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1. Introduction to the Heisenberg group Hn

1.1. Algebraic structure. The 2n+1-dimensional Heisenberg group is the manifold

Hn = Cn × R, n ∈ N, endowed with the group product

(z, t) · (ζ, τ) =
(
z + ζ, t+ τ + 2 Im〈z, ζ̄〉

)
, (1.1)

where t, τ ∈ R, z, ζ ∈ Cn and 〈z, ζ̄〉 = z1ζ̄1 + . . . + znζ̄n. The Heisenberg group is

a noncommutative Lie group. The identity element is 0 = (0, 0) ∈ Hn. The inverse

element of (z, t) is (−z,−t). The center of the group is Z = {(z, t) ∈ Hn : z = 0}.
We denote elements of Hn by p = (z, t) ∈ Cn × R.

The left translation by p ∈ Hn is the mapping Lp : Hn → Hn

Lp(q) = p · q.

Left translations are linear mappings in Hn = R2n+1. For any λ > 0, the mapping

δλ : Hn → Hn

δλ(z, t) = (λz, λ2t), (1.2)

is called dilation. Dilations are linear mappings and form a 1-parameter group (δλ)λ>0

of automorphisms of Hn.

We denote by |E| the Lebesgue measure of a Lebesgue measurable set E ⊂ Hn =

R2n+1. The differential dLp of any left translation is an upper triangular matrix with

1 along the principal diagonal. It follows that det dLp = 1 on Hn for any p ∈ Hn and,

as a consequence,

|LpE| = |E|, for any p ∈ Hn and for any E ⊂ Hn.

Lebesgue measure is the Haar measure of the Heisenberg group. Moreover, we have

det δλ = λQ, where the integer

Q = 2n+ 2 (1.3)

is called homogeneous dimension of Hn. As a consequence, we have

|δλE| = λQ|E|.
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We introduce the Lie algebra of left invariant vector fields of Hn. A C∞ vector field

X in Hn is left invariant if for any function f ∈ C∞(Hn) and for any p ∈ Hn there

holds

X(f ◦ Lp) = (Xf) ◦ Lp.

Equivalently, X is left invariant if X(p) = dLpX(0), where dLp is the differential of

the left translation by p. Left invariant vector fields with the bracket form a nilpotent

Lie algebra hn, called Heisenberg Lie algebra. The algebra hn is spanned by the vector

fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, and T =

∂

∂t
, (1.4)

with j = 1, . . . , n. In other words, any left invariant vector field is a linear combination

with real coefficients of the vector fields (1.4). We are using the notation p = (z, t)

and z = x+ iy with x, y,∈ Rn. The vector fields (1.4) are determined by the relations

Xj(p) = dLpXj(0) = dLp
∂

∂xj
,

Yj(p) = dLpYj(0) = dLp
∂

∂yj
,

T (p) = dLpT (0) = dLp
∂

∂t
.

The distribution of 2n-dimensional planes Hp spanned by the vector fields Xj and Yj,

j = 1, . . . , n, is called horizontal distribution:

Hp = span
{
Xj(p), Yj(p) : j = 1, . . . , n

}
. (1.5)

The horizontal distribution is nonintegrable. In fact, for any j = 1, . . . , n there holds

[Xj, Yj] = −4T 6= 0. (1.6)

All other commutators vanish. The horizontal distribution is bracket generating of

step 2.

When n = 1, we write X = X1 and Y = Y1.

1.2. Metric structure. We introduce the Carnot-Carathéodory metric of Hn and

we describe the geodesics of this metric. In H1, these curves are important in the

structure of H-minimal surfaces and surfaces with constant H-curvature.

A Lipschitz curve γ : [0, 1] → Hn is horizontal if γ̇(t) ∈ Hγ(t) for a.e. t ∈ [0, 1].

Equivalently, γ is horizontal if there exist functions hj ∈ L∞([0, 1]), j = 1, . . . , 2n,

such that

γ̇ =
n∑
j=1

hjXj(γ) + hn+jYj(γ), a.e. on [0, 1]. (1.7)

The coefficients hj are unique, and by the structure of the vector fields Xj and Yj

they satisfy hj = γ̇j, where γ = (γ1, . . . , γ2n+1) are the coordinates of γ given by



4 ROBERTO MONTI

the identification Hn = R2n+1. We call the Lipschitz curve κ : [0, 1] → R2n, κ =

(γ1, . . . , γ2n), horizontal projection of γ.

The vertical component of γ is determined by the horizontality condition (1.7).

Namely, we have

γ̇2n+1 = 2
n∑
j=1

hjγn+j − hn+jγj = 2
n∑
j=1

κ̇jκn+j − κ̇n+jκj,

and, by integrating, we obtain for any t ∈ [0, 1]

γ2n+1(t) = γ2n+1(0) + 2
n∑
j=1

∫ t

0

(κ̇jκn+j − κ̇n+jκj)ds. (1.8)

If κ is a given Lipschitz curve in R2n, the curve γ with (γ1, . . . , γ2n) = κ and γ2n+1 as

in (1.8) is called a horizontal lift of κ and we write γ = Lift(κ). The horizontal lift is

unique modulo the initial value γ2n+1(0).

Now we define the Carnot-Carathéodory metric of Hn. For any pair of points

p, q ∈ Hn, there exists a horizontal curve γ : [0, 1] → Hn such that γ(0) = p and

γ(1) = q. This follows from the nonintegrability condition (1.6) and it can be checked

via a direct computation. The basic observation is that for any t ∈ R

exp(−tYj) exp(−tXj) exp(tYj) exp(tXj)(0, 0) = (0,−4t2),

where exp(tV )(p) is the flow of the vector field V at time t starting from p.

We fix on the horizontal distribution Hp the positive quadratic form g(p; ·) making

the vector fields X1, . . . , Xn, Y1, . . . , Xn orthonormal at every point p ∈ Hn. Since

the vector fields are left invariant, the quadratic form is left invariant. We use the

quadratic form g to define the length of a horizontal curve γ : [0, 1] → Hn with

horizontal projection κ:

L(γ) =

∫ 1

0

g(γ; γ̇)1/2dt =

∫ 1

0

|κ̇|dt,

where |κ̇| is the Euclidean norm in R2n of κ̇. For any couple of points p, q ∈ Hn, we

define

d(p, q) = inf
{
L(γ) : γ : [0, 1]→ Hn is horizontal, γ(0) = p and γ(1) = q

}
. (1.9)

We already observed that the above set is nonempty for any p, q ∈ Hn, and thus

0 ≤ d(p, q) <∞.

The function d : Hn×Hn → [0,∞) is a distance on Hn, called Carnot-Carathéodory

distance. It can be proved that for any compact set K ⊂ Hn = R2n+1 there exists a

constant 0 < CK <∞ such that

d(p, q) ≥ CK |p− q| (1.10)
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for all p, q ∈ K, where |p − q| is the Euclidean distance between the points. In

particular, we have d(p, q) 6= 0 if p 6= q. The distance d is left invariant and 1-

homogeneous. Namely, for any p, q, w ∈ Hn and λ > 0 there holds:

i) d(w · p, w · q) = d(p, q);

ii) d(δλ(p), δλ(q)) = d(p, q).

Statement i) follows from the fact that L(w · γ) = L(γ) for any horizontal curve γ

and for any w ∈ Hn, because the quadratic form g is left invariant. Analogously, ii)

follows from L(δλ(γ)) = λL(γ), that is a consequence of the identities

Xj(f ◦ δλ) = λ(Xjf) ◦ δλ, Yj(f ◦ δλ) = λ(Yjf) ◦ δλ,

holding for any f ∈ C∞(Hn) and λ > 0.

For any p ∈ Hn and r > 0, we define the Carnot-Carathéodory ball

Br(p) =
{
q ∈ Hn : d(p, q) < r

}
.

We also let Br = Br(0). The size of Carnot-Carathéodory balls can be described by

means of anisotropic homogeneous norms. For any p = (z, t) ∈ Hn let

‖p‖∞ = max{|z|, |t|1/2}. (1.11)

The “box norm” ‖ · ‖∞ has the following properties:

i) ‖δλ(p)‖∞ = λ‖p‖∞, for all p ∈ Hn and λ > 0;

ii) ‖p · q‖∞ ≤ ‖p‖∞ + ‖q‖∞, for all p, q ∈ Hn.

By ii), the function % : Hn ×Hn → [0,∞),

%(p, q) = ‖p−1 · q‖∞, (1.12)

satisfies the triangle inequality and is a distance on Hn. By an elementary argument

based on continuity, compactness, and homogeneity, there exists an absolute constant

C > 0 such that

C−1d(p, q) ≤ %(p, q) ≤ Cd(p, q)

for all p, q ∈ Hn. The distance functions d and % are equivalent.

All the previous observations are still valid when the “box norm” ‖ · ‖∞ is replaced

with the Koranyi norm ‖p‖ =
(
|z|4 + t2

)1/4
.

The metric space (Hn, d) is complete and locally compact. By the definition of d, it

is also a length space. Then, a standard application of Ascoli-Arzelà theorem shows

that it is a geodesic space, namely for all p, q ∈ Hn there exists a horizontal curve

γ : [0, 1] → Hn such that γ(0) = q, γ(1) = p, and L(γ) = d(p, q). The curve γ is

called geodesic or length minimizing curve joining q to p.
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We classify geodesics in H1 starting from the initial point 0. Let Φ : [0, 2π] ×
[−2π, 2π]→ H1 be the mapping

Φ(ψ, ϕ) =
(eiψ(eiϕ − 1)

ϕ
, 2
ϕ− sinϕ

ϕ2

)
. (1.13)

When ϕ = 0, the formula is determined by analytic continuation and we have

Φ(ψ, 0) = (ieiψ, 0). The set S = Φ([0, 2π] × [−2π, 2π]) ⊂ H1 is homeomorphic to

a 2-dimensional sphere. It is a C∞ surface at points (z, t) ∈ S such that z 6= 0,

i.e., (z, t) = Φ(ψ, ϕ) with |ϕ| 6= 2π. The antipodal points (0,±1/π) ∈ S are ob-

tained for ϕ = ±2π and are Lipschitz points. We will show that S is the unitary

Carnot-Carathéodory sphere of H1 centered at 0, S = ∂B1(0).

Theorem 1.1. For any ψ ∈ [0, 2π] and ϕ ∈ [−2π, 2π], the curve γψ,ϕ : [0, 1]→ H1

γψ,ϕ(s) =
(eiψ(eiϕs − 1)

ϕ
, 2
ϕs− sinϕs

ϕ2

)
, s ∈ [0, 1], (1.14)

is length minimizing. When |ϕ| < 2π, γψ,ϕ is the unique length minimizing curve

from 0 to Φ(ψ, ϕ). When ϕ = ±2π, for every ψ ∈ [0, 2π] the curve γψ,ϕ is length

minimizing from 0 to (0,±1/π).

Proof. Let (z0, t0) ∈ H1 be any point and introduce the family of admissible curves

A =
{
κ ∈ Lip([0, 1];R2) : κ(0) = 0, κ(1) = z0

}
.

The end-point mapping relative to the third coordinate End : A → R is

End(κ) = 2

∫ 1

0

(
κ2κ̇1 − κ1κ̇2

)
ds = 2

∫ 1

0

Im(κ ˙̄κ)ds,

where κ ˙̄κ is a complex product.

The geodesic γ joining 0 to (z0, t0) is the horizontal lift of the curve κ in the plane

that solves the problem

min
{∫ 1

0

|κ̇|ds : κ ∈ A and End(κ) = t0

}
. (1.15)

Let κ be a minimizer for problem (1.15). We compute the first variation of the

length functional at the curve κ with constraint End(κ) = t0. For τ ∈ R and ϑ ∈
C∞c
(
(0, 1);R2

)
the curve κτ = κ+ τϑ satisfies

d

dτ
End(κτ )

∣∣∣∣
τ=0

= 2
d

dτ

∫ 1

0

(
(κ2 + τϑ2)(κ̇1 + τ ϑ̇1)− (κ1 + τϑ1)(κ̇2 + τϑ2)

)
ds

∣∣∣∣
τ=0

= 2

∫ 1

0

(
ϑ2κ̇1 + κ2ϑ̇1 − κ1ϑ2 − ϑ1κ̇2

)
ds

= 4

∫ 1

0

(
ϑ2κ̇1 − ϑ1κ̇2

)
ds.
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We have |κ̇| 6= 0 a.e., and thus there exists ϑ ∈ C∞c
(
(0, 1);R2

)
such that

d

dτ
End(κτ )

∣∣∣∣
τ=0

6= 0. (1.16)

Fix a function ϑ satisfying (1.16) and let η ∈ C∞c
(
(0, 1);R2

)
be an arbitrary vector

valued function. The curve κ + τϑ + εη belongs to A . Define the function in the

plane E : R2 → R
E(ε, τ) = End(κ+ τϑ+ εη).

This function is C1-smooth and H := ∂E(0, 0)/∂τ 6= 0, by (1.16). By the im-

plicit function theorem, there exist ε0 > 0 and a function τ ∈ C1(−ε0, ε0) such that

E(ε, τ(ε)) = E(0, 0) = t0 for all ε ∈ (−ε0, ε0). Moreover, we have

τ ′(0) = −
(∂E(0, 0)

∂τ

)−1(∂E(0, 0)

∂ε

)
= − 1

H

∫ 1

0

(η2κ̇1 − η1κ̇2)ds = − 1

H

∫ 1

0

〈κ̇⊥, η〉ds,
(1.17)

where κ̇⊥ = (−κ̇2, κ̇1), or equivalently, in the complex notation κ̇⊥ = iκ̇.

Since κ is a solution to the minimum problem (1.15) and κ+ τ(ε)ϑ+ εη ∈ A with

End(κ+ τ(ε)ϑ+ εη) = t0, then we have

1 =

∫ 1

0

|κ̇|ds ≤
∫ 1

0

|κ̇+ τ(ε)ϑ̇+ εη̇|ds = L(ε),

and thus L′(0) = 0. We can without loss of generality assume that κ is parameterized

by arc-length, i.e., |κ̇| = 1. The equation L′(0) = 0 gives (we also use (1.17))

0 = τ ′(0)

∫ 1

0

〈κ̇, ϑ̇〉ds+

∫ 1

0

〈κ̇, η̇〉ds

= ϕ

∫ 1

0

〈κ̇⊥, η〉ds+

∫ 1

0

〈κ̇, η̇〉ds,

where ϕ ∈ R is the constant

ϕ = − 1

H

∫ 1

0

〈κ̇, ϑ̇〉ds.

Eventually, for any test function η ∈ C∞c
(
(0, 1);R2

)
we have∫ 1

0

{
〈κ̇, η̇〉+ ϕ〈κ̇⊥, η〉

}
ds = 0,

and a standard argument implies that κ is in C∞([0, 1];R2) and it solves the differ-

ential equation κ̈ = ϕκ̇⊥ = iϕκ̇. Then we have κ̇(s) = ieiψeiϕs, s ∈ R, for some

ψ ∈ [0, 2π]. Integrating with κ(0) = 0, we find

κ(s) =
eiψ(eiϕs − 1)

ϕ
, s ∈ R.
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The vertical coordinate of the horizontal lift γ of κ is

γ3(s) = 2

∫ s

0

Im(κ(σ)κ̇(σ))dσ = 2
ϕs− sinϕs

ϕ2
,

and thus for any ψ ∈ [0, π] and ϕ ∈ R we get the curve

γψ,ϕ(s) =
(eiψ(eiϕs − 1)

ϕ
, 2
ϕs− sinϕs

ϕ2

)
, s ∈ R. (1.18)

When ϕ = 0, γ reduces to the line γ(s) = (ieiψs, 0).

The curve γψ,ϕ is length minimizing on the interval 0 ≤ s ≤ 2π/|ϕ| and, after

s = 2π/|ϕ|, it ceases to be length minimizing. We prove this claim in the case ϕ = 2π

by a geometric argument. For s = 1 we have

γψ,2π(1) =
(
0, 1/π

)
.

At the point (0, 1/π) ∈ C × R, the surface S = Φ([0, 2π] × [−2π, 2π]) introduced in

(1.13) has a conical point directed downwards. By this, we mean that near (0, 1/π)

the surfaces S stays above the cone t = 1/π + δ|z| for some δ > 0. Then for any

ε > 0 small enough there exist 0 < λ < 1 and (ψ̄, ϕ̄) ∈ [0, 2π] × [−2π, 2π] such that

γψ,2π(1+ε) = δλΦ(ψ̄, ϕ̄). Since d(Φ(ψ̄, ϕ̄), 0) ≤ 1 (a posteriori we have equality, here),

we deduce that

d(γψ,2π(1 + ε), 0) = λd(Φ(ψ̄, ϕ̄), 0) ≤ λ < 1.

Since the length of γψ,2π on the interval [0, 1 + ε] is 1 + ε, we see that the curve is not

length minimizing.

