ Ma (ROA VA Vi) (512
1Ny — L

Hy = ={ =52 + My + (R(Vo, Vi) Vi) |. (5.13)

Our claims (5.10) and (5.11) follow from these formulas and Lemma 5.3.
For the reader’s convenience, we give a short sketch of the proof of (5.12), see

e.g. [12] for the flat case. For any i, j, k = 1,2, we have
Vihij — Vil = (R(Vie, Vi) A V) + (Vo VL V) — (Ve VYV V). (5.14)
Setting i = j =2 and k = 1 in (5.14), and using (5.7) we obtain

VI(2QEH) = Ly + My + (R(V1, Vo) A, Vi) + (VoA V1 Va) — (V1A Vo 15). (5.15)

Using the expression of V;.4" in the conformal frame, we find

(Vo V1 Vo) — (V1N Vo Va) = HE], (5.16)
and from (5.15) and (5.16) we deduce that
H = %{L1 — EVH + My + (R(Vi, V) A, Vi) ). (5.17)
From (5.7), we have the further equation
L - BH =1 ; M + EH,,

that, inserted into (5.17), gives claim (5.12).
O

Now we switch to the complex variable z = x1 4+ iz € D and define the complex

).
).

vector fields
1
Z=5(Vi—ivs) = F.(

1
7 ==
5

o Ple

V1+¢V2)=F*<
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Equations (5.10)-(5.11) can be transformed into one single equation:

L—-N

E(ZH) = Z( - @'M) — AP EY(N)I(Z). (5.18)

Now consider the trace-free part of b =k — h, i.e.,
272
VH?+ 72

The entries of by as a quadratic form in the conformal frame Vi, V3, with ¢; = ¢(V;)

by = qu o (V@30 qy'

2 .
and cy = Hg;w, are given by

2 92
A=t ) = e (BT —ri,0,),

(5.19)

92 — 92
B = bg(‘/l,‘/z) :CH<H191’L92—|-7‘ 1 5 2).

These entries can be computed starting from gy (9 ®9)oq;" = ¢4 (9 ®@1), where ¢% is
the rotation by the angle 2ay that, by (5.1), satisfies cos(2ay) = H/v H? + 72 and
sin(2ay) = 7/VH? + 12,

Lemma 5.5. Let ¥ be an immersed surface in H* with constant mean curvature H
and unit normal A such that Vi, Vs, A is positively oriented. Then, on 3 we have

Z(A —iB) = —47*EY(AN)I(Z). (5.20)

Proof. The complex equation (5.20) is equivalent to the system of real equations

Al + BQ == —4T2E19(JV)19<‘/1),
5.21
Ay — By = AT*EY(AN)I(Va), (5:21)

where A; = V;A and B; =V;B,i=1,2.
We check the first equation in (5.21). Since H is constant, we have

2 2 2 2
At By = en Vi (T 2) 1 (0100} + e { Vo (P 2) — (o)},
where
5 — V3
Vi(H52) + Valtha) = b (Vidh + Vadla) + Da(Vai — Vi),
03 — V3
Va(H52) = Viliha) = i (Vadh = Vida) = 05(Vih + Vo).

For i,5 = 1,2, we have
Vid; = (VT V) + (T, V,; V), (5.22)
where, with the notation (5.9) and by the fundamental relations (3.2),

(VT V) = (VXY — 7V X V) = VSV — VK, (5.23)
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From (5.22), (5.23), (5.5), and
0 8]:}7*[8 8}207

VoV — ViVa = [V, V3] = [F F*a? 920 D
1 2 1

Dy’
we deduce
Vothy — Vidy = 2r(V VX — VXV + (T, Vo V) — Vi Vo) = —27E9(A).  (5.24)
By the definition (5.7) and (5.4), we have
VAVi + VoV = (Vi Vi + VoVo, /)N = —2EH.N,
and thus, again from (5.22) and (5.23), we obtain
Vit + Vado = 9(Vi Vi + VaVa) = —2EHO(N). (5.25)

From (5.25) and (5.24) we deduce that

Vi (19% = 19%) +Va(019) = —2B9(AN ) [HI(VA) + 70 (V3)), (5.26)

V(B ) (i) = —2B0( o) - HO()]
and finally
Ay + By = —2cy(H? + 72 EY(AN)I(V}) = —4AT*EI(N)I(V}).