For any point (z0, t0) ∈ H1 with z0 6= 0, the system of equations

eiψ(eiϕs − 1)

ϕ
= z0, 2

ϕs− sinϕs

ϕ2
= t0, (1.19)

has unique solutions s ≥ 0, ψ ∈ [0, 2π), and ϕ ∈ R subject to the constraint s|ϕ| < 2π

(we omit details). Thus γψ,ϕ is the unique length minimizing curve from 0 to (z0, t0)

and s = d((z0, t0), 0).

�

Remark 1.2. The Heisenberg isoperimetric problem is related to the classical Dido

problem, that asks to bound a region of the half plane with a curve with minimal

length, where the boundary of the half plane (the coast) is a free length.

Let γ : [0, 1]→ H1 be a horizontal curve such that γ(0) = 0 and let κ : [0, 1]→ R2

be its horizontal projection. By formula (1.8), the third coordinate of γ at time

t ∈ [0, 1] is

γ3(t) = 2

∫ t

0

(κ2κ̇1 − κ1κ̇2

)
ds = 2

∫
κ|[0,t]

ydx− xdy.
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Let Et ⊂ R2 be the region of the plane bounded by the curve κ restricted to [0, t] and

by the line segment joining κ(t) to 0. Assume that the concatenation of κ and of the

line segment bounds Et counterclockwise. Then by Stokes’ theorem we have

γ3(t) = −4

∫
Et

dx ∧ dy = −4|Et|.

If the orientation is clockwise, −4|Et| is replaced by 4|Et|. If the orientation is different

in subregions of Et, there are area cancellations.

So the minimum problem (1.15) consists in finding the shortest curve in the plane

enclosing an amount of area given by the t0 coordinate of the final point (z0, t0). In

the Heisenberg isoperimetric problem, the point z0 is also fixed, differently from Dido

problem.

2. Heisenberg perimeter and other equivalent measures

2.1. H-perimeter. We introduce the notion of H-perimeter for a set E ⊂ Hn. We

preliminarily need the definition of H-divergence of a vector valued function ϕ ∈
C1(Hn;R2n).

Let V be a smooth vector field in Hn = R2n+1. We may express V using both the

basis Xj, Yj, T and the standard basis of vector fields of R2n+1:

V =
n∑
j=1

(
ϕjXj + ϕn+jYj

)
+ ϕ2n+1T

=
n∑
j=1

{
ϕj

∂

∂xj
+ ϕn+j

∂

∂yj
+
(
2yjϕj − 2xjϕn+j

) ∂
∂t

}
+ ϕ2n+1

∂

∂t
,

(2.1)

where ϕj, ϕn+j, ϕ2n+1 ∈ C∞(Hn) are smooth functions. The standard divergence of

V is

div V =
n∑
j=1

{∂ϕj
∂xj

+
∂ϕn+j

∂yj
+
(

2yj
∂ϕj
∂t
− 2xj

∂ϕn+j

∂t

)}
+
∂ϕ2n+1

∂t

=
n∑
j=1

(
Xjϕj + Yjϕn+j

)
+ Tϕ2n+1.

(2.2)

The vector field V is said to be horizontal if V (p) ∈ Hp for all p ∈ Hn. Namely, a

vector field V as in (2.1) is horizontal when ϕ2n+1 = 0. These observations suggest

the following definition.

Let A ⊂ Hn be an open set. We define the horizontal divergence of a vector valued

mapping ϕ ∈ C1(A;R2n) as

divHϕ =
n∑
j=1

(
Xjϕj + Yjϕn+j

)
. (2.3)
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By (2.2), divHϕ = div V is the standard divergence of the horizontal vector field V

with coordinates ϕ = (ϕ1, . . . , ϕ2n) in the basis X1, . . . , Xn, Y1, . . . , Yn. If ‖ · ‖ is the

norm on Hp that makes X1, . . . , Xn, Y1, . . . , Yn orthonormal, then we have

‖V (p)‖ = |ϕ(p)|,

where | · | is the standard norm on R2n.

The following definition is the starting point of the fundamental paper [27] (see

also [33]).

Definition 2.1 (H-perimeter). TheH-perimeter in an open setA ⊂ Hn of a Lebesgue

measurable set E ⊂ Hn is

P (E;A) = sup

{∫
E

divHϕdzdt : ϕ ∈ C1
c (A;R2n), ‖ϕ‖∞ ≤ 1

}
. (2.4)

Above, we let

‖ϕ‖∞ = sup
p∈A
|ϕ(p)|.

If P (E;A) <∞, we say that E has finite H-perimeter in A. If P (E;A′) <∞ for any

open set A′ ⊂⊂ A, we say that E has locally finite H-perimeter in A.

H-perimeter has the following invariance properties.

Proposition 2.2. Let E ⊂ Hn be a set with finite H-perimeter in an open set

A ⊂ Hn. Then for any p ∈ Hn and for any λ > 0 we have:

i) P (LpE;LpA) = P (E;A);

ii) P (δλE; δλA) = λQ−1P (E;A).

Proof. Statement i) follows from the fact that the vector fields Xj and Yj are left

invariant, and thus

(divHϕ) ◦ Lp = divH(ϕ ◦ Lp).

We prove ii) in the case A = Hn. First notice that for any ϕ ∈ C1
c (Hn;R2n) we have

divH(ϕ ◦ δλ) = λ(divHϕ) ◦ δλ,

and thus∫
δλE

divHϕdzdt = λQ
∫
E

(divHϕ) ◦ δλ dzdt = λQ−1

∫
E

divH(ϕ ◦ δλ) dzdt.

The claim easily follows.

�

Let E ⊂ Hn be a set with locally finite H-perimeter in an open set A ⊂ Hn. The

linear functional T : C1
c (A;R2n)→ R

T (ϕ) =

∫
E

divHϕ(z, t) dzdt
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is locally bounded in Cc(A;R2n). Namely, for any open set A′ ⊂⊂ A we have

T (ϕ) ≤ ‖ϕ‖∞P (E;A′) (2.5)

for all ϕ ∈ C1
c (A′;R2n). By density, T can be extended to a bounded linear operator on

Cc(A
′;R2n) satisfying the same bound (2.5). Thus, by Riesz’ representation theorem

we deduce the following proposition.

Proposition 2.3. Let E ⊂ Hn be a set with locally finite H-perimeter in the open

set A ⊂ Hn. There exist a positive Radon measure µE on A and a µE-measurable

function νE : A→ R2n such that:

1) |νE| = 1 µE-a.e. on A.

2) The following generalized Gauss-Green formula holds∫
E

divHϕdzdt = −
∫
A

〈ϕ, νE〉dµE (2.6)

for all ϕ ∈ C1
c (A;R2n).

Above, 〈·, ·〉 is the standard scalar product in R2n.

Definition 2.4 (Horizontal normal). The measure µE is called H-perimeter measure

and the function νE is called measure theoretic inner horizontal normal of E.

We shall refer to νE simply as to the horizontal normal. In Section 3, we describe

geometrically νE in the smooth case (see (3.3)). In Proposition 2.10 below, we shall

see that the vertical hyperplane in Hn orthogonal to νE(p) is the “tangent plane” to

∂E at points of the reduced boundary.

Remark 2.5. By Proposition 2.3, the open sets mapping A′ 7→ P (E;A′), with A′ ⊂⊂
A open, extends to the Radon measure µE. We show that for any open set A′ ⊂⊂ A

we have µE(A′) = P (E;A′).

The inequality P (E;A′) ≤ µE(A′) follows from the sup-definition (2.4) of H-

perimeter. The opposite inequality can be proved by a standard approximation

argument. By Lusin’s theorem, for any ε > 0 there exists a compact set K ⊂ A′

such that µE(A′ \ K) < ε and νE : K → R2n is continuous. By Titze’s theorem,

there exists ψ ∈ Cc(A
′;R2n) such that ψ = νE on K and ‖ψ‖∞ ≤ 1. Finally, by

mollification there exists ϕ ∈ C∞c (A′;R2n) such that ‖ϕ − ψ‖∞ < ε and ‖ϕ‖∞ ≤ 1.

Then we have

P (E;A′) ≥
∫
E

divHϕdzdt = −
∫
A′
〈ϕ, νE〉dµE ≥ (1− ε)µE(A′)− 2ε,

and the claim follows.

In the sequel, we need a metric structure on Hn. For most purposes, the Carnot-

Carathéodory metric would be fine. In some cases, however, as in the characterization
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(2.13) of H-perimeter by means of spherical Hausdorff measures, the structure of

Carnot-Carathéodory balls is less manageable. For this reason, we closely follow [27]

and we use the metric % introduced in (1.12) via the “box-norm” ‖ · ‖∞ in (1.11). We

denote the open ball in % centered at p ∈ Hn and with radius r > 0 in the following

way

U(p, r) =
{
q ∈ Hn : ‖p−1 · q‖∞ < r

}
. (2.7)

We also let Ur(p) = U(p, r) and Ur = Ur(0).

Definition 2.6 (Measure theoretic boundary). The measure theoretic boundary of a

measurable set E ⊂ Hn is the set

∂E =
{
p ∈ Hn : |E ∩ Ur(p)| > 0 and |Ur(p) \ E| > 0 for all r > 0

}
.

The measure theoretic boundary is a subset of the topological boundary. The defi-

nition does not depend on the specific balls Ur(p). We may also consider the set of

points with density 1/2:

E1/2 =
{
p ∈ Hn : lim

r→0

|E ∩ Ur(p)|
|Ur(p)|

=
1

2

}
.

We clearly have E1/2 ⊂ ∂E. The definition of E1/2 is sensitive to the choice of the

metric.

The perimeter measure µE is concentrated in a subset of E1/2 called reduced bound-

ary. The following definition is introduced and studied in [27].

Definition 2.7 (Reduced boundary). The reduced boundary of a set E ⊂ Hn with

locally finite H-perimeter is the set ∂∗E of all points p ∈ Hn such that the following

three conditions hold:

(1) µE(Ur(p)) > 0 for all r > 0.

(2) We have

lim
r→0

∫
Ur(p)

νE dµE = νE(p).

(3) There holds |νE(p)| = 1.

As usual

∫
, stands for the averaged integral. The definition of reduced boundary

is sensitive to the metric. It also depends on the representative of νE.

The proof of the Euclidean model of Proposition 2.8 below relies upon Lebesgue-

Besicovitch differentiation theorem for Radon measures in Rn. In Hn with metrics

equivalent to the Carnot-Carathéodory distance, however, Besicovitch’s covering the-

orem fails (see [36] and [65]). This problem is bypassed in [27] using an asymptotic

doubling property established, in a general context, in [1].

Proposition 2.8. Let E ⊂ Hn be a set with locally finite H-perimeter. Then the

perimeter measure µE is concentrated on ∂∗E. Namely, we have µE(Hn \ ∂∗E) = 0.
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Proof. By [1], Theorem 4.3, there exists a constant τ(n) > 0 such that for µE-a.e. p ∈
Hn there holds

τ(n) ≤ lim inf
r→0

µE(Ur(p))

rQ−1
≤ lim sup

r→0

µE(Ur(p))

rQ−1
<∞.

As a consequence, we have the following asymptotic doubling formula

lim sup
r→0

µE(U2r(p))

µE(Ur(p))
<∞, (2.8)

for µE-a.e. p ∈ Hn. Thus, by Theorems 2.8.17 and 2.9.8 in [25], for any function

f ∈ L1
loc(Hn;µE) there holds

lim
r→0

∫
Ur(p)

f dµE = f(p)

for µE-a.e. p ∈ Hn.

Assume that p ∈ Hn \ ∂∗E. There are three possibilities:

1) We have µE(Ur(p)) = 0 for some r > 0. The set of points with this property

has null µE measure.

2) We have

lim
r→0

∫
Ur(p)

νE dµE 6= νE(p).

By the above argument with f = νE, the set of such points has null µE
measure.

3) We have |νE(p)| 6= 1. By Proposition 2.3, the set of such points has null µE
measure.

This ends the proof. �

Definition 2.9 (Vertical plane). For any ν ∈ R2n with |ν| = 1, we call the set

Hν =
{

(z, t) ∈ Hn : 〈ν, z〉 ≥ 0, t ∈ R
}

the vertical half-space through 0 ∈ Hn with inner normal ν. The boundary of Hν , the

set

∂Hν =
{

(z, t) ∈ Hn : 〈ν, z〉 = 0, t ∈ R
}
,

is called vertical plane orthogonal to ν passing through 0 ∈ Hn.

At points p ∈ ∂∗E, the set E blows up to the vertical half space Hν with ν = νE(p).

In this sense, the boundary of Hν is the anisotropic tangent space of ∂∗E at p. The

problem of the characterization of blow-ups in Carnot groups is still open. In general,

it is known that in the blow-up of blow-ups there are vertical hyperplanes (see [3]).

Hereafter, we let Eλ = δλE for λ > 0.
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Theorem 2.10 (Blow-up). Let E ⊂ Hn be a set with finite H-perimeter, assume

that 0 ∈ ∂∗E and let ν = νE(0). Then we have

lim
λ→∞

χEλ = χHν , (2.9)

where the limit is in L1
loc(Hn). Moreover, for a.e. r > 0 we have

lim
λ→∞

P (Eλ;Ur) = P (Hν ;Ur) = cnr
Q−1, (2.10)

where cn = P (Hν ;U1) > 0 is an absolute constant.

Proof. Let ϕ ∈ C1
c (Hn;R2n) be a test vector valued function. For a.e. r > 0, we have

the following integration by parts formula∫
E∩Ur

divHϕdzdt = −
∫
Ur

〈ϕ, νE〉dµE −
∫
∂Ur∩E

〈ϕ, νUr〉dµUr . (2.11)

This formula can be proved in the following way. Let (fj)j∈N be a sequence of functions

fj ∈ C∞(Hn) such that fj → χE, as j → ∞, in L1
loc(Hn) and ∇Hfjdzdt ⇀ νEdµE in

the weak sense of Radon measures. We are denoting by

∇Hf = (X1f, . . . , Xnf, Y1f, . . . , Ynf)

the horizontal gradient of a function f .

The set Ur supports the standard divergence theorem and therefore we have∫
Ur

fjdivHϕdzdt = −
∫
Ur

〈ϕ,∇Hfj〉dzdt−
∫
∂Ur

fj〈ϕ, νUr〉dµUr . (2.12)

We can assume that, for a.e. r > 0, fj → χE in L1(∂Ur) and µE(∂Ur) = 0. Letting

j →∞ in (2.12) we obtain (2.11).

Let ϕ ∈ C1
c (Hn;R2n) be such that ϕ(z, t) = νE(0) for all (z, t) ∈ Ur. From (2.11),

we have

0 = −
∫
Ur

〈νE(0), νE〉dµE −
∫
∂Ur∩E

〈νE(0), νUr〉dµUr .

Using |νE(0)| = |νUr | = 1 a.e. and Proposition 2.2, we have∫
Ur

〈νE(0), νE〉dµE = −
∫
∂Ur∩E

〈νE(0), νUr〉dµUr ≤ P (Ur;Hn) = rQ−1P (U1;Hn).

Since 0 ∈ ∂∗E, there holds∫
Ur

〈νE(0), νE〉dµE = (1 + o(1))P (E;Ur),

where o(1)→ 0 as r → 0. Using these estimates, we conclude that for any λ ≥ 1 we

have

P (Eλ;Ur) = λQ−1P (E;Ur/λ) ≤ 2P (U1;Hn)rQ−1.

The family of sets (Eλ)λ>1 has locally uniformly bounded perimeter. By the com-

pactness theorem for BVH functions (see [33]), there exists a set F ⊂ Hn with locally
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finite perimeter and a sequence λj → ∞ such that Eλj → F in the L1
loc(Hn) con-

vergence of characteristic functions. From the Gauss-Green formula (2.6), it follows

that

νEλjµEλj ⇀ νFµF , as j →∞,
in the sense of the weak convergence of Radon measures.

Starting from the identity∫
Ur

νEλj dµEλj =

∫
Ur/λj

νEdµE,

using 0 ∈ ∂∗E, and choosing r > 0 such that µF (∂Ur) = 0 – this holds for a.e. r > 0,

– letting j →∞ we find ∫
Ur

〈νF , νE(0)〉dµF = 1.

This implies that νF = νE(0) µF -a.e. in Hn, because r > 0 is otherwise arbitrary. By

the characterization of sets with constant horizontal normal (see Remark 5.7 below),

we have F = Hν with ν = ν(0). We are omitting the proof that 0 ∈ ∂F . The limit

F = Hν is thus independent of the sequence (λj)j∈N and this observation concludes

the proof of (2.9).

We prove (2.10). From∫
Ur

〈ν, νEλ〉dµEλ =

∫
Ur/λ

〈ν, νE〉dµE = 1 + o(1), as λ→∞,

we deduce that

P (Eλ;Ur) = (1 + o(1))

∫
Ur

〈ν, νEλ〉dµEλ .

Letting λ → ∞, using the weak convergence νEλdµEλ → νFdµF and choosing r > 0

with µF (∂Ur) = 0, we get the claim. �

2.2. Equivalent notions for H-perimeter. In this section, we describe some char-

acterizations of H-perimeter related to the metric structure of Hn.

2.2.1. Hausdorff measures. The Heisenberg perimeter has a representation in terms

of spherical Hausdorff measures. We use the metric % in (1.12). The diameter of a

set K ⊂ Hn is

diamK = sup
p,q∈K

%(p, q).

If Ur is a ball in the distance % with radius r, then we have diamUr = 2r. Let E ⊂ Hn

be a set. For any s ≥ 0 and δ > 0 define the premeasures

H s,δ
% (E) = inf

{∑
i∈N

(diamKi)
s : E ⊂

⋃
i∈N

Ki, Ki ⊂ Hn, diamKi < δ
}
,

S s,δ
% (E) = inf

{∑
i∈N

(diamUi)
s : E ⊂

⋃
i∈N

Ui, Ui %-balls in Hn, diamUi < δ
}
,
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Letting δ → 0, we define

H s
% (E) = sup

δ>0
H s,δ

% (E) = lim
δ→0

H s,δ
% (E),

S s
% (E) = sup

δ>0
S s,δ
% (E) = lim

δ→0
S s,δ
% (E).

By Carathèodory’s construction, E 7→ H s
% (E) and E 7→ S s

% (E) are Borel measures

in Hn. The measure H s
% is called s-dimensional Hausdorff measure. The measure S s

%

is called s-dimensional spherical Hausdorff measure. These measures are equivalent,

in the sense that for any E ⊂ Hn there holds

H s
% (E) ≤ S s

% (E) ≤ 2sH s
% (E).

The measures H Q
% (E) and S Q

% are Haar measures in Hn and therefore they coincide

with the Lebesgue measure, up to a multiplicative constant factor. The natural

dimension to measure hypersurfaces, as the boundary of smooth sets, is s = Q− 1.

The following theorem is proved in [27], Theorem 7.1 part (iii). The proof relies

on Federer’s differentiation theorems, Theorem 2.10.17 and Theorem 2.10.19 part (3)

of [25]. Extensions of this result are based on general differentiation theorems for

measures, see [41]. Formula (2.14) for the geometric constant cn in (2.13) depends on

the shape (convexity and symmetries) of the metric unit ball U1, [42].

Theorem 2.11 (Franchi-Serapioni-Serra Cassano). For any set E ⊂ Hn with locally

finite H-perimeter we have

µE = cnS
Q−1
% ∂∗E, (2.13)

where µE is the perimeter measure of E, S Q−1
% ∂∗E is the restriction of S Q−1

% to

the reduced boundary ∂∗E, and the constant cn > 0 is given by

cn = P (Hν ;U1). (2.14)

Remark 2.12. It is not known whether in (2.13) the spherical measure S Q−1
% can

be replaced by the Hausdorff measure H Q−1
% , even when ∂∗E is a smooth set. In Rn

with the standard perimeter, the identity S n−1 ∂∗E = H n−1 ∂∗E follows from

Besicovitch’s covering theorem, that fails to hold in the Heisenberg group, see [36]

and [65].

2.2.2. Minkowski content and H-perimeter. In the description ofH-perimeter in terms

of Minkowski content, the correct choice of the metric is the Carnot-Carathéodory

distance d on Hn.

The Carnot-Carathéodory distance from a closed set K ⊂ Hn is the function

distK(p) = min
q∈K

d(p, q), p ∈ Hn.

For r > 0, the r-tubular neighborhood of K is the set

Ir(K) =
{
p ∈ Hn : distK(p) < r

}
.
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The upper and lower Minkowski content of K in an open set A ⊂ Hn are, respectively,

M +(K;A) = lim sup
r→0

|Ir(K) ∩ A|
2r

,

M−(K;A) = lim inf
r→0

|Ir(K) ∩ A|
2r

.

Above, | · | stands for Lebesgue measure. If M +(K;A) = M−(K;A), the common

value is called Minkowski content of K in A and it is denoted by M (K;A).

Below, H 2n is the standard 2n-dimensional Hausdorff measure in Hn = R2n+1.

Theorem 2.13 (Monti-Serra Cassano). Let A ⊂ Hn be an open set and let E ⊂ Hn

be a bounded set with C2 boundary such that H 2n(∂E ∩ ∂A) = 0. Then we have

P (E;A) = M (∂E;A). (2.15)

This result is proved in [54], in a general framework. It is an open problem to prove

formula (2.15) for sets E with less regular boundary. The tools used in the proof in

[54] are the eikonal equation for the Carnot-Carathéodory distance and the coarea

formula. Assume A = Hn. We have

|Ir(∂E)| =
∫
Ir(∂E)

|∇Hdist∂E(z, t)|dzdt,

because |∇HdistK(z, t)| = 1 a.e. in Hn. By the coarea formula in the sub-Riemannian

setting, we have ∫
Ir(∂E)

|∇Hdist∂E(z, t)|dzt =

∫ r

0

P (Is(∂E);Hn)ds.

We refer the reader to [54] and [40] for a discussion on coarea formulas. Now formula

(2.15) follows proving that

lim
r→0

1

2r

∫ r

0

P (Is(∂E);Hn)ds = P (E;Hn).

The regularity of ∂E is used at this final step: the Riemannian approximation of the

distance function from ∂E is of class C2, if ∂E is of class C2.

2.2.3. Integral differential quotients. H-perimeter can be also expressed as the limit

of certain integral differential quotients.

Let kn > 0 be the following geometric constant

kn =

∫
B1

|〈ν, z〉|dzdt,

where B1 ⊂ Hn is the unitary Carnot-Carathéodory ball centered at the origin. By

the rotational symmetry of B1, the definition of kn is independent of the unit vector

ν ∈ R2n, |ν| = 1. The following theorem is proved in [62].
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Theorem 2.14. A Borel set E ⊂ Hn with finite measure has finite H-perimeter in

Hn if and only if

lim inf
r↓0

1

r

∫
Hn

∫
Br(q)

|χE(p)− χE(q)| dp dq <∞.

Moreover, if E has also finite Euclidean perimeter then

lim
r↓0

1

r

∫
Hn

∫
Br(q)

|χE(p)− χE(q)| dp dq = knP (E;Hn). (2.16)

For the proof, we refer to [62], where the result is proved in the setting of BVH
functions. It is an open question whether the identity (2.16) holds dropping the

assumption “if E has also finite Euclidean perimeter”.

The characterization of H-perimeter in Theorem 2.14 is useful in the theory of

rearrangements in the Heisenberg group proposed in [49].

2.3. Rectifiability of the reduced boundary. The reduced boundary of sets with

finite H-perimeter needs not be rectifiable in the standard sense. However, it is

rectifiable in an intrinsic sense that we are going to explain. The main reference is

the paper [27]. A systematic treatment of these topics in the setting of stratified

groups can be found in [39].

We need first the notion of C1
H-regular function.

Definition 2.15 (C1
H-function). Let A ⊂ Hn be an open set. A function f : A→ R

is of class C1
H(A) if:

1) f ∈ C(A);

2) the derivatives X1f, . . . , Xnf, Y1f, . . . , Ynf in the sense of distributions are

(represented by) continuous functions in A.

The horizontal gradient of a function f ∈ C1
H(A) is the vector valued mapping ∇Hf ∈

C(A;R2n), ∇Hf =
(
X1f, . . . , Xnf, Y1f, . . . , Ynf

)
.

For C1
H-regular functions there is an implicit function theorem (Theorem 6.5 in

[27]) that can be used to represent the zero set {f = 0} as an “intrinsic Lipschitz

graph” (see Section 3.1.4).

Definition 2.16 (H-regular hypersurface). A set S ⊂ Hn is an H-regular hypersur-

face if for all p ∈ S there exists r > 0 and a function f ∈ C1
H(Br(p)) such that:

1) S ∩Br(p) =
{
q ∈ Br(p) : f(q) = 0

}
;

2) |∇Hf(p)| 6= 0.

If S ⊂ Hn is a hypersurface of class C1 in the standard sense, then for any p ∈
S there exist r > 0 and a function f ∈ C1(Br(p)) such that S ∩ Br(p) =

{
q ∈

Br(p) : f(q) = 0
}

and |∇f(p)| 6= 0. However, the set S needs not be an H-regular



ISOPERIMETRIC PROBLEM AND MINIMAL SURFACES 19

hypersurface because it may happen that |∇Hf(p)| = 0 at some (many) points p ∈ S.

On the other hand, the following theorem, proved in [35] Theorem 3.1, shows that,

in general, H-regular hypersurfaces are not rectifiable.

Theorem 2.17 (Kirchheim-Serra Cassano). There exists an H-regular surface S ⊂
H1 such that

H (5−ε)/2(S) > 0 for all ε ∈ (0, 1).

In particular, the set S is not 2-rectifiable.

Above, H s is the standard s-dimensional Hausdorff measure in R3. The set S

constructed in [35] has Euclidean Hausdorff dimension 5/2. Any H-regular surface

S ⊂ H1 can be locally parameterized by a 1/2-Hölder continuous map Φ : R2 →
Φ(R2) = S ⊂ H1, i.e., d(Φ(u),Φ(v)) ≤ C|u − v|1/2 for u, v ∈ R2, where C > 0 is a

constant and d is the Carnot-Carathéodory distance, see Theorem 4.1 in [35].

Definition 2.18. A set Γ ⊂ Hn is S Q−1
% -rectifiable if there exists a sequence of

H-regular hypersurfaces (Sj)j∈N in Hn such that

S Q−1
%

(
Γ \

⋃
j∈N

Sj

)
= 0.

This definition is generalized in [43], where the authors study the notion of a s-

rectifiable set in Hn for any integer 1 ≤ s ≤ Q − 1. The definition of s-rectifiability

has a different nature according to whether s ≤ n or s ≥ n + 1. Definition 2.18 is

relevant because the reduced boundary of sets with finite H-perimeter is rectifiable

precisely in this sense. The following theorem is the main result of [27].

Theorem 2.19. Let E ⊂ Hn be a set with locally finite H-perimeter. Then the

reduced boundary ∂∗E is S Q−1
% -rectifiable.

The proof of Theorem 2.19 goes as follows, for details see Theorem 7.1 in [27]. By

Lusin’s theorem there are compact sets Kj ⊂ ∂∗E, j ∈ N, and a set N ⊂ ∂∗E such

that:

i) µE(N) = 0;

ii) νE : Kj → R2n is continuous, for each j ∈ N;

iii) ∂∗E = N ∪
⋃
j∈N

Kj.

By a Whitney extension theorem (Theorem 6.8 in [27]), it is possible to construct

functions fj ∈ C1
H(Hn) such that ∇Hfj = νE and fj = 0 on Kj. Then the sets

Sj = {fj = 0} are H-regular hypersurfaces near Kj and Kj ⊂ Sj.
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3. Area formulas, first variation and H-minimal surfaces

3.1. Area formulas. In this section, we derive some area formulas for H-perimeter

of sets with regular boundary. In particular, we study sets with Euclidean Lipschitz

boundary and sets with “intrinsic Lipschitz boundary”.

3.1.1. Sets with Lipschitz boundary. Let E ⊂ Hn be a set with Lipschitz boundary

and denote by N the Euclidean outer unit normal to ∂E. This vector is defined at

H 2n-a.e. point of ∂E. Here and hereafter, H 2n denotes the standard 2n-dimensional

Hausdorff measure of R2n+1. Using the projections of X1, . . . , Xn, Y1, . . . , Yn along the

normal N , we can define the 2n-dimensional vector field NH : ∂E → R2n

NH =
(
〈X1, N〉, . . . , 〈Xn, N〉, 〈Y1, N〉 . . . , 〈Yn, N〉

)
, (3.1)

where the vector fields Xj, Yj and N are identified with elements of R2n+1 and 〈·, ·〉
is the standard scalar product.

Proposition 3.1. Let E ⊂ Hn be a set with Lipschitz boundary. Then the H-

perimeter of E in an open set A ⊂ Hn is

P (E;A) =

∫
∂E∩A

|NH |dH 2n, (3.2)

where N is the Euclidean (outer) unit normal to ∂E and |NH | is the Euclidean norm

of NH .

Proof. For any ϕ ∈ C1
c (A;R2n) let V =

∑n
j=1 ϕjXj + ϕn+jYj be the horizontal vec-

tor field with coordinates ϕ. By the standard divergence theorem and the Cauchy-

Schwarz inequality, we have∫
E

divHϕdzdt =

∫
E

divV dzdt =

∫
∂E

〈V,N〉dH 2n

=

∫
∂E

n∑
j=1

ϕj〈Xj, N〉+ ϕn+j〈Yj, N〉dH 2n ≤
∫
∂E

n∑
j=1

|ϕ||NH |dH 2n,

and taking the supremum with ‖ϕ‖∞ ≤ 1 it follows that P (E;A) ≤
∫
∂E∩A

|NH |dH 2n.

The opposite inequality can be obtained by approximation. By Lusin’s theorem,

for any ε > 0 there exists a compact set K ⊂ ∂E ∩ A such that∫
(∂E\K)∩A

|NH |dH 2n < ε,

and NH : K → R2n is continuous and nonzero. By Tietze’s theorem, there exists

ψ ∈ Cc(A;R2n) such that ‖ψ‖∞ ≤ 1 and ψ = NH/|NH | on K. By mollification there
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exists ϕ ∈ C1
c (A;R2n) such that ‖ϕ‖∞ ≤ 1 and ‖ψ − ϕ‖∞ < ε. For such a test

function ϕ we have∫
E

divHϕdzdt ≥ (1− ε)
∫
∂E∩A

|NH |dH 2n − 2ε.

This ends the proof. �

3.1.2. Formulas for the horizontal inner normal. Let E ⊂ Hn be a set with Lipschitz

boundary and let ϕ ∈ C1
c (Hn;R2n). From the Gauss-Green formula (2.6) and from

the standard divergence theorem, we have∫
∂E

〈ϕ,NH〉dH 2n =

∫
E

divHϕdzdt = −
∫
Hn
〈ϕ, νE〉dµE.

It follows that the perimeter measure has the following representation

µE = |NH |H 2n ∂E,

and the measure theoretic inner normal is

νE = − NH

|NH |
µE-a.e. on ∂E. (3.3)

Next, we express νE in terms of a defining function for the boundary. Assume that

∂E is a C1-surface and f ∈ C1(A) is a defining function for ∂E, i.e., ∂E ∩ A = {p ∈
A : f(p) = 0} with |∇f | 6= 0 and f < 0 inside E. Then the outer Euclidean normal

to ∂E is

N =
∇f
|∇f |

on ∂E ∩ A,

and therefore the vector NH introduced in (3.1) is

NH =
∇Hf
|∇f |

on ∂E ∩ A.

From (3.3), we conclude that the horizontal inner normal is given by

νE = − ∇Hf
|∇Hf |

on ∂E ∩ A, |∇Hf | 6= 0. (3.4)

LetNE be the horizontal vector with coordinates νE in the basisX1, . . . , Xn, Y1, . . . , Yn.

The vector NE can be recovered in the following way. Fix on Hn the Riemannian met-

ric making X1, . . . , Xn, Y1, . . . , Yn, T orthonormal. The Riemannian exterior normal

to the surface {f = 0} is the vector

NR =
∇Rf
|∇Rf |R

.

where ∇Rf =
∑n

j=1(Xjf)Xj + (Yjf)Yj + (Tf)T is the gradient of f and |∇Rf |R is

its Riemannian length. Let πR : TpHn → Hp be the orthogonal projection onto the
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horizontal plane. Then the vector NE is precisely

NE =
πR(NR)

|πR(NR)|R
.

3.1.3. Area formula for t-graphs. We specialize formula (3.2) to the case of t-graphs.

Let D ⊂ R2n = Cn be an open set and let f : D → R be a function. The set

Ef =
{

(z, t) ∈ Hn : t > f(z), z ∈ D} is called t-epigraph of f . The set gr(f) ={
(z, t) ∈ Hn : t = f(z), z ∈ D} is called t-graph of f .

Proposition 3.2 (Area formula for t-graphs). Let D ⊂ R2n be an open set and let

f : D → R be a Lipschitz function. Then we have

P (Ef ;D × R) =

∫
D

|∇f(z) + 2z⊥|dz, (3.5)

where z⊥ = (x, y)⊥ = (−y, x).

Proof. The outer normal to ∂Ef ∩ (D × R) = gr(f) is N = (∇f,−1)/
√

1 + |∇f |2,

and so, for any j = 1, . . . , n, we have

〈N,Xj〉 =
∂xjf − 2yj√

1 + |∇f |2
, 〈N, Yj〉 =

∂yjf + 2yj√
1 + |∇f |2

,

and thus

|NH | =
|∇f + 2z⊥|√

1 + |∇f |2
.

By formula (3.2) and by the standard area formula for graphs, we obtain

P (Ef ;D × R) =

∫
gr(f)

|NH |dH 2n =

∫
D

|∇f(z) + 2z⊥|dz

�

The area formula (3.5) is the starting point of many investigations on H-minimal

surfaces. Epigraphs of the form Ef = {t > f(z)} are systematically studied in [71].

In particular, in Theorem 3.2 of [71] the authors compute the relaxed functional in

L1(D) of the area functional A : C1(D)→ [0,∞]

A (f) =

∫
D

|∇f(z) + 2z⊥|dz.