In order to prove the second equation in (5.21), notice that

By — Ay = cHH{vl(ﬁmz) - \/2(19% 3 ’95)} + cHT{VQ(ﬁmg) W (ﬁ% 3 193) }

By (5.26) we hence obtain
B — Ay = CHH{ZEﬁ(JV)[Tﬁ(‘/l) - HQ?(VQ)]} - cHT{2E19(</V)[H19(V1) + 719(1/2)]}
— e (H? + 2)ENN)I(VL) = —4r2 EI(N)O(Va).
[

Let ¥ be an immersed surface in H! defined in terms of a conformal parametrization
F € C*(D;H'). Let f € C°°(D;C) be the function of the complex variable z € D

given by

f(z) = L _2 N o iMa- iB, (5.27)

where L, M, M, A, B are defined as in (5.6) and (5.19) via the conformal frame V;, V3
and are evaluated at the point F'(z).

Proposition 5.6. If 3 has constant mean curvature H then the function f in (5.27)

18 holomorphic in D.
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Proof. From (5.18) with ZH = 0 and (5.20), we obtain the equation on ¥ = F(D)

Z<L_2N —iM + A= iB) =0,
that is equivalent to d;f = 0 in D. U

Now, by a standard argument of Hopf, see [9] Chapter VI, for topological spheres
the function f is identically zero. By Liouville’s theorem, this follows from the esti-
mate

C
W;

that can be obtained expressing the second fundamental forms in two different charts

1f(2)] < zeC,

without the north and south pole, respectively. We skip the details of the proof of
the next:

Theorem 5.7. A topological sphere Y immersed in H' with constant mean curvature

has vanishing k.

In the rest of this section, we show how to deduce from the equation kg = 0 that
any topological sphere is congruent to a sphere Y. Differently from [2], we do not
use the fact that the isometry group of H'! is four-dimensional.

Let b be the Lie algebra of H! and let (-,-) be the scalar product making X,Y,T
orthonormal. We denote by S? = {v € h : |v| = \/(v,v) = 1} the unit sphere in
h. For any p € H', let 77 : H* — H' be the left-translation 77(¢) = p~! - ¢ by the
inverse of p, where - is the group law of H', and denote by 77 € Hom(T,H';h) its
differential.

For any point (p,v) € H' x 5% there is a unique .4~ € T,H' such that v = 724" and
we define TVH' = {W € T,H' : (W,.#) = 0}. Depending on the point (p,v) and
on the parameters H,7 € R, with H? + 72 # 0, below we define the linear operator
Zy € Hom(TYH"; T, 5%). The definition is motivated by the proof of Proposition 5.8.
For any W € T/ M, we let

2 2
\/}P%WQHw(@ﬁ)qulW) + (Vwt)(A),

where V72 € Hom(T,H'; ) is the covariant derivative of 7 in the direction W and
the trace-free operator (¥ ® 9)o € Hom(TyH'; TV H") is

LW = 1P (HW .

(W@ 0) =0 @0 — %tr(ﬁ % 0)ld.

The operator qy € Hom(Tp”Hl; Tp”Hl) is the rotation by the angle ay in (5.1). The
operator Ly is well-defined, i.e., ZyW € b and (LyW,v) = 0 for any W € TVH".
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This can be checked using the identity |.4"| = 1 and working with the formula

3

i=1
where Y7, Y5, Y is any frame of orthonormal left-invariant vector fields.
Finally, for any point (p,v) € H! x S?, define

ég’H(p, l/) = {(W,D%HW) W e T;Hl} C Tle X TVS2.

Then (p,v) — &u(p,v) is a distribution of two-dimensional planes in H' x S%. The
distribution &% origins from CMC surfaces with mean curvature H and vanishing k.

Let ¥ be a smooth oriented surface immersed in H' given by a parameterization
F € C=(D; H') where D C C is an open set. We denote by .4 (F(z)) € T,H", with
p = F(2), the unit normal of ¥ at the point z € D. The normal section is given by
the mapping G : D — S2 defined by G(z) = i .4 (F(2)), and we can define the
Gauss section ® : D — H' x §? letting ®(z) = (F(z),G(2)). Then ¥ = ®(D) is a

two-dimensional immersed surface in H' x S2, called the Gauss extension of ¥.

Proposition 5.8. Let X be an oriented surface immersed in H' with constant mean
curvature H and vanishing ko. Then the Gauss extension ¥ is an integral surface of
the distribution & in H' x S?.

Proof. Let .4 be the unit normal to ¥. For any tangent section W € I'(T'X), we have
W(rH(A) =7 (VwA) + (Vwr ) (A)
=7 (h(W)) + (Vwr,)(A),
where h(W) = Vy 4 is the shape operator. Therefore, the set of all sections of the
tangent bundle of ¥ is
(TS = {(W 7P (h(W)) + (vWTf“)(JV)) W e r(Tz;)}.
The equation kg = 0 is equivalent to h = HId — by where, by (5.3),

272 tr(Y @ 0)

VIt 2

and thus the sections of ¥ are of the form

by = (19 20— Id) s
(W, LyW) e T(TY) with W € T(TX).
This concludes the proof. 0

Theorem 5.9. Let Y be a topological sphere in H' with constant mean curvature H.
Then there ezist a left translation ¢ and R > 0 such that (X)) = Xg.
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Proof. Let H > 0 be the mean curvature of ¥, let R = 1/He, and recall that the
sphere Xz has mean curvature H.

Let T*(p) € T,X be the orthogonal projection of the vertical vector field T' onto
T,%. Since ¥ is a topological sphere, there exists a point p € ¥ such that 7% (p) = 0.
This implies that either T'= .4 or T = —.4" at the point p, where .4 is the outer
normal to > at p. Assume that T'= 4.

Let ¢ be the left translation such that «(p) = N, where N is the north pole of ¥g.
At the point N the vector 7" is the outer normal to X g. Since ¢, 7" =T (this holds for
any isometry), we deduce that Xz and +(X) are two surfaces such that:

i) They have both constant mean curvature H.
ii) They have both vanishing kg, by Proposition 5.2 and Theorem 5.7.
iii) N € XgN(X) with the same (outer) normal at N,

Let M, = ¥ and My = 1(X) be the Gauss extensions of Xy and ¢(X), respectively.
Let v = 7N € S2. From i), ii) and Proposition 5.8 it follows that M; and M,
are both integral surfaces of the distribution &y. From iii), it follows that (N,v) €
My N M,. Being the two surfaces complete, this implies that M; = M, and thus
Yr=1(2).

[

6. QUANTITATIVE STABILITY OF Y IN VERTICAL CYLINDERS

In this section, we prove a quantitative isoperimetric inequality for the CMC spheres
Y g with respect to compact perturbations in vertical cylinders, see Theorem 6.1. This
is a strong form of stability of Xz in the northern and southern hemispheres.

A CMC surface ¥ in H' with normal .4 is stable in an open region A C ¥ if for
any function g € C2°(A) with fz gde/ = 0, where o7 is the Riemannian area measure
of 3, we have

F(9) = [ {I9F = (1 + Ric(4))g?* b >0

The functional .#(g) is the second variation, with fixed volume, of the area of ¥

with respect to the infinitesimal deformation of ¥ in the direction g.#". Above, |V

is the length of the tangential gradient of g, |h|? is the squared norm of the second

fundamental form of ¥ and Ric(./#") is the Ricci curvature of H' in the direction 4.
The Jacobi operator associated with the second variation functional .¥ is