They also prove existence of minimizers with a trace constraint when D is a bounded

open set with Lipschitz boundary (Theorem 1.4) and they show that minimizers are

locally bounded (Theorem 1.5). The Lipschitz regularity of minimizers under the

bounded slope condition is proved in [63].
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3.1.4. Area formula for intrinsic graphs. Let S ⊂ Hn be a C1
H-regular hypersurface.

Then we have S = {f = 0} with f ∈ C1
H satisfying |∇Hf | 6= 0. Up to a change of

coordinates, we can assume that locally we have X1f > 0. Then each integral line of

X1 meets S in one single point: S is a graph along X1. These considerations lead to

the following definitions.

The line flow of the vector field X1 starting from the point (z, t) ∈ Hn is

exp(sX1)(z, t) = (z + se1, t+ 2y1s), s ∈ R,

where e1 = (1, 0, . . . , 0) ∈ R2n and z = (x, y) ∈ Cn = R2n, with x = (x1, . . . , xn) and

y = (y1, . . . , yn).

We fix a domain of initial points. The most natural choice is to consider the

vertical hyperplane W =
{

(z, t) ∈ Hn : x1 = 0
}

, that is identified with R2n with the

coordinates w = (x2, . . . , xn, y1, . . . , yn, t).

Definition 3.3 (Intrinsic epigraph and graph). Let D ⊂ W be a set and let ϕ : D →
R be a function. The set

Eϕ =
{

exp(sX1)(w) ∈ Hn : s > ϕ(w), w ∈ D
}

is called intrinsic epigraph of ϕ along X1. The set

gr(ϕ) =
{

exp(ϕ(w)X1)(w) ∈ Hn : w ∈ D
}

(3.6)

is called intrinsic graph of ϕ along X1.

In Definition 3.8, there is an equivalent point of view on intrinsic graphs.

We are going to introduce a nonlinear gradient for functions ϕ : D → R. First, let

us introduce the Burgers’ operator : Liploc(D)→ L∞loc(D)

ϕ =
∂ϕ

∂y1

− 4ϕ
∂ϕ

∂t
. (3.7)

Next, notice that the vector fields X2, . . . , Xn, Y2, . . . , Yn can be naturally restricted

to W .

Definition 3.4 (Intrinsic gradient). The intrinsic gradient of a function ϕ ∈ Liploc(D)

is the vector valued mapping ∇ϕϕ ∈ L∞loc(D;R2n−1)

∇ϕϕ =
(
X2ϕ, . . . , Xnϕ, ϕ, Y2ϕ, . . . , Ynϕ).

When n = 1, the definition reduces to ∇ϕϕ = ϕ.

With abuse of notation, we define the cylinder over D ⊂ W along X1 as the set

D · R =
{

exp(sX1)(w) ∈ Hn : w ∈ D and s ∈ R
}
.

When D ⊂ W is open, the cylinder D · R is an open set in Hn. The general version

of the following proposition is presented in Theorem 3.9.



24 ROBERTO MONTI

Proposition 3.5. Let D ⊂ W be an open set and let ϕ : D → R be a Lipschitz

function. Then the H-perimeter of the intrinsic epigraph Eϕ in the cylinder D · R is

P (Eϕ;D · R) =

∫
D

√
1 + |∇ϕϕ|2dw, (3.8)

where dw is the Lebesgue measure in R2n.

Proof. We prove the claim in the case n = 1. The intrinsic graph mapping Φ : D → H1

is Φ(y, t) = exp(ϕ(y, t)X)(0, y, t) = (ϕ, y, t+ 2yϕ), and thus

Φy ∧ Φt =

∣∣∣∣∣∣∣
e1 e2 e3

ϕy 1 2ϕ+ 2ϕy
ϕt 0 1 + 2yϕt

∣∣∣∣∣∣∣ =
(
1 + 2yϕt)e1 +

(
2ϕϕt − ϕy)e2 − ϕte3.

The Euclidean outer normal to the intrinsic graph ∂Eϕ ∩ (D · R) is the vector N =

−Φy ∧ Φt/|Φy ∧ Φt| and thus

〈N,X〉 =
−1

|Φy ∧ Φt|
and 〈N, Y 〉 =

ϕy − 4ϕϕt
|Φy ∧ Φt|

=
ϕ

|Φy ∧ Φt|
.

From formula (3.2) and from the standard area formula for graphs, we obtain

P (Eϕ;D · R) =

∫
∂Eϕ∩D·R

|NH |dH 2

=

∫
D

√
1

|Φy ∧ Φt|2
+

(ϕ)2

|Φy ∧ Φt|2
|Φy ∧ Φt|dydt

=

∫
D

√
1 + |∇ϕϕ|2dydt.

�

The area formula (3.8) was originally proved for boundaries that are C1
H-regular

hypersurfaces (see [27] Theorem 6.5 part (vi) and [4] Proposition 2.22). It was later

generalized to intrinsic Lipschitz graphs.

Definition 3.6. Let D ⊂ W = R2n be an open set and let ϕ ∈ C(D) be a continuous

function.

i) We say that Bϕ exists in the sense of distributions and is represented by a locally

bounded function, ϕ ∈ L∞loc(D), if there exists a function ψ ∈ L∞loc(D) such that for

all ϑ ∈ C1
c (D) there holds∫

D

ϑψ dw = −
∫
D

{
ϕ
∂ϑ

∂y1

− 2ϕ2∂ϑ

∂t

}
dw.

ii) We say that the intrinsic gradient ∇ϕϕ ∈ L∞loc(D;R2n−1) exists in the sense

of distributions if X1ϕ, . . . , Xnϕ, ϕ, Y2ϕ, . . . , Ynϕ are represented by locally bounded

functions in D.
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We introduce intrinsic Lipschitz graphs along any direction. Theorem 3.9 below

relates such graphs to the boundedness of the intrinsic gradient ∇ϕϕ.

Let ν ∈ R2n, |ν| = 1, be a unit vector that is identified with (ν, 0) ∈ Hn. For any

p ∈ Hn, we let ν(p) = 〈p, ν〉ν ∈ Hn and we define ν⊥(p) ∈ ∂Hν ⊂ Hn as the unique

point such that

p = ν⊥(p) · ν(p). (3.9)

Recall that ‖ · ‖∞ is the box-norm introduced in (1.11).

Definition 3.7 (Intrinsic cones). i) The (open) cone with vertex 0 ∈ Hn, axis ν ∈ R2n,

|ν| = 1, and aperture α ∈ (0,∞] is the set

C(0, ν, α) =
{
p ∈ Hn : ‖ν⊥(p)‖∞ < α‖ν(p)‖∞

}
. (3.10)

ii) The cone with vertex p ∈ Hn, axis ν ∈ R2n, and aperture α ∈ (0,∞] is the set

C(p, ν, α) = p · C(0, ν, α).

Definition 3.8 (Intrinsic Lipschitz graphs). Let D ⊂ ∂Hν be a set and let ϕ : D → R
be a function.

i) The intrinsic graph of ϕ is the set

gr(ϕ) =
{
p · ϕ(p)ν ∈ Hn : p ∈ D

}
. (3.11)

ii) The function ϕ is L-intrinsic Lipschitz if there exists L ≥ 0 such that for any

p ∈ gr(ϕ) there holds

gr(ϕ) ∩ C(p, ν, 1/L) = ∅. (3.12)

When ν = e1, the definition in (3.11) reduces to the definition in (3.6). Namely,

let ϕ : D → R be a function with D ⊂ W = {x1 = 0}. For any w ∈ D, we have the

identity

exp(ϕ(w)X1)(w) = w · (ϕ(w)e1),

where ϕ(w)e1 = (ϕ(w), 0 . . . , 0) ∈ Hn. Then the intrinsic graph of ϕ is the set

gr(ϕ) =
{
w · (ϕ(w)e1) ∈ Hn : w ∈ D

}
.

The notion of intrinsic Lipschitz function of Definition 3.8 is introduced in [30]. The

cones (3.10) are relevant in the theory of H-convex sets [5]. The following theorem is

the final result of many contributions.

Theorem 3.9. Let ν = e1, D ⊂ ∂Hν be an open set, and ϕ : D → R be a continuous

function. The following statements are equivalent:

A) We have ∇ϕϕ ∈ L∞loc(D;R2n−1).

B) For any D′ ⊂⊂ D, the function ϕ : D′ → R is intrinsic Lipschitz.
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Moreover, if A) or B) holds then the intrinsic epigraph Eϕ ⊂ Hn has locally finite

H-perimeter in the cylinder D · R, the inner horizontal normal to ∂Eϕ is

νEϕ(w · ϕ(w)) =
( 1√

1 + |∇ϕϕ(w)|2
,
−∇ϕϕ(w)√

1 + |∇ϕϕ(w)|2
)
, for L 2n-a.e. w on D,

(3.13)

and, for any D′ ⊂ D, we have

P (Eϕ;D′ · R) =

∫
D′

√
1 + |∇ϕϕ|2dw = cnS

Q−1
% (gr(ϕ) ∩D′ · R). (3.14)

The equivalence between A) and B) is a deep result that is proved in [7], Theorem

1.1. Formula (3.13) for the normal and the area formula (3.14) are proved in [16]

Corollary 4.2 and Corollary 4.3, respectively. A related result can be found in [56],

where it is proved that if E ⊂ Hn is a set with finite H-perimeter having controlled

normal νE, say 〈νE, e1〉 ≥ k > 0 µE-a.e., then the reduced boundary ∂∗E is an intrinsic

Lipschitz graph along X1.

3.2. First variation and H-minimal surfaces. In this section, we deduce the

minimal surface equation for H-minimal surfaces in the special but important case

of t-graphs. We show that H-minimal surfaces in H1 are ruled surfaces. These facts

have been observed by several authors.

In Section 3.2.2, we review some results established in [12] and [14] about the

characteristic set of surfaces in H1 with “controlled curvature”, see Theorem 3.15

below.

3.2.1. First variation of the area for t-graphs. Let D ⊂ R2n be an open set and let

f ∈ C2(D) be a function. Assume that the t-epigraph of f , the set

E =
{

(z, t) ∈ Hn : t > f(z), z ∈ D
}
,

is H-perimeter minimizing in the cylinder A = D × R. This means that if F ⊂ Hn

is a set such that E∆F ⊂⊂ A then P (E;A) ≤ P (F ;A). Here and in the following,

E∆F = E \ F ∪ F \ E denotes the symmetric difference of sets.

Let Σ(f) = {z ∈ D : ∇f(z) + 2z⊥ = 0} be the characteristic set of f . At points

p = (z, f(z)) ∈ ∂E with z ∈ Σ(f) we have Tp∂E = Hp, the horizontal plane and the

tangent plane to ∂E at p coincide. These points are called characteristic points of

the surface S = ∂E. The set of characteristic points of S is denoted by Σ(S).

By the area formula (3.5), we have

P (E;A) =

∫
D

|∇f(z) + 2z⊥|dz =

∫
D\Σ(f)

|∇f + 2z⊥|dz.
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By the minimality of E, for any ε ∈ R and ϕ ∈ C∞c (D) we have∫
D\Σ(f)

|∇f + 2z⊥|dz ≤
∫
D

|∇f + ε∇ϕ+ 2z⊥|dz

=

∫
D\Σ(f)

|∇f + ε∇ϕ+ 2z⊥|dz + |ε|
∫

Σ(f)

|∇ϕ|dz = ψ(ε).

If f ∈ C2 then Σ(f) is (contained in) a C1 hypersurface of D, see Section 3.2.2, and

therefore |Σ(f)| = 0. If we only have f ∈ C1, this is no longer true. When |Σ(f)| = 0,

the function ψ is differentiable at ε = 0 and the minimality of E implies ψ′(0) = 0.

We deduce that for any test function ϕ we have∫
D\Σ(f)

〈∇f + 2z⊥,∇ϕ〉
|∇f + 2z⊥|

dz = 0.

If ϕ ∈ C1
c (D \ Σ(f)), we can integrate by parts with no boundary contribution ob-

taining ∫
D\Σ(f)

div
( ∇f + 2z⊥

|∇f + 2z⊥|

)
ϕdz = 0. (3.15)

When the support of ϕ intersects Σ(f), there is a contribution to the first variation

due to the characteristic set, see Theorem 3.17. From (3.15), we deduce that the

function f satisfies the following partial differential equation

div
( ∇f + 2z⊥

|∇f + 2z⊥|

)
= 0 in D \ Σ(f). (3.16)

This is theH-minimal surface equation for f , in the case of t-graphs. It is a degenerate

elliptic equation. A solution f ∈ C2(D) to (3.16) is calibrated and the epigraph of f

is H-perimeter minimizing over the cylinder D \ Σ(f)× R

Definition 3.10 (H-curvature and H-minimal graphs). For any f ∈ C2(D) and

z ∈ D \ Σ(f), the number

H(z) = div
( ∇f(z) + 2z⊥

|∇f(z) + 2z⊥|

)
,

is called H-curvature of the graph of f at the point (z, f(z)). If H = 0 we say that

gr(f) is an H-minimal graph (surface).

We specialize the analysis to the dimension n = 1, where the minimal surface

equation (3.16) has a clear geometric meaning. If n = 1, then ∂E ∩ (D ×R) = gr(f)

is a 2-dimensional surface.

At noncharacteristic points p = (z, f(z)) ∈ ∂E with z ∈ D \ Σ(f), we have

dim(Tp∂E ∩Hp) = 1. A section of Tp∂E ∩Hp is the vector field

V =
1

|∇f + 2z⊥|
(
− (fy + 2x)X + (fx − 2y)Y

)
.
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Let γ : (−δ, δ) → H1, δ > 0, be the curve such that γ(0) = p ∈ ∂E and γ̇ = V (γ).

The curve γ is horizontal because V is horizontal. Moreover, we have γ(t) ∈ ∂E for

all t ∈ (−δ, δ) because V is tangent to ∂E.

Consider the vector fields in D \ Σ(f)

Nf (z) =
∇f + 2z⊥

|∇f + 2z⊥|
and Nf (z)⊥ =

(
− fy − 2x, fx − 2y

)
|∇f + 2z⊥|

.

The vector field N⊥f is the projection of V onto the xy-plane. The horizontal projec-

tion of γ, the curve κ = (γ1, γ2), satisfies κ(0) = z0 and solves the differential equation

κ̇ = N⊥f (κ). Then the vector Nf is a normal vector to the curve κ.

Viceversa, let κ be the solution of κ̇ = N⊥f (κ) and κ(0) = z0 and let γ be the

horizontal lift of κ with γ(0) = p = (z0, f(z0)) ∈ ∂E. Then γ solves γ̇ = V (γ) and is

contained in ∂E.

We summarize these observations in the following proposition.

Proposition 3.11. Let S = gr(f) ⊂ H1 be the graph of a function f ∈ C1(D).

Then:

1) The horizontal projection κ of a horizontal curve γ contained in S\Σ(S) solves

κ̇ = N⊥f (κ).

2) The horizontal lift γ of a curve κ solving κ̇ = N⊥f (κ) in D \Σ(f) is contained

in S, if γ starts from S.

Now it is straightforward to prove the following result.

Theorem 3.12 (Structure of H-minimal surfaces). Let D ⊂ C be an open set and

let f ∈ C2(D) be a function such that gr(f) is an H-minimal surface. Then for any

z0 ∈ D \ Σ(f) there exists a horizontal line segment contained in gr(f) and passing

through (z0, f(z0)).

Proof. Let γ be the horizontal curve passing through p = (z0, f(z0)) and contained in

gr(f). The horizontal projection κ solves κ̇ = Nf (κ)⊥. The minimal surface equation

(3.16) reads

divNf (z) = 0 in D \ Σ(f),

where Nf is a unit normal vector field of κ. Thus κ is a curve with curvature 0 and

thus it is a line segment. Its horizontal lift is also a line segment. �

Remark 3.13. If H : D \ Σ(f)→ R is the H-curvature of the graph of f , then the

partial differential equation

div
( ∇f(z) + 2z⊥

|∇f(z) + 2z⊥|

)
= H(z), in D \ Σ(f) ⊂ C,
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implies that an integral curve κ of the vector field N⊥f has curvature H(κ). When H

is a nonzero constant, κ is a circle. This is relevant in the Heisenberg isoperimetric

problem.

Equation (3.16) can be given a meaning along integral curves of N⊥f without as-

suming the full C2 regularity of f , see [13]. See also Section 4.3 for the problem of

integrating the H-curvature equation for a convex function f .

3.2.2. Characteristic points. Let D ⊂ C2n be an open set and let f ∈ C2(D). Con-

sider the mapping Φ : D → R2n

Φ(z) = ∇f(z) + 2z⊥, z ∈ D.

The point z = x+ iy ∈ Σ(f) is characteristic if and only if Φ(z) = 0, namely,{
Φ1(z) = ∇xf(z)− 2y = 0

Φ2(z) = ∇yf(z) + 2x = 0.

If z0 ∈ Σ(f) is a point such that det(JΦ(z0)) 6= 0 then Φ is a local C1 diffeomorphism

at z0 and thus z0 is an isolated point of Σ(f).