ZLg = Ag+ (|h]’ + Ric(A))g,

where A is the Laplace-Beltrami operator of . As a consequence of Theorem 1 in
6], if there exists a strictly positive solution g € C*°(A) to equation Zg = 0 on A,
then ¥ is stable in A (even without the restriction [, gdo/ = 0).
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Now consider in H' the right-invariant vector fields
s 170 0 ~ 170 0 ~ 0
X=-(=-oys), V=-(5 +ous), and T=c2

\oz = Yo oy ") ¢

These are generators of left-translations in H', and the functions
g)A(:<X"/V>7 gf/:<Y’</V>v gf:<T7‘/V>

are solutions to .Z¢g = 0. By the previous discussion, the CMC sphere Xy is stable

in the hemispheres
Ag ={(z,t) € g : g5 > 0},
Ay ={(2,t) € Zg: gy > 0},
A7 ={(zt) €Sg: g5 >0}

In particular, ¥ is stable in the northern hemisphere Ax = {(z,t) € ¥z : t > 0}.

In fact, we believe that the whole Xy is stable. Actually, this would follow from
the isoperimetric property for Xg. The proof of the stability of ¥z requires a deeper
analysis and it is not yet clear. However, in the case of the northern (or southern)
hemisphere we can prove a strong form of stability in terms of a quantitative isoperi-
metric inequality. Some stability results in various sub-Riemannian settings have
been recently obtained in [14, 10, 11].

For R > 0, let Er C H! be the open domain bounded by the CMC sphere Yp,

Ep={(zt) e H' :|t| < f(lz[; R), |2| < R},

where f(-; R) is the profile function of X in (2.2). For 0 < § < R, we define the
half-cylinder

Crs={(2,t) € H : |z| < Rand t > tps},

where tps = f(rrs; R) and g5 = R — 4. In the following, we use the short notation

kRET = ESW(R)\/E7
1
4me R¥(Rkg.- + f(0; R))’ (6.1)
1
12em?R5(4RE2__ + f(0; R)?)’

CR{-IT =

DRET =

We denote by &7 the Riemannian surface-area measure in H!.

Theorem 6.1. Let R >0,0<J<R,e>0, and T € R be as in (1.2). Let E C H*
be a smooth open set such that £*(E) = £3(Eg) and 3 = OF.

(i) If EAER CC Crs with 0 < § < R then we have
A (L) — o (SR) > VOCrer LY (EAER)?. (6.2)
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(ii) If EAER CC Cgryo then we have
A () — A (SR) > Dpe, L (EAER). (6.3)

Remark 6.2. When ¥ C H! is a t-graph, ¥ = {(z, f(z)) € H' : z € D} for some
f € CYD), from (2.4) and (2.5) we see that the Riemannian area of ¥ is

(%) = é/D\/&—l— IVfI2+ 0%z + 20(xf, — yfs) dz,

and so

ti e (%) = [ /ISP a2l 20lat, — o) d=

The integral in the right-hand side is the sub-Riemannian area of 3.
On the other hand, the constants Cg., and Dg., in (6.1) are also asymptotic to
1/e. Thus, multiplied by e, inequalities (6.2) and (6.3) pass to the sub-Riemannian

limit, see [7].

The proof of Theorem 6.1 is based on the foliation of the cylinder Cz s by a family
of CMC surfaces with quantitative estimates on the mean curvature.

Theorem 6.3. For any R > 0 and 0 < § < R, there exists a continuous function
u: Crs — R with level sets Sy = {(z,t) € Cry : u(z,t) = A}, A € R, such that the
following claims hold:
(i) u € CYCrs N Er) NCY(Crys \ Er) and the normalized Riemannian gradient
Vu/|Vul| is continuously defined on Cg.
(ii) U>\>R Sy = 0375 N Egr and U)\SR Sy = 0375 \ Exg.
(iii) Each Sy is a smooth surface with constant mean curvature Hy = 1/(eX) for
A> R and Hy = 1/(eR) for A < R.
(iv) For any point (z, f(|z|; R) —t) € S\ with A > R we have
2

| - cRH \R)— 1) >
eR )\(Z7f(|2’7R> t) - 4Rk%€7+f(07R>2,

when 6 = 0, (6.4)

and

> \/gt
= Rkper + F(0;R)’

Proof of Theorem 6.3. For points (z,t) € Crs \ Er we let

1 —eRH\(z, f(|2[; R) — 1)

when 0 < § < R. (6.5)

u(z,t) = f(]z]; R) — t + R.

Then u satisfies u(z,t) < R for t > f(|z]; R) and u(z,t) = Rif t = f(|z|; R). In order
to define w in the set Crs N Eg, for 0 <r < rgs, tps <t < f(r;R), and A > R we
consider the function

F(r,t,\) = f(r;\) — f(rrs; A) +trs — t. (6.6)



CMC SPHERES 29

The function F also depends on §. We claim that for any point (z,t) € Crs N Eg
there exists a unique A > R such that F'(|z|,¢,A) = 0. In this case, we can define

u(z,t) =X\ if and only if F(|z],£,A) = 0. (6.7)

We prove the previous claim. Let (z,t) € Crs N Er and use the notation r = |z|.

First of all, we have

lim F(r,t,\) = f(r;R) —t>0. (6.8)

A—RT
We claim that we also have

lim F(r,t,\) =tgs —t <O. (6.9)

A—00

To prove this, we let f(r;\) — f(rrs; A) = %[fl()\) + f2(A)], where
f1(A) = w(N)? [arctan(p(r; A)) — arctan(p(rpg,s; /\))],

BN = () (p(r3 A) = plras; V).

Using the asymptotic approximation

™ 1 1 1
arctan(s) = — — — + — + 0(—

we obtain for A — oo
fi(A) = Aet(w(rps) —w(r))) + o(1),
fo(A) = Aet(w(r) — w(rgs)) + o(1),

and thus f(r;A\) — f(rrs: A) = o(1), where o(1) — 0 as A — oo. Since A — F(r,t,\)
is continuous, (6.8) and (6.9) imply the existence of a solution A of F(r,t,\) = 0.
The uniqueness follows from 0\ F(r,t,\) < 0. This inequality can be proved starting
from (2.10) and we skip the details. This finishes the proof of our initial claim.

Claims (i) and (ii) can be checked from the construction of u. Claim (iii) follows,
by Theorem 3.1, from the fact that Sy for A > R is a vertical translation (this is an
isometry of H') of the t-graph of z — f(z; \).

We prove Claim (iv). For any (z,t) € H' such that r = |2| < rgs and 0 < t <
f(r; R) — trs, we define

gz(t) = U(Z, f(’l"; R) - t) = )‘7 (610)

where A > R is uniquely determined by the condition (z, f(r; R)—t) € S\. Notice that
9-(0) = u(z, f(r; R)) = R. We estimate the derivative of the function ¢ — g, (). From
the identity F(r,t,u(z,t)) = 0, see (6.7), we compute dyu(z,t) = (O F(r, t,u(z,t)))~"
and so, also using (6.6), we find

B -1

O (r, f(rsR) —t,g:(1))

g.(t) = —owu(z, f(r; R) — t) (6.11)
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Now from (2.9) we compute

sw(s)

TR,5
_ 3
(9,\F(7“,t, /\) = —¢ )\/T; mds

3 TR, S
Z —& AW(T’R’(;)/O mdS

\ (6.12)

> —*w(R)

In the last inequality, we used rgs < R < A. From (6.11), (6.12) and with kg., as in

(6.1), we deduce that
1
9:(t) 2 17—/ 9:(t) = TR (6.13)
Ret

In the case 6 =0, (6.13) reads ¢.(t) > \/9.(t) — R/kg--. Integrating this differential
inequality we obtain g, (t) > R + t?/(4k%_.), and thus

R t?
9:(t) ~ 4RkE., + f(0; R)*’

1 —¢eRH\(z, f(r;R) —t) =1—

that is Claim (6.4).
If 0 < § < R, (6.13) implies ¢,(t) > V/kge; and an integration gives g.(t) >
V0t + R/kpe,. Then we obtain

R Vo .
9.(t) = Rkper + f(O;R)

1 —eRH)\(z, f(r;R) —t) =1—

that is Claim (6.5).
U

We can now prove Theorem 6.1, the last result of the paper. The proof follows the
lines of [7].