In general, for any z0 ∈ Σ(f) there exists ε > 0 such that Σ(f) ∩ {|z − z0| < ε} is

contained in the graph of a C1 function. For instance, in the case n = 1 we have

|∂yΦ1(z)|+ |∂xΦ2(z)| = |fxy(z)− 2|+ |fxy(z) + 2| 6= 0,

and the claim follows from the implicit function theorem. We used the C2 regularity

of f to have equality of mixed derivatives fxy = fyx.

When f is less than C2-regular, the characteristic set Σ(f) may be large.

Theorem 3.14 (Balogh). Let D = (0, 1)× (0, 1) ⊂ R2 be the square. For any ε > 0

there exists a function f ∈
⋂

0<α<1

C1,α(D) such that |Σ(f)| > 1− ε.

This theorem is proved in [6] by the following construction. Given a continuous

mapping F : D → R2 one has to find a function such that ∇f = F on a large subset

of D. The construction starts from a Cantor type subset of D with large measure.

The function f is defined in a recursive way starting from suitable means of F in the

subsquares of D generating the Cantor set.

The following theorem, proved in [14], shows that ifH-curvature is suitably bounded

near characteristic points then Σ(f) consists, for n = 1, either of isolated points or,

locally, of C1 graphs over intervals. Generalizations to the case f ∈ C1(D), with some

further technical assumptions, are given in [15]. For surfaces of class C2 the curvature

H needs not be integrable for the standard area element near the characteristic set,

see [22].
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Theorem 3.15 (Cheng-Hwang-Malchiodi-Yang). Let D ⊂ C be an open set, f ∈
C2(D) and z0 ∈ Σ(f). Assume that:

1) det(JΦ(z0)) = 0.

2) For any z ∈ D \ Σ(f) we have

div
( ∇f(z) + 2z⊥

|∇f(z) + 2z⊥|

)
= H(z), (3.17)

where H : D \ Σ(f)→ R is a continuous function such that

|H(z)| ≤ C

|z − z0|
, z ∈ D \ Σ(f) (3.18)

for some constant C > 0.

Then there exists ε > 0 such that Σ(f)∩ {|z − z0| < ε} is the graph of a C1 function

defined over an open interval.

Proof. Since det(JΦ(z0)) = 0 then the Jacobian matrix JΦ(z0) has rank at most 1.

On the other hand, the antidiagonal of JΦ(z0) never vanishes and thus the rank is

precisely 1. Up to the sign, there exists a unique unit vector w ∈ R2, |w| = 1, that is

orthogonal to the range of the transposed Jacobian matrix JΦ(z0)∗.

For u ∈ R2, we define the function Φu : D → R, Φu = 〈Φ, u〉 = u1(fx − 2y) +

u2(fy + 2x). If u /∈ Ker(JΦ(z0)∗) then

∇Φu(z0) = JΦ(z0)∗u 6= 0,

and thus the equation Φu = 0 defines a C1 curve κu : (−s0, s0) → R2, for some

s0 > 0, such that κu(0) = z0 and Φu(κu) = 0. The image of this curve is a graph

over an interval. We can assume that |κ̇u| = 1. Differentiating Φu(κu) = 0 we obtain

〈∇Φu(κu), κ̇u〉 = 0, and therefore at s = 0 we have

〈JΦ(z0)∗u, κ̇u(0)〉 = 0.

Then, up to the sign we have κ̇u(0) = w. The derivative κ̇u(0) is independent of

u /∈ Ker(JΦ(z0)∗).

For some small ε > 0, we have Σ(f) ∩ {|z − z0| < ε} ⊂ {κu(s) ∈ R2 : |s| <
s0}∩{|z−z0| < ε}. We claim that the inclusion is an identity of sets. By contradiction

assume that for any δ > 0 there are 0 ≤ s1 < s2 ≤ δ such that κu(s) /∈ Σ(f) for

s1 < s < s2, and κu(s1), κu(s2) ∈ Σ(f). Without loss of generality, we assume that

s1 = 0 and s2 = δ, where δ > 0 is as small as we wish.

The defining equation 〈Φ(κu), u〉 = Φu(κu) = 0 implies that, for 0 < s < δ, the

vector

Nf (κu(s)) =
Φ(κu(s))

|Φ(κu(s))|
= ±u⊥ (3.19)

is constant, either +u⊥ or −u⊥, where u⊥ = (−u2, u1).
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There exists a unit vector v ∈ R2 such that v /∈ Ker(JΦ(z0)∗),

〈u− v, w〉 6= 0 and 〈u+ v, w〉 6= 0. (3.20)

The equation Φv = 0 defines a C1 curve κv : (−s̄0, s̄0) → R2 such that κv(0) = z0,

κ̇v(0) = w, |κ̇v| = 1 and Φv(κv) = 0. There is a number δ̄ > 0 such that κv(δ̄) = κu(δ)

and κv(s) /∈ Σ(f) for 0 < s < δ̄. As above, the equation 〈Φ(κv), v〉 = Φv(κv) = 0

implies that, for 0 < s < δ̄, the vector Nf (κv(s)) = ±v⊥ is constant.

Let A ⊂ R2 be the region enclosed by the curves κu restricted to [0, δ] and κv re-

stricted to [0, δ̄]. Integrating the equation (3.17) over A, using the divergence theorem

and (3.18), we obtain∫
∂A

〈Nf , N〉dH 1 =

∫
A

divNf (z) dz =

∫
A

H(z)dz ≤ C

∫
A

1

|z − z0|
dz, (3.21)

where N is the exterior normal to ∂A. Namely, along κu we have N = κ̇⊥u and along

κv we have N = −κ̇⊥v , or viceversa.

Using (3.19), we can compute the integral∫
κu([0,δ])

〈Nf , N〉dH 1 =

∫ δ

0

〈Nf (κu(s)), κ̇
⊥
u (s)〉ds

= 〈±u⊥, κu(δ)⊥ − z⊥0 〉

= 〈±u, κu(δ)− z0〉,

where κu(δ)− z0 = δw + o(δ) as δ → 0. Analogously, using κv(δ̄) = κu(δ) we obtain∫
κv([0,δ̄])

〈Nf , N〉dH 1 = −
∫ δ̄

0

〈Nf (κv(s)), κ̇
⊥
v (s)〉ds = −〈±v, κu(δ)− z0〉,

and, therefore, by (3.20) we have for δ > 0 small∣∣∣ ∫
∂A

〈Nf , N〉dH 1
∣∣∣ ≥ ∣∣〈u± v, δw + o(δ)

∣∣ ≥ δ

2
|〈u± v, w〉|. (3.22)

Fix a parameter ε > 0. For δ > 0 small, we have the inclusion A ⊂
{
z0 + rweiϑ ∈

C : 0 ≤ r ≤ δ, |ϑ| ≤ ε
}

. Using polar coordinates centered at z0, we find∫
A

1

|z − z0|
dz ≤ 2εδ, (3.23)

and, from (3.21)-(3.22)-(3.23), we obtain δ
2
|〈u±v, w〉| ≤ 2εδC, that is a contradiction

if we choose ε > 0 such that 4εC < |〈u± v, w〉|.
�

Let D ⊂ C be an open set, f ∈ C2(D), and assume that Σ(f) is a C1 curve

disconnecting D. Then we have the partition

D = D+ ∪D− ∪ Σ(f)
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where D+, D− ⊂ D are disjoint open sets. In [14], Proposition 3.5, it is shown that

the vector Nf extends to Σ(f) from D+ and from D−, separately.

Theorem 3.16. In the above setting, for any z0 ∈ Σ(f) the following limits do exist

Nf (z0)+ = lim
z→z0
z∈D+

Nf (z),

Nf (z0)− = lim
z→z0
z∈D−

Nf (z),

and moreover Nf (z0)+ = −Nf (z0)−.

Proof. Without loss of generality, we assume that z0 = 0. We have either fxy(0)−2 6=
0 or fxy(0) + 2 6= 0. Assume that fxy(0) − 2 > 0. Then fx − 2y = 0 is a defining

equation for Σ(f) near 0 and Σ(f) =
{

(x, ϕ(x)) ∈ R2 : |x| < δ
}

, where ϕ ∈ C1(−δ, δ)
is such that ϕ(0) = 0, and

D+ =
{

(x, y) ∈ D : y > ϕ(x)
}

=
{
z ∈ D : fx(z)− 2y > 0

}
,

D− =
{

(x, y) ∈ D : y < ϕ(x)
}

=
{
z ∈ D : fx(z)− 2y < 0

}
.

By Cauchy theorem, for any x ∈ (−δ, δ) and for any y > ϕ(x) there exists ϕ̄(x) ∈
(ϕ(x), y) such that

fy(x, y) + 2x

fx(x, y)− 2y
=

fyy(x, ϕ̄(x))

fxy(x, ϕ̄(x))− 2
.

When x→ 0 and y → 0 we also have ϕ(x̄)→ 0. Then we have

lim
z→0
z∈D+

fy(z) + 2x

fx(z)− 2y
=

fyy(0)

fxy(0)− 2
= b.

Using fx(z)− 2y > 0 on D+, it follows that

Nf (0)+ = lim
z→0
z∈D+

Nf (z) = lim
z→0
z∈D+

∇f(z) + 2z⊥

|∇f(z) + 2z⊥|
=

(1, b)√
1 + b2

.

An analogous computation using fx(z)− 2y < 0 on D− shows that

Nf (0)− = lim
z→0
z∈D−

Nf (z) = lim
z→0
z∈D−

∇f(z) + 2z⊥

|∇f(z) + 2z⊥|
= − (1, b)√

1 + b2
.

�

For H-minimal graphs, the vectors N+
f and N−f are tangent to the C1 curve Σ(f).

The following theorem and Theorem 3.16 fail when we have only f ∈ C1,1, see Section

5.2.2.

Theorem 3.17. In the above setting, assume that the epigraph of f ∈ C2(D) is

H-perimeter minimizing in the cylinder D × R. Then we have

〈N+
f , N〉 = 〈N−f , N〉 = 0 on Σ(f),
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where N is the normal to the C1 curve Σ(f).

Proof. Let ϕ ∈ C1
c (D) be a test function and consider the function

ψ(ε) =

∫
D

|∇f + ε∇ϕ+ 2z⊥|dz, ε ∈ (−ε0, ε0).

If the epigraph of f is H-perimeter minimizing then

0 = ψ′(0) =

∫
D

〈∇f + 2z⊥,∇ϕ〉
|∇f + 2z⊥|

dz.

By |Σ(f)| = 0 and by (3.16), this is equivalent to∫
D+

div
(
ϕ
∇f + 2z⊥

|∇f + 2z⊥|

)
dz +

∫
D−

div
(
ϕ
∇f + 2z⊥

|∇f + 2z⊥|

)
dz = 0.

Denoting by N the exterior unit normal to D+ along Σ(f) and by N+
f and N−f the

traces of Nf onto Σ(f) from D+ and D−, the divergence theorem gives

0 =

∫
Σ(f)

ϕ〈N,N+
f 〉dH

1 −
∫

Σ(f)

ϕ〈N,N−f 〉dH
1 = 2

∫
Σ(f)

ϕ〈N,N+
f 〉dH

1.

In fact, by Theorem 3.16 we have N−f = −N+
f . Since ϕ is arbitrary, we conclude that

〈N,N+
f 〉 = 0 on Σ(f).

�

3.2.3. First variation of the area functional for intrinsic graphs. By (3.14), the H-

perimeter of the intrinsic epigraph Eϕ along X1 of an intrinsic Lipschitz function

ϕ : D → R, D ⊂ Cn open set, is

A (ϕ) = P (Eϕ;D · R) =

∫
D

√
1 + |∇ϕϕ|2dw, (3.24)

where ∇ϕϕ is a distribution represented by L∞(D;R2n−1) functions. It is not clear

how to compute the first variation of the area functional A within the class of intrinsic

Lipschitz functions. In fact, this class is not a vector space because the Burgers’

operator is nonlinear. Even for a smooth function ψ ∈ C∞(D) we have

B(ϕ+ ψ) = ϕy + ψy − 4(ϕ+ ψ)(ϕt + ψt) = Bϕ+ Bψ − 4(ϕψt + ψϕt),

and the distributional derivative ϕt is not represented by an L∞ function. So, if ϕ

is only intrinsic Lipschitz it may happen that P (Eϕ+ψ;D · R) = ∞ for any small

perturbation ψ 6= 0. The reason of this phenomenon is that the variation of the

intrinsic graph of ϕ along X1 is not a contact deformation. On the other hand, if we

had ϕt ∈ L∞loc then the intrinsic graph would have the standard Lipschitz regularity.

Assuming the Lipschitz regularity for ϕ, the first variation for the area functional

A in (3.24), namely the condition

d

dε
A (ϕ+ εψ) = 0 for any ψ ∈ C∞c (D),
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leads to the following minimal surface equation for a minimizer ϕ in D:( ∂
∂y
− 4ϕ

∂

∂t

) Bϕ√
1 + |∇ϕϕ|2

+
n∑
j=2

Xj

( Xjϕ√
1 + |∇ϕϕ|2

)
+ Yj

( Yjϕ√
1 + |∇ϕϕ|2

)
= 0.

(3.25)

This equation, but in a different system of coordinates, is the starting point of the

papers [10] and [9], where the authors study the regularity of vanishing viscosity

Lipschitz continuous solutions. When n ≥ 2, vanishing viscosity solutions are C∞-

smooth. When n = 1, their intrinsic graph is foliated by horizontal lines.

3.3. First variation along a contact flow. In this section, we present a formula

for computing the first variation of H-perimeter for any set with finite H-perimeter.

This result can be extended to S Q−1
% -rectifiable sets in the sense of Definition 2.18

and is a joint result with D. Vittone. We give the proof in the smooth case, the

technical details for the general case will appear elsewhere. First and second order

variation formulas are discussed also in [45], [18], and [31].

Let A ⊂ Hn be an open set. A diffeomorphism Ψ : A→ Hn is said to be a contact

map if for any p ∈ A the differential Ψ∗ : TpHn → TΨ(p)Hn maps the horizontal space

Hp into HΨ(p):

Ψ∗(Hp) = HΨ(p), p ∈ A. (3.26)

A one-parameter flow (Ψs)s∈R of diffeomorphisms in Hn is a contact flow if each Ψs

is a contact map. Contact flows are generated by contact vector fields.

A contact vector field in Hn is a vector field of the form

Vψ = −4ψT +
n∑
j=1

(Yjψ)Xj − (Xjψ)Yj, (3.27)

where ψ ∈ C∞(Hn) is the generating function of the vector field (see [36]). For any

compact set K ⊂ Hn, there exist δ = δ(ψ,K) > 0 and a flow Ψ : [−δ, δ] ×K → Hn

defined by Ψ̇(s, p) = Vψ(Ψ(s, p)) and Ψ(0, p) = p for any s ∈ [−δ, δ] and p ∈ K. We

call Ψ the flow generated by ψ. We also let Ψs = Ψ(s, ·).
Related to the function ψ, we have, at any point p ∈ Hn, the real quadratic form

Qψ : Hp → R

Qψ

( n∑
j=1

xjXj+yjYj

)
=

n∑
i,j=1

xixj XjYiψ+xjyi (YiYjψ−XjXiψ)−yiyj YjXiψ, (3.28)

where xj, yj ∈ R, and ψ with its derivatives are evaluated at p. In the sequel, we

identify a vector ν = ν(p) ∈ R2n, p ∈ Hn, with the horizontal vector
∑n

j=1 νjXj(p) +

νn+jYj(p). The quadratic form Qψ(ν) is defined accordingly.
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Theorem 3.18. Let A ⊂ Hn be an open set and let Ψ : [−δ, δ] × A → Hn, δ =

δ(ψ,A) > 0, be the flow generated by ψ ∈ C∞(Hn). Then there exists a constant

C = C(ψ,A) > 0 such that for any set E ⊂ Hn with finite H-perimeter in A we have∣∣∣∣P (Ψs(E); Ψs(A))− P (E;A) + s

∫
A

{
4(n+ 1)Tψ + Qψ(νE)

}
dµE

∣∣∣∣ ≤ C P (E;A) s2

(3.29)

for any s ∈ [−δ, δ].

Proof. We prove the theorem when ∂E ∩A is a C∞ smooth hypersurface. We deduce

formula (3.29) from the Taylor expansion for the standard perimeter. Let Es = Ψs(E)

and As = Ψs(A). Then ∂Es ∩ As = Ψs(∂E ∩ A) is a C∞ smooth 2n-dimensional

hypersurface. By the area formula (3.2), we have

P (E;A) =

∫
∂E∩A

K dH 2n and P (Es;As) =

∫
∂Es∩As

Ks dH
2n,

where H 2n is the standard 2n-dimensional Hausdorff measure of R2n+1,

K =
( n∑
j=1

〈Xj, N〉2 + 〈Yj, N〉2
)1/2

,

Ks =
( n∑
j=1

〈Xj, Ns〉2 + 〈Yj, Ns〉2
)1/2

,

and N , Ns are the standard Euclidean unit normals to ∂E ∩A and ∂Es ∩As, respec-

tively. We fix a coherent orientation.

By the standard Taylor formula for the area, we have∫
∂Es∩As

Ks dH
2n =

∫
∂E∩A

Ks ◦Ψs J Ψs dH
2n, (3.30)

where J Ψs : ∂E ∩ A→ R is the Jacobian determinant of Ψs restricted to ∂E:

J Ψs =
√

det
[
JΨs

∣∣∗
∂E
◦ JΨs

∣∣
∂E

]
. (3.31)

This Jacobian determinant has the following first order Taylor expansion in s

J Ψs = 1 + s
(
div Vψ − 〈(JVψ)N,N〉

)
+O(s2) on ∂E ∩ A, (3.32)

where div Vψ is the standard divergence of the vector field Vψ generating the flow and

JVψ is the Jacobian matrix of Vψ. Here, the vector field Vψ is identified with the

mapping given by the coefficients of Vψ in the standard basis. The remainder O(s2)

in (3.32) satisfies |O(s2)| ≤ C1s
2 for some constant C1 = C1(ψ,A) > 0.

We compute the derivative of the function s 7→ Ks◦Ψs. We start from the derivative

of s 7→M(s) = Ns(Ψs). Let us fix a frame V1, . . . , V2n of orthonormal vector fields (in

the standard scalar product) tangent to ∂E∩Ω. This frame does always exist locally.
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As the vector fields JΨsV1, . . . , JΨsV2n are tangent to ∂Es ∩ Ωs we can differentiate

the identities 〈JΨsVi,M(s)〉 = 0, i = 1, . . . , 2n. We obtain

〈JVψ(Ψs)Vi),M(s)〉+ 〈JΨsVi,M
′(s)〉 = 0. (3.33)

On the other hand, differentiating the identity |Ns|2 = 1 we deduce that 〈M ′(s), Ns(Ψs)〉 =

0. Using (3.33), we deduce that at the point s = 0 we have

M ′(0) =
2n∑
i=1

〈Vi,M ′(0)〉Vi = −
2n∑
i=1

〈(JVψ)Vi, N〉Vi

= −
2n∑
i=1

〈Vi, (JVψ)∗N〉Vi = 〈(JVψ)∗N,N〉N − (JVψ)∗N.

(3.34)

Using the property of flows, we can repeat the computation for any s and we find the

formula

M ′(s) = 〈(JVψ)∗Ns, Ns〉Ns − (JVψ)∗Ns, (3.35)

where the right-hand side is evaluated at Ψs.

Now let X be any smooth vector field in Hn and consider the function FX(s) =

〈X,Ns〉(Ψs). The derivative of FX is

F ′X(s) = 〈(JX)Vψ(Ψs),M(s)〉+ 〈X(Ψs),M
′(s)〉,

where JX is the Jacobian matrix of the mapping given by the coefficients of X. We

may also use the notation (JX)Vψ = VψX, where Vψ acts on the coefficients of X.

Using (3.35), we obtain

F ′X(s) = 〈(JX)Vψ, Ns〉+
〈
X, 〈(JVψ)∗Ns, Ns〉Ns − (JVψ)∗Ns

〉
= 〈[Vψ, X], Ns〉+ 〈(JVψ)Ns, Ns〉〈X,Ns〉.

(3.36)

The right-hand side is evaluated at Ψs.

As Vψ is of the form (3.27), the commutators [Vψ, Xj] and [Vψ, Yj] are horizontal

vector fields, i.e., linear combinations of Xi and Yi. From (3.36) it follows that F ′Xj
and F ′Yj are homogeneous functions of degree 1 with respect to 〈Xi, Ns〉 and 〈Yi, Ns〉,
i = 1, . . . , n.

As Ψs is a contact flow, by (3.26) we have K(p) = 0 if and only if Ks(Ψs(p)) = 0.

Assuming that K(p) 6= 0, we can thus compute the derivative (in the sequel we omit

reference to p ∈ ∂E ∩ A)

dKs ◦Ψs

ds
=

1

Ks

n∑
j=1

〈Xj, Ns〉F ′Xj(s) + 〈Yj, Ns〉F ′Yj(s), (3.37)
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and using (3.36) we obtain the formula

dKs ◦Ψs

ds
= Ks(〈(JVψ)Ns, Ns〉+

1

Ks

n∑
j=1

〈
〈Xj, Ns〉[Vψ, Xj] + 〈Yj, Ns〉[Vψ, Yj], Ns

〉
.

(3.38)

The right hand side is evaluated at Ψs and it is bounded by Ks. Namely, there exists

a constant C2 = C2(ψ,A) such that∣∣∣dKs ◦Ψs

ds

∣∣∣ ≤ C2Ks. (3.39)

Then we can interchange integral and derivative in s in the derivative of P (Es;As):

d

ds

∫
∂E∩A

Ks ◦Ψs J Ψs dH
2n =

∫
∂E∩A

d

ds

(
Ks ◦Ψs J Ψs

)
dH 2n.

A formula for the second derivative of s 7→ Ks ◦Ψs can be obtained starting from

(3.37) and using (3.36). We do not compute this formula, here. It suffices to notice

that also the second derivative is bounded by Ks, and namely:∣∣∣d2Ks ◦Ψs

ds2

∣∣∣ ≤ C3Ks (3.40)

for some C3 = C3(ψ,A) > 0. This follows again from the formula (3.36). Thus we

can differentiate twice in s inside the integral (3.30) defining P (Es;As).

From (3.32) and (3.38), we get the first order Taylor development

Ks ◦Ψs J Ψs = K
{

1 + s
[
div Vψ +

1

K2

n∑
j=1

〈NXj [Vψ, Xj] +NYj [Vψ, Yj], N〉
]

+O(s2)
}
,

(3.41)

where we let NXj = 〈Xj, N〉 and NYj = 〈Yj, N〉, and O(s2)/s2 is bounded uniformly

in N by some constant C4 = C4(ψ,A) > 0. Now, using the structure (3.27) of Vψ, we

get

n∑
j=1

〈NXj [Vψ, Xj] +NYj [Vψ, Yj], N〉 = −Qψ

( n∑
j=1

NXjXj +NYjYj

)
, (3.42)

and

div Vψ = −4Tψ +
n∑
j=1

XjYjψ − YjXjψ = −4(n+ 1)Tψ. (3.43)

Formula (3.29) follows from (3.30) along with (3.41)–(3.43). �

Remark 3.19. Let Γ ⊂ Hn be an S Q−1
% -rectifiable set in Hn in the sense of Definition

2.18. Using the C1
H-regular surfaces that cover Γ, a unit horizontal normal νΓ can be
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defined S Q−1
% -a.e. on Γ. When Γ is bounded and with finite measure, formula (3.29)

reads as follows:∣∣∣∣S Q−1
% (Ψs(Γ))−S Q−1

% (Γ) + s

∫
Γ

{
4(n+ 1)Tψ + Qψ(νΓ)

}
dS Q−1

%

∣∣∣∣ ≤ CS Q−1
% (Γ) s2

(3.44)

for any s ∈ [−δ, δ], where ψ ∈ C∞(Hn) is a generating function and δ > 0. The

details of the proof of (3.44) will appear elsewhere.

If Γ is locally measure minimizing in an open set A ⊂ Hn, from (3.44) we deduce

the necessary condition∫
Γ

{
4(n+ 1)Tψ + Qψ(νΓ)

}
dS Q−1

% = 0

for any function ψ ∈ C∞(A).

4. Isoperimetric problem

4.1. Existence of isoperimetric sets and Pansu’s conjecture. For a measurable

set E ⊂ Hn with positive and finite measure, the isoperimetric quotient is defined as

Isop(E) =
P (E;Hn)

|E|(Q−1)/Q
.

The isoperimetric problem consists in minimizing the isoperimetric quotient among

all admissible sets

Cisop = inf
{

Isop(E) : E ⊂ Hn measurable set with 0 < |E| <∞
}
. (4.1)

A measurable set E ⊂ Hn with 0 < |E| < ∞ realizing the infimum is called isoperi-

metric set. Isoperimetric sets are defined up to null sets.

If a set E is isoperimetric, then also the left translates LpE = p · E, p ∈ Hn, are

isoperimetric because perimeter and volume are left invariant. Also the dilated sets

λE = δλE are isoperimetric, because the isoperimetric quotient is 0-homogeneous,

Isop(λE) = Isop(E), for any λ > 0. It follows that the infimum Cisop in (4.1) is the

infimum of perimeter for fixed volume

Cisop = inf
{
P (E;Hn) : E ⊂ Hn measurable set with |E| = 1

}
. (4.2)

Hence, isoperimetric sets are precisely the sets that have least Heisenberg perimeter

for given volume.

The infimum in (4.1) is in fact positive, Cisop > 0, and we have the isoperimetric

inequality

P (E;Hn) ≥ Cisop|E|
Q−1
Q , (4.3)

holding for any measurable set E with finite measure. The constant Cisop is the largest

constant making true the above inequality (i.e., the sharp constant). Isoperimetric

sets are precisely the sets for which the inequality (4.3) is an equality.
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Inequality (4.3) with a positive nonsharp constant can be obtained by several meth-

ods (see, for example, [58], [59], [26], and [33]). The functional analytic proof casts

the isoperimetric inequality as a special case of Sobolev-Poincarè inequalities. Indeed,

for any 1 ≤ p < Q there exists a constant Cn,p > 0 such that

Cp,n

(∫
Hn
|u|

pQ
Q−pdzdt

)Q−p
pQ ≤

(∫
Hn
|∇Hu|pdzdt

)1/p

(4.4)

for any u ∈ C1
c (Hn). The inequality extends to appropriate Sobolev or BV spaces.

The case p = 1 is the geometric case and reduces to the Heisenberg isoperimetric

inequality (4.3). In fact, for the characteristic function of a set u = χE we have∫
Hn
|∇Hu| = sup

{∫
Hn
χEdivHϕdzdt : ϕ ∈ C1

c (A;R2n), ‖ϕ‖∞ ≤ 1

}
= P (E;Hn).

Inequality (4.4) can be obtained starting from the potential estimate

|u(z, t)| ≤ Cn

∫
Hn

|∇Hu(ζ, τ)|
d((z, t), (ζ, τ))Q−1

dζdτ = CnIQ−1(|∇Hu|)(z, t), u ∈ C1
c (Hn),

and using the fact that the singular integral operator IQ−1 : Lp(Hn) → Lq(Hn) is

bounded for q = pQ/(Q− p) and 1 ≤ p < Q.

The existence of isoperimetric sets is established in [38] and follows from a concentra-

tion-compactness argument. See also [32] for a proof of existence that avoids to use

the concavity of the isoperimetric profile function.

Theorem 4.1 (Leonardi-Rigot). Let n ≥ 1. There exists a measurable set E ⊂ Hn

with |E| = 1 realizing the minimum in (4.2).

Proof. We give a sketch of the proof. Let (Ej)j∈N be a minimizing sequence of sets

for (4.2):

1) |Ej| = 1 for all j ∈ N;

2) lim
j→∞

P (Ej;Hn) = Cisop.

The key step of the proof is a concentration argument. We claim that there exists

an R > 0 such that (after a left translation, truncation, and dilation of each Ej) the

sequence (Ej)j∈N can be also assumed to lie in a bounded region. Namely, there exists

R > 0 such that:

3) Ej ⊂ QR =
{

(z, t) ∈ Hn : |xi|, |yi|, |t|2 < R, i = 1, . . . , n
}

for all j ∈ N.

Then, by the compactness theorem for BVH(QR) functions (see [33]), there exists

a subsequence, still denoted by (Ej)j∈N, that converges in L1(Hn) to a set E ⊂ Hn

such that:

i) |E| = lim
j→∞
|Ej| = 1, by the L1(Hn) convergence;

ii) P (E;Hn) ≤ lim inf
j→∞

P (Ej;Hn) = Cisop, by the lower semicontinuity of perimeter.

So we have P (E;Hn) = Cisop with |E| = 1, and E is therefore an isoperimetric set.

This ends the proof, provided that we show 3). �
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Claim 3) follows from the following lemma.

Lemma 4.2. Let n ≥ 1. There exist constants ε0 > 0, C > 0, and R > 0 such that for

each 0 < ε < ε0 and for all sets E ⊂ Hn such that |E| = 1 and P (E;Hn) ≤ (1+ε)Cisop

there exists a set F ⊂ Hn such that:

i) |F | = 1;

ii) F ⊂ QR =
{

(z, t) ∈ Hn : |xi|, |yi|, |t|2 < R, i = 1, . . . , n
}

;

iii) P (F ;Hn) ≤
(
1− Cε

Q
Q−1
)−(Q−1)/Q

P (E;Hn).

Proof. For s ∈ R, let us define the following sets:

Π−s =
{

(z, t) ∈ Hn : x1 < s
}

and Π+
s =

{
(z, t) ∈ Hn : x1 > s

}
.

We also let Πs =
{

(z, t) ∈ Hn : x1 = s
}

. Let E ⊂ Hn be a set with |E| = 1 and finite

H-perimeter. We define the sets

E−s = E ∩ Π−s and E+
s = E ∩ Π+

s .

By the Heisenberg isoperimetric inequality (4.3), we have

P (E−s ;Hn) ≥ Cisop|E−s |
Q−1
Q , P (E+

s ;Hn) ≥ Cisop|E+
s |

Q−1
Q , (4.5)

where

P (E−s ;Hn) = P (E;H−s ) + P (E−s ; Πs),

P (E+
s ;Hn) = P (E;H+

s ) + P (E+
s ; Πs).

(4.6)

The number P (E−s ; Πs) is the standard 2n-dimension measure of the trace of E−s
onto Πs. Analogously, the number P (E+

s ; Πs) is the standard 2n-dimension measure

of the trace of E+
s onto Πs. The function v(s) = |E−s | is continuous and increasing.

Therefore it is differentiable almost everywhere. Hence, at differentiability points

s ∈ R of v we have

v′(s) = P (E−s ; Πs) = P (E+
s ; Πs).

We do not prove these claims, here. From (4.6) and (4.5), we obtain

P (E;Hn) + 2v′(s) ≥ P (E; Π−s ) + P (E; Π+
s ) + 2v′(s)

= P (E; Π−s ) + P (E; Π+
s ) + P (E−s ; Πs) + P (E+

s ; Πs)

= P (E−s ;Hn) + P (E+
s ;Hn)

≥ Cisop

{
|E−s |

Q−1
Q + |E+

s |
Q−1
Q

}
.

Using P (E;Hn) ≤ Cisop(1 + ε) and |E| = 1, the inequality above implies

Cisop(1 + ε) + 2v′(s) ≥ Cisop

{
v(s)

Q−1
Q + (1− v(s))

Q−1
Q
}
,

and letting ψ(v) = v
Q−1
Q + (1− v)

Q−1
Q − 1 for v ∈ [0, 1], we finally obtain

Cisopε+ 2v′(s) ≥ Cisopψ(v(s)). (4.7)
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The function ψ is strictly concave with ψ(0) = ψ(1) = 0. Then there exist 0 < v− <

v+ < 1 such that ψ(v−) = ψ(v+) = 2ε. By concavity, we have

ψ(v) ≥ 2ε for all v− ≤ v ≤ v+.

There exist numbers s− < s+ such that v(s−) = v− and v(s+) = v+. Thus, from (4.7)

we get

s+ − s− ≤
∫ s+

s−

Cisopε+ 2v′(s)

Cisopψ(v(s))
ds

≤ 1

2
(s+ − s−) +

∫ s+

s−

2v′(s)

Cisopψ(v(s))
ds

≤ 1

2
(s+ − s−) +

∫ 1

0

2

Cisopψ(v)
dv.

(4.8)

We obtain the bound

s+ − s−
2

≤ R̂ =
2

Cisop

∫ 1

0

1

ψ(v)
dv <∞.

The set Ê = E ∩ {(z, t) ∈ Hn : s− < x1 < s+} has volume

|Ê| = |E−s+ | − |E
−
s−| = 1− 2v−.

We used the identity v+ = 1 − v−. The number 0 < v− < 1/2 satisfies ψ(v−) = 2ε.

There are constants ε0 > 0 and C > 0 such that if 0 < ε < ε0 we have v− ≤ Cε
Q
Q−1 .

Let λ > 0 be such that |λÊ| = 1. Then we have 1 = λQ|Ê| ≥ λQ(1 − 2Cε
Q
Q−1 ), and

thus

λ ≤
( 1

1− 2Cε
Q
Q−1

)1/Q

.

A calibration argument shows that P (Ê;Hn) ≤ P (E;Hn). We do not prove this

claim, here. So we get

P (λÊ;Hn) = λQ−1P (Ê;Hn) ≤
( 1

1− 2Cε
Q
Q−1

)(Q−1)/Q

P (E;Hn).

After a left translation, we may assume that

λÊ ⊂
{

(z, t) ∈ Hn : |x1| < R
}
,

where we let R = λR̂. Repeating the argument for each coordinate axis, we obtain

the claim of the lemma. The argument in the t coordinate requires easy adaptations.