Proof of Theorem 6.1. Let v : Crs — R, 0 < 0 < 1, be the function constructed in
Theorem 6.3 and let S\ = {(2,t) € Cgrs : u(z,t) = A}, A € R, be the leaves of the
foliation. Let Vu be the Riemannian gradient of u. The vector field

Vu(z,t)

V) = —ueor

(Z, t) € CR75,

satisfies the following properties:
i) V] =1.
ii) For (z,t) € ¥g N Cgrs we have V(z,t) = vs,(z,t), where vy, = A4 is the

exterior unit normal to Y.
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iii) For any point (z,t) € Sy, A € R, the Riemannian divergence of V satisfies

1 1
—divV(z,t) = Hy(z,t) < — for A > R,
2 el (6.14)

1. 1
§d1VV<Z,t) = H)(z,t) = 7 for 0 < A < R.

Let vy, be the exterior unit normal to the surface ¥ = 0F. By the Gauss-Green
formula and (6.14) it follows that

L} Er\ E) > ﬁ/ divV d.2?
2 Jen\E

- ﬁ(/ Vo) ded — [ (Vo) der)
2 \Jsp\E SNER

> ?(W(ER \ E) — (SN ER)).

In the last inequality we used the Cauchy-Schwarz inequality and the fact that
(V,vs,) =1 on Xg\ E. By a similar computation we also have

L3E\ Eg) = ? / divV d.£?
E\Eg

_ceht {/ (V. )ded — W VER>CM}
2 S\Er YrNE

< S (S Br) — o (Sa 0 E)).

Using the inequalities above and the fact that Z3(E) = £3(Eg), it follows that:

ﬁ(QQ%(ZR \E)— (XN ER)) < ﬁ/ divV d.£?
2 2 Jppg

— #YE\ Eg) —/ (1 - ?divv) %
ER\E
R _

< S (A (S\ Er) - /(Sn 0 E)) — 9 (En \ B),

where we let
G(Ep\ E) = / (1 - %divV) 4.7,
ER\E
Hence, we obtain
2
o (2) — o (Sr) 2“9 (En\ E). (6.15)

For any z with |z| < R—0d, we define the vertical sections Ef = {t € R: (z,t) € Er}
and E* = {t € R: (z,t) € E}. By Fubini-Tonelli theorem, we have

%(ER\E):/ / (1—£divV(z,t))dtdz.
{121<R} J B3\ B 2



32 V. FRANCESCHI, F. MONTEFALCONE, AND R. MONTI

The function ¢ — divV(z,t) is increasing, and thus letting m(z) = Z(E% \ E?), by

monotonicity we obtain

F(1=1:R)
G(Bp\ E) / / 1 - ﬁdivV(z,t))dt dz
{1z1<1} 2

f(|z;R)—

oL
{lzI<1} Jo gz(t)

where ¢g.(t) = u(z, f(]z]; R) — t) is the function introduced in (6.10).
When § = 0, by the inequality (6.4) and by Holder inequality we find

R ARkR. . + f(0; R)? Jiz1<ry Jo

1
= P RARKS 1 [(0: R)Y)

From (6.16) and (6.15) we obtain (6.3).
By (6.5), when 0 < § < 1 the function g, satisfies the estimate 1 — 1/g.(t) >
(vV/0/(krer + f(0; R)))t and we find

ol
Y (Er\ E) > tdtdz
(Er\ E) Rkper + f(0; R) Jgz1<my Jo

(6.16)

LY EAER)®.

/3 (6.17)
5
> S(EAER)*.
= 8nR?(Rkger + f(0; R))g (EAER)
From (6.17) and (6.15) we obtain Claim (6.2).
O
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