�

In 1983, Pansu conjectured a possible solution to the Heisenberg isoperimetric

problem, see [59]. The conjecture can be formulated in the following way. Up to a
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null set, a left translation, and a dilation, the isoperimetric set in H1 is precisely the

set

Eisop =
{

(z, t) ∈ H1 : |t| < arccos |z|+ |z|
√

1− |z|2, |z| < 1
}
. (4.9)

Pansu did not give the formula for the conjectured isoperimetric set but he described

how to construct it. Let us consider a geodesic γ : [0, π] → H1 joining the point

γ(0) = 0 to the point γ(π) = (0, π) ∈ H1. Using the formula (1.14) with ϑ = 0 and

ϕ = 2, we have the following formula for γ

γ(s) =
(e2is − 1

2
, s− sin s cos

)
.

The horizontal projection of γ, namely the curve κ(s) = e2is−1
2

, is a circle with di-

ameter 1. Letting |z| = |κ(s)| we find |z|2 = 1 − cos2 s, and when s ∈ [0, π/2] we

get

s = arccos
√

1− |z|2.

We can thus define the profile function ϕ : [0, 1]→ R by letting

ϕ(|z|) = s− sin s cos s− π

2

= arccos
√

1− |z|2 − |z|
√

1− |z|2 − π

2

= − arccos |z| − |z|
√

1− |z|2.

The profile ϕ gives the radial value of the function whose graph is the bottom part

of the boundary of the set Eisop in (4.9).

Pansu’s conjecture is in H1. Of course, the formula defining Eisop in (4.9) makes

sense in Hn for n ≥ 2 and the conjecture can be naturally extended to any dimension.

Proposition 4.3. The set Eisop ⊂ H1 has the following properties:

1) The boundary ∂Eisop is of class C2 but not of class C3.

2) The set Eisop is convex.

3) The set Eisop is axially symmetric.

Proof. 1) The boundary ∂Eisop is of class C∞ away from the center of the group

Z = {(0, t) ∈ H1 : t ∈ R}. We claim that the function ϕ : [0, 1]→ R,

ϕ(r) = arccos r + r
√

1− r2,

satisfies ϕ′(0) = ϕ′′(0) = 0 but ϕ′′′(0) 6= 0. This implies that ∂Eisop is of class C2 but

not of class C3. In fact, we have

ϕ′(r) =
−2r2

√
1− r2

, ϕ′′(r) = −2r
2− r2

(1− r2)3/2
,

and thus ϕ′′′(0) = −4 6= 0.
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2) The set Eisop is convex because the function ϕ satisfies ϕ′′ ≤ 0 on [0, 1] and

ϕ′(0) = 0.

3) The set Eisop is axially symmetric:

(z, t) ∈ Eisop ⇒ (ζ, t) ∈ Eisop for all |ζ| = |z|.

In fact, the profile function depends on |z|.
�

Pansu’s conjecture is known to hold assuming some regularity, symmetry, or struc-

ture for the isoperimetric set. In the next sections, we describe the following recent

results:

1) If E ⊂ H1 is isoperimetric and ∂E is of class C2 then E = Eisop, up to dilation

and left translation. This result is not known when n ≥ 2.

2) If E ⊂ H1 is isoperimetric and convex then E = Eisop, up to dilation and left

translation. This result is not known when n ≥ 2.

3) Let n ≥ 1. If E ⊂ Hn is isoperimetric and axially symmetric then E = Eisop,

up to a vertical translation and a dilation.

4) Let n ≥ 1. If E ⊂ Hn is contained in a vertical cylinder and has a circular

horizontal section, then E = Eisop, up to dilation and left translation.

In general, Pansu’s conjecture is still open.

4.2. Isoperimetric sets of class C2. In this section, we show that isoperimetric

sets in H1 of class C2 are of the form (4.9). This result is due to [69] (Theorems 6.10

and 7.2) and relies upon two facts: the structure of the characteristic set of surfaces

of class C2; the geometric interpretation of the equation for surfaces with constant

H-curvature. Both results are limited to H1.

Theorem 4.4 (Ritoré-Rosales). Let E ⊂ H1 be a bounded isoperimetric set with

boundary ∂E of class C2. Then we have E = Eisop, up to dilation and left translation.

Proof. Let D ⊂ C be an open set and let f ∈ C2(D) be a function such that

gr(f) =
{

(z, f(z)) ∈ H1 : z ∈ D
}
⊂ ∂E.

We denote by Σ(f) =
{
z ∈ D : ∇f(z) + 2z⊥ = 0

}
the characteristic set of f . It may

be Σ(f) = ∅. We always have |Σ(f)| = 0.

For ϕ ∈ C∞c (D \Σ(f)) and ε ∈ R small, consider the set Eε ⊂ H1 that is obtained

from E perturbing the piece of boundary of E given by the graph of f , through the

function f + εϕ. Then, for small ε we have

P (E;H1)

|E|3/4
= Isop(E) ≤ Isop(Eε) =

P (Eε;H1)

|Eε|3/4
=

p(ε)

v(ε)3/4
= ψ(ε), (4.10)
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where p(ε) = P (Eε;H1) and p(ε) = |Eε|. Using the area formula for H-perimeter

(3.5) we find

p′(0) =

∫
D

〈∇f + 2z⊥,∇ϕ〉
|∇f + 2z⊥|

dz, v′(0) = −
∫
D

ϕ(z) dz.

Here, we are assuming that the set E lies above the graph of f . Moreover, we have

ψ′ = p′v−3/4 − 3
4
pv−7/4v′. From (4.10) we deduce that ψ′(0) = 0 and thus

0 =
1

|E|3/4

∫
D

〈∇f + 2z⊥,∇ϕ〉
|∇f + 2z⊥|

dz +
3

4

P (E;H1)

|E|7/4

∫
D

ϕdz

= − 1

|E|3/4

∫
D

ϕ div
( ∇f + 2z⊥

|∇f + 2z⊥|

)
dz +

3

4

P (E;H1)

|E|7/4

∫
D

ϕdz.

Since ϕ ∈ C∞c (D \ Σ(f)) is arbitrary, we deduce that the function f satisfies the

partial differential equation

div
( ∇f(z) + 2z⊥

|∇f(z) + 2z⊥|

)
=

3

4

P (E;H1)

|E|
=: H, z ∈ D \ Σ(f). (4.11)

We conclude that for any z ∈ D \Σ(f) there exists an arc of circle κz with curvature

H passing through z and such that γz = Lift(κz) is contained in gr(f) ⊂ ∂E. See

Remark 3.13.

Let Σ(∂E) be the characteristic set of ∂E. The above argument shows that for any

p ∈ ∂E\Σ(∂E) there exists a geodesic γp contained in ∂E\Σ(∂E) and passing through

p. There exists a maximal interval (a, b) such that we have γp : (a, b)→ ∂E \Σ(∂E).

Since E is bounded, γp can be extended to a and b with γ(a), γ(b) ∈ Σ(∂E).

In a neighborhood of the point (z0, t0) = γ(a) ∈ Σ(f), the surface ∂E is a graph

of the form t = f(z) for some f ∈ C2(D) and D ⊂ C open set with z0 ∈ D. This

is because the tangent space to ∂E at this point coincides with the horizontal plane.

Let (D, f) be the maximal pair such that gr(f) ⊂ ∂E with D open set containing z0

and f ∈ C2(D).

By Theorem 3.15, there are two cases:

i) z0 is an isolated point of Σ(f);

ii) Near z0, Σ(f) is a C1 curve κz0 passing through z0.

In the case ii), let κz0 be the maximal C1 curve contained in Σ(f) and passing

through z0. The curve κz0 cannot reach the boundary ∂D because this would contra-

dict the maximality of D. The curve κz0 cannot have limit points inside D that are

singular, because of Theorem 3.15. Then κz0 must be a simple closed curve inside D.

But this is not possible because the horizontal lift of κz0 grows in the t coordinate by

an amount that equals 4 times the area of the region enclosed by the simple closed

curve.

So we are left with the case Σ(f) = {z0} for some z0 ∈ D. Through any point

z ∈ D \ {z0} passes a circle with curvature H starting from z0. Now the boundary of
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E is determined in a neighborhood of (z0, f(z0)) ∈ ∂E. The regularity of ∂E forces

D to be a circle centered at z0 and E to be a left translation and dilatation of Eisop.

�

4.3. Convex isoperimetric sets. We say that a set E ⊂ H1 is convex if it is

convex for the standard linear structure of H1 = R3. Left translations and dilations

preserve convexity. In [53], Pansu’s conjecture is proved assuming the convexity of

isoperimetric sets. Recall the Eisop ⊂ H1 is the set in (4.9).

Theorem 4.5 (Monti-Rickly). Let E ⊂ H1 be a convex (open) isoperimetric set.

Then, up to a left translation and a dilation we have E = Eisop.

Using the concentration argument of Theorem 4.1, it is possible to prove the exis-

tence of isoperimetric sets within the class of convex sets. However, it is not clear how

to compute the first variation remaining inside this class of sets. Theorem 4.5 is not

known when n ≥ 2. It would be also interesting to prove the theorem assuming for

isoperimetric sets only H-convexity (convexity along horizontal lines, see [5]) rather

than standard convexity.

Here, we describe the technical steps of the proof of Theorem 4.5. For details, we

refer the reader to [53]. Let E ⊂ H1 be a convex isoperimetric set. Then we have

E =
{

(z, t) ∈ H1 : z ∈ D, f(z) < t < g(z),
}
, (4.12)

where D ⊂ C = R2 is a bounded convex open set in the plane, and −g, f : D → R
are convex functions. In particular, f and g are locally Lipschitz continuous and

their first derivatives are locally of bounded variation. The function f satisfies the

following partial differential equation

div

(
∇f + 2z⊥

|∇f + 2z⊥|

)
=

3P (E;H1)

4|E|
= H in D. (4.13)

Equation (4.13) can be deduced in the same way as in (4.11), with the difference that

the equation is now verified only in the weak sense. As a matter of fact, the vector

field

Nf (z) =
∇f(z) + 2z⊥

|∇f(z) + 2z⊥|
z ∈ D,

is only in L∞(D). However, we have ∇f(z) + 2z⊥ ∈ BVloc(D).

The goal is to prove that integral curves of N⊥f are circles with curvature H. The

vector Nf will be the “normal vector” to the curve.

The first step of the proof of Theorem 4.5 is an improved regularity for solutions

of (4.13): the candidate “normal vector” satisfies Nf ∈ W 1,1
loc (D;R2), see [53].

The second step of the proof consists in the analysis of the flow of the vector field

v(z) = 2z−∇f⊥(z). This vector field is orthogonal to Nf . Since f is convex, we have

v ∈ BVloc(int(D);R2). Moreover, the distributional divergence of v is in L∞, in fact
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div v = 4 in int(D). Thus, by Ambrosio’s theory on the Cauchy Problem for vector

fields of bounded variation [2], for any compact set K ⊂ D there exist r > 0 and a

(unique regular) Lagrangian flow Φ : K × [−r, r]→ D. In particular, for any z ∈ K,

the curve γz(s) = Φ(z, s) is an integral curve of v passing through z at time s = 0.

The third step of the proof uses the fact that v/|v| is in W 1,1
loc (D;R2) to show that (a

suitable reparameterization of) the integral curve γz is twice differentiable in a weak

sense. With this regularity, the distributional equation (4.13) can be given a formal

meaning along the integral curve γz: it says that the curvature of γz is the constant

H.

Theorem 4.6. Let E ⊂ H1 be a convex isoperimetric set with curvature H > 0 (the

constant in (4.13)) and let Φ : K × [−r, r]→ D be the flow introduced above. Then

for a.e. z ∈ K the curve s 7→ Φ(z, s) is an arc of circle with radius 1/H.

The shape of a convex isoperimetric set E can now be reconstructed starting from

the structure of the characteristic set of ∂E. A point (z, t) ∈ ∂E is characteristic if

the horizontal plane at (z, t) is a supporting plane for E at (z, t). For convex sets,

the characteristic set is the disjoint union of at most four compact disjoint horizontal

segments, possibly points, see [53]. This property and Theorem 4.6 yield Theorem

4.5 as explained in the final part of the proof of Theorem 4.4.

4.4. Axially symmetric solutions. We denote by S the family of all measurable

subsets E ⊂ Hn with 0 < |E| <∞ that are axially symmetric:

(z, t) ∈ E ⇒ (ζ, t) ∈ E for all |ζ| = |z|.

The isoperimetric problem in the family S consists in proving existence and classi-

fying all minimizers of the infimum problem

CS
isop = inf

{
Isop(E) : E ∈ S

}
. (4.14)

A set E ∈ S for which the infimum in (4.14) is attained is called an axially symmetric

isoperimetric set. Clearly, we have CS
isop ≥ Cisop. Even though we believe that

CS
isop = Cisop, we are not able to prove this.

In the axially symmetric setting, Pansu’s conjecture amounts to show that the

solution to Problem (4.14) is the set

Eisop =
{

(z, t) ∈ Hn : |t| < arccos |z|+ |z|
√

1− |z|2, |z| < 1
}
. (4.15)

for any dimension n ≥ 1. This result is proved in [48] and, in this section, we present

the scheme of the proof.

Theorem 4.7 (Monti). The infimum CS
isop > 0 is attained and any axially symmetric

isoperimetric set coincides with the set Eisop in (4.15), up to a dilation, a vertical

translation, and a Lebesgue negligible set.
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By a rearrangement argument, Theorem 4.7 can be reduced to a one dimensional

problem. The first step is the reduction to an isoperimetric problem in the half plane

R2
+ = R+ × R.

Using spherical coordinates in Cn, a measurable axially symmetric set E ⊂ Hn is

generated by a measurable set F ⊂ R2
+ (and viceversa), and we have the following

formula

P (E;Hn) = ω2n−1Q(F ;R2
+), (4.16)

where Q(·;R2
+) is a weighted perimeter functional in the half-plane

Q(F ;R2
+) = sup

{∫
F

{
∂r
(
r2n−1ψ1

)
+ ∂t

(
2r2nψ2

)}
drdt : ψ ∈ C1

c (R2
+;R2), ‖ψ‖∞ ≤ 1

}
.

(4.17)

Above, ω2n−1 = H 2n−1(S2n−1) is the standard surface measure of the (2n−1)-dimen-

sional unit sphere. For any axially symmetric set E ⊂ Hn, the volume transforms

according to the following rule

|E| = ω2n−1

∫
F

r2n−1drdt = ω2n−1V (F ), (4.18)

where V (·) is a volume functional in the half-plane. From (4.17) and (4.18), the axially

symmetric isoperimetric problem (4.14) transforms into the weighted isoperimetric

problem in the half plane

CS
isop = ω

1/Q
2n−1 inf

{
Q(F ;R2

+)

V (F )
Q−1
Q

: F ⊂ R2
+ such that 0 < V (F ) <∞

}
. (4.19)

The observation made in [48] is that the isoperimetric quotient for sets F ⊂ R2
+ is

improved by a certain rearrangement of F in the variable r for fixed t that is tailored

to the perimeter Q(·;R2
+). We measure the t-sections of F , the sets Ft =

{
r > 0 :

(r, t) ∈ F
}

, using the line density τ(r) = 2r2n. The function τ is the weight appearing

in the definition of the functional Q(·;R2
+) in (4.17). We let

Θ(r) =

∫ r

0

τ(s) ds =
2

2n+ 1
r2n+1, (4.20)

and we say that a measurable set F ⊂ R2
+ is τ -rearrangeable if the function f : R→

[0,+∞]

f(t) =

∫
Ft

τ(r) dr (4.21)

is in L1
loc(R). In this case, we call the set

F ] =
{

(r, t) ∈ R2
+ : Θ(r) < f(t)

}
(4.22)

the τ -rearrangement of F . The t-sections of F ] are intervals (0,Θ−1(f(t))) with the

same τ -measure as the t-sections Ft.

The following intermediate result is proved in [48].



48 ROBERTO MONTI

Theorem 4.8. Let F ⊂ R2
+ be a τ -rearrangeable set. Then:

i) We have Q(F ];R2
+) ≤ Q(F ;R2

+), and in case of equality there holds F = F ],

up to a negligible set.

ii) We have V (F ]) ≥ V (F ).

Using Theorem 4.8, it is easy to find a compact minimizing sequence, thus getting

the existence of axially symmetric isoperimetric sets. Moreover, a set F minimizing

(4.19) satisfies:

i) F = F ], up to a negligible set;

ii) the sections Fr = {t ∈ R : (r, t) ∈ F} are equivalent to intervals, for L 1-

a.e. r ∈ R+.

Now the boundary of ∂F inside R2
+ is a Lipschitz curve that can be computed by

a standard variational argument. This curve is the profile of the isoperimetric set

conjectured by Pansu and, as a matter of fact, it does not depend on the dimension

n.

4.5. Calibration argument. In [67], Ritoré proved Pansu’s conjecture within a

special class of sets by a calibration argument. The sets have one circular horizontal

section and are contained in a vertical cylinder, see also [19]. The argument works in

any dimension. We let

B = {(z, 0) ∈ Hn : |z| < 1} and C = {(z, t) ∈ Hn : |z| < 1, t ∈ R}.

We identify B = {|z| < 1} ⊂ Cn.

Theorem 4.9 (Ritoré). Let E ⊂ Hn, n ≥ 1, be a bounded open set with finite

H-perimeter such that:

i) B ⊂ E ⊂ C;

ii) |E| = |Eisop|, where Eisop is the set in (4.15).

Then, we have P (Eisop;Hn) ≤ P (E;Hn).

Proof. Let ϕ : B̄ → R be the profile function of Eisop,

ϕ(z) = arccos |z|+ |z|
√

1− |z|2, |z| ≤ 1.

The function f : C̄ → R, f(z, t) = |t| − ϕ(z), is a defining function for ∂Eisop. Let us

define the vector field ψ : C̄ \ Z → R2n

ψ(z, t) =
∇Hf(z, t)

|∇Hf(z, t)|
, 0 < |z| < 1, t 6= 0.

The vector field ψ is not defined when z = 0 or t = 0; it can be extended to |z| = 1;

it jumps at t = 0. In the set {0 < |z| < 1, t 6= 0}, ψ is of class C∞ and there is a
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constant H 6= 0 such that

divHψ(z, t) = H, 0 < |z| < 1, t 6= 0. (4.23)

We consider the following sets:

E+ = E ∩ {t > 0}, E+
isop = Eisop ∩ {t > 0}

E− = E ∩ {t < 0}, E−isop = Eisop ∩ {t < 0}.

By i), we have E+∆E+
isop ⊂ C and moreover the boundary of E+∆E+

isop does not

intersect the base B of the cylinder. Let F+ = E+
isop \E+ and G+ = E+ \E+

isop. Then

we have F+, G+ ⊂ B × R+ and E+∆E+
isop = F+ ∪ G+. Moreover, denoting by NF+

H

and NG+

H the horizontal outer normals to ∂F+ and ∂G+, respectively:

a) NF+

H = N
Eisop

H a.e. on ∂F+ ∩ ∂Eisop and NF+

H = −NE
H a.e. on ∂F+ ∩ ∂E;

b) NG+

H = −NEisop

H a.e. on ∂G+ ∩ ∂Eisop and NG+

H = NE
H a.e. on ∂G+ ∩ ∂E.

Integrating (4.23) on F+ we find

H|F+| =
∫
F+

divHψ(z, t) dzdt =

∫
∂F+

〈NF+

H , ψ〉dµF+

=

∫
∂F+

〈NEisop

H , ψ〉dµEisop
−
∫
∂F+

〈NE
H , ψ〉dµE

≥ P (Eisop; ∂F+)− P (E; ∂F+),

(4.24)

because 〈NEisop

H , ψ〉 = 1 on ∂F+ ∩ ∂Eisop and 〈NE
H , ψ〉 ≤ 1 on ∂F+ ∩ ∂E.

In the same way, we find the inequality

H|G+| =
∫
G+

divHψ(z, t) dzdt =

∫
∂G+

〈NG+

H , ψ〉dµG+

= −
∫
∂G+

〈NEisop

H , ψ〉dµEisop
+

∫
∂G+

〈NE
H , ψ〉dµE

≤ −P (Eisop; ∂G+) + P (E; ∂G+).

(4.25)

From (4.24) and (4.25), we obtain

H(|F+| − |G+|) ≥ P (Eisop; ∂F+)− P (E; ∂F+) + P (Eisop; ∂G+)− P (E; ∂G+)

= P (Eisop; {t > 0})− P (E; {t > 0}).
(4.26)

Let F− = E−isop \ E− and G− = E− \ E−isop. Then we have F−, G− ⊂ B × R− and

E−∆E−isop = F− ∪G−. Computations analogous to the ones above show that

H(|F−| − |G−|) ≥ P (Eisop; {t < 0})− P (E; {t < 0}). (4.27)
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Since |E| = |Eisop| we have |F+|+ |F−| = |G+|+ |G−|. Adding (4.26) and (4.27), we

obtain

0 = H(|F+|+ |F−| − |G+| − |G−|)

≥ P (Eisop; {t 6= 0})− P (E; {t 6= 0})

= P (Eisop;Hn)− P (E;Hn).

This concludes the proof. �

Remark 4.10. In [67], Ritoré also discusses the equality case. Namely, in the setting

of Theorem 4.9 and assuming that ∂E \Z is a C1
H-regular surface, he shows that the

equality P (E;Hn) = P (Eisop;Hn) implies E = Eisop.

5. Regularity problem for H-perimeter minimizing sets

The regularity of H-perimeter minimizing boundaries is a challenging open prob-

lem. We list the main steps and the main technical difficulties.

1) Lipschitz approximation. The first step in the regularity theory of perimeter

minimizing sets in Rn is a good approximation of minimizers. In De Giorgi’s original

approach, the approximation is made by convolution and the estimates are based on

the monotonicity formula. In the Heisenberg group, the validity of a monotonicity

formula is not clear, see [21]. A more flexible approach is the approximation of min-

imizing boundaries by Lipschitz graphs. This scheme works also in the Heisenberg

group. An H-minimizing boundary is approximated in measure by an intrinsic Lip-

schitz graph. The estimate involves the notion of horizontal excess, see Theorem 5.9

and [50].

2) Harmonic approximation. The minimal set can be blown-up at a point of the

reduced boundary by a quantity depending on excess. It can be shown that the cor-

responding approximating intrinsic Lipschitz functions converge to a limit function.

This holds when n ≥ 2 thanks to a Poincaré inequality valid on vertical hyperplanes,

see [17]. We do not present the details, here. It is an open problem to prove that

this limit function is harmonic for the natural (linear) sub-Laplacian of the vertical

hyperplane.

3) Decay estimate for excess. Known estimates for sub-elliptic harmonic functions

should give the decay estimate for excess

Exc(E,Bαr) ≤ Cα2Exc(E,Br), r > 0,

for some 0 < α < 1 and C > 0. By standard facts, this implies the Hölder continuity of

the horizontal normal on the reduced boundary. In turn, the continuity of the normal

implies that the reduced boundary is a C1
H-regular surface in the sense of Definition

2.16, see [56], and thus it is locally the intrinsic graph of a continuous function ϕ

having Hölder continuous distributional intrinsic gradient ∇ϕϕ, see Definition 3.4.
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4) Schauder-type regularity. The function ϕ is a local minimizer of the area func-

tional (see (3.14))

A (ϕ) =

∫
D

√
1 + |∇ϕϕ|2dw.

It is an open problem to deduce further regularity for ϕ, beyond the Hölder continuity

of the distributional gradient ∇ϕ. It is not even clear how to prove that ϕ solves the

minimal surface equation (3.25).

This is the state of the art on the regularity of H-perimeter minimizing boundaries.

In Section 5.3, we present the Lipschitz approximation of H-perimeter minimizing

sets, Theorem 5.9, and also the so-called height estimate, giving a certain flatness of

the boundary in the regime of small excess, see Theorem 5.10. The proofs are rather

technical and are omitted.

In Section 5.2, we also study some examples of nonsmooth minimizers in H1, in-

cluding sets with constant horizontal normal. No similar examples of nonsmooth

minimizers are known in Hn with n ≥ 2.

5.1. Existence and density estimates. We start from the definition of a local

minimizer of H-perimeter.

Definition 5.1. A set E ⊂ Hn with locally finite H-perimeter in an open set A ⊂ Hn

is H-perimeter minimizing in A if for all p ∈ Hn and r > 0 and for any F ⊂ Hn such

that E∆F ⊂⊂ Br(p) ⊂⊂ A we have

P (E;Br(p)) ≤ P (F ;Br(p)). (5.1)

The existence of local minimizers with some boundary condition easily follows by

a compactness argument. Let A ⊂ Hn be a bounded open set and let B ⊂ Hn be a

set such that P (B;Hn) <∞. Define the family of sets:

F (A,B) =
{
F ⊂ Hn : F has finite H-perimeter in Hn and F∆B ⊂ Ā

}
.

Clearly, F (A,B) 6= ∅ because B ∈ F (A,B). The set B determines a natural bound-

ary condition.

Proposition 5.2. Let A and B be as above. Then there exists a set E ∈ F (A,B)

such that

P (E;Hn) ≤ P (F ;Hn) for all F ∈ F (A,B).

Proof. Define the infimum

m = inf
{
P (F ;Hn) : F ∈ F (A,B)

}
≥ 0,

and let (Ej)j∈N be a minimizing sequence of sets Ej ∈ F (A,B):

lim
j→∞

P (Ej;Hn) = m.
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Let Ω ⊂ Hn be a bounded open set such that Ā ⊂ Ω and supporting the compact

embedding BVH(Ω) ⊂⊂ L1(Ω). The C2 regularity of the boundary ∂Ω is a sufficient

condition for compactness (see [33] and [52]). Then we have:

i) P (Ej;Hn) ≤ m+ 1 for all j ∈ N large enough;

ii) |Ej ∩ Ω| ≤ |Ω| <∞ for all j ∈ N.

By compactness, there exists a subsequence, still denoted by (Ej)j∈N, and a measur-

able set E ⊂ Hn such that χEj → χE in L1(Ω). Since χEj = χB in Hn \ Ā, we can

also assume that χE = χB in Hn \ Ā, that is E ∈ F (A,B). In particular, we have

χEj → χE in L1(Hn).

By the lower semicontinuity of perimeter for the L1 convergence of sets, we obtain

P (E;Hn) ≤ lim inf
j→∞

P (Ej;Hn) = m,

If now F is a set such that E∆F ⊂⊂ Br(p) ⊂⊂ A, then F ∈ F (A,B) and P (E;Hn \
B̄r(p)) = P (F ;Hn \ B̄r(p)). Therefore, we have

P (E;Br(p)) = P (E;Hn)− P (E;Hn \ B̄r(p))

≤ P (F ;Hn)− P (F ;Hn \ B̄r(p)) = P (F ;Br(p)).

�

As for the standard perimeter, sets that are H-perimeter minimizing admit lower

and upper density estimates with geometric constants.

Lemma 5.3. If E ⊂ Hn is an H-perimeter minimizing set in a ball B% for some

% > 0, then we have

P (E;B%) ≤ c1%
Q−1, (5.2)

where c1 = P (B1;Hn).

Proof. Let 0 < s < r < %. Since the sets E and E \Bs agree inside Br \ B̄s, we have

P (E;Br \ B̄s) = P (E \Bs;Br \ B̄s) = P (E \Bs;Br)− P (E \Bs; B̄s).

On the other hand, using P (E \Bs;Bs) = 0 and (2.13) we obtain

P (E \Bs; B̄s) = P (E \Bs; ∂Bs) = cnS
Q−1
% (∂∗(E \Bs) ∩ ∂Bs)

≤ cnS
Q−1
% (∂Bs) = P (Bs;Hn) = c1s

Q−1.

The formula P (Bs;Hn) = sQ−1P (B1;Hn) follows by an elementary homogeneity ar-

gument. Then we obtain the inequality P (E\Bs;Br) ≤ P (E;Br \B̄s)+c1s
Q−1. Since

E is H-perimeter minimizing in B%, by (5.1) we get

P (E;Br) ≤ P (E \Bs;Br) ≤ P (E;Br \ B̄s) + c1s
Q−1.

Letting s ↑ r and using P (E;Br) <∞, we obtain P (E;Br) ≤ c1r
Q−1. Letting r ↑ %,

we obtain (5.2). �
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The density estimates from below are proved in [71], Proposition 2.14 (see also

Theorem 2.4 therein).

Lemma 5.4. There exist constants c2, c3 > 0 depending on n ≥ 1 such that for any

set E ⊂ Hn that is H-perimeter minimizing in B2%, % > 0, we have, for all p ∈ ∂E∩B%

and for all 0 < r < %,

min
{
|E ∩Br(p)|, |Br(p) \ E|

}
≥ c2r

Q, (5.3)

and

P (E;Br(p)) ≥ c3r
Q−1. (5.4)

For any set, the reduced boundary is a subset of the measure theoretic boundary,

∂∗E ⊂ ∂E, and moreover µE(∂E\∂∗E) = 0, see Proposition 2.8. For local minimizers

the difference ∂E \ ∂∗E is also small in terms of Hausdorff measures.

Lemma 5.5. For any set E ⊂ Hn that is H-perimeter minimizing in Hn, we have

S Q−1
%

(
∂E \ ∂∗E

)
= 0. (5.5)

Proof. Let K = ∂E \ ∂∗E, let A be an open set containing K, and fix δ > 0. For any

p ∈ K there is an 0 < rp < δ/10 such that B5rp(p) ⊂ A. Then {Brp(p) : p ∈ K} is a

covering of K and by the 5-covering lemma, there exists a sequence pi ∈ K, i ∈ N,

such that the balls Bi = Bri(pi), with ri = rpi , are pairwise disjoint and

K ⊂
⋃
i∈N

B5ri(pi).

It follows that

S Q−1,δ
% (K ∩ A) ≤

∑
i∈N

diam(B5ri(pi))
Q−1 = 10Q−1

∑
i∈N

rQ−1
i

≤ 10Q−1c−1
3

∑
i∈N

P (E;Bri(pi)) ≤ 10Q−1c−1
3 P (E;A).

Since δ > 0 is arbitrary, we deduce that S Q−1
% (K) ≤ 10Q−1c−1

3 P (E;A). As A is

arbitrary and, by (2.13), P (E;K) = 0, we conclude that S Q−1
% (K) = 0. �

5.2. Examples of nonsmooth H-minimal surfaces. The existence of nonsmooth

H-minimal surfaces in H1 was already observed in [61]. Then this phenomenon was

noticed by several authors, see [14], [66], [71], [55]. In the next examples, we prove

perimeter minimality of certain H-minimal surfaces by a calibration argument, see

[8], [55].
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5.2.1. A Lipschitz H-minimal surface. In this example, we study a local minimizer

of H-perimeter with boundary ∂E that is only Lipschitz-regular. The surface ∂E is,

however, C1
H-regular: whereas the standard normal jumps, the horizontal normal is

continuous.

In the open half-space A =
{

(z, t) ∈ H1 : y = Im(z) > 0
}

, consider the set

E =
{

(z, t) ∈ A : x = Re(z) < 0 and t < 0
}
.

The set E has locally finite H-perimeter in A and its boundary S = ∂E ∩ A is

a Lipschitz surface consisting of two pieces of plane meeting at the singular line

L = {(z, t) ∈ A : x = 0 and t = 0
}

. The horizontal inner normal νE : S → R2 is the

restriction to S of the mapping ϕ : A→ R2

ϕ(z, t) =


(−y, x)√
x2 + y2

if x ≤ 0,

(−1, 0) if x ≥ 0.

The function ϕ is continuous in A and thus S is an H-regular surface. In fact, ϕ is

locally Lipschitz continuous in A.

We claim that E is a local minimizer of H-perimeter in A. Namely, we prove that

for any bounded open set Ω ⊂⊂ A and for any F ⊂ A such that E∆F ⊂⊂ Ω we have

P (E; Ω) ≤ P (F ; Ω). (5.6)

The proof is a calibration argument and the calibration is provided by the vector

field V in A defined by

V (z, t) = ϕ1(z, t)X + ϕ2(z, t)Y,

where ϕ = (ϕ1, ϕ2). Then, at points (z, t) ∈ A where x ≤ 0 we have

div V = divHϕ = X
( −y√

x2 + y2

)
+ Y

( x√
x2 + y2

)
=

∂

∂x

( −y√
x2 + y2

)
+

∂

∂y

( x√
x2 + y2

)
= 0.

Trivially, we have div V = 0 where x ≥ 0.

Without loss of generality, we assume that F is closed, that ∂F∩A is a smooth (say,

Lipschitz) surface, and that F \ E = ∅ in such a way that E∆F = E \ F = E ∩ F ′,
where F ′ = Hn \ F .

Let NE, NF , and NE∩F ′ denote the Euclidean outer unit normals to the boundary

of ∂E, ∂F , and ∂(E ∩ F ′), respectively. By the divergence theorem, we have

0 =

∫
E∩F ′

div V dzdt =

∫
∂(E∩F ′)

〈V,NE∩F ′〉dH 2

=

∫
∂E∩F ′

〈V,NE〉dH 2 −
∫
∂F∩E

〈V,NF 〉dH 2.

(5.7)
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On ∂E, we have

ϕ =

(
〈X,NE〉, 〈Y,NE〉

)√
〈X,NE〉2 + 〈Y,NE〉2

,

and thus

〈V,NE〉 = ϕ1〈X,NE〉+ ϕ2〈Y,NE〉 =
√
〈X,NE〉2 + 〈Y,NE〉2.

By the area formula (3.2), it follows that∫
∂E∩F ′

〈V,NE〉dH 2 =

∫
∂E∩F ′

√
〈X,NE〉2 + 〈Y,NE〉2dH 2 = P (E;F ′).

On the other hand, on ∂F we have |ϕ| = 1 and by the Cauchy-Schwarz inequality

we obtain

〈V,NF 〉 = ϕ1〈X,NF 〉+ ϕ2〈Y,NF 〉 ≤
√
〈X,NF 〉2 + 〈Y,NF 〉2.

So we deduce that∫
∂F∩E

〈V,NF 〉dH 2 ≤
∫
∂F∩E

√
〈X,NF 〉2 + 〈Y,NF 〉2dH 2 = P (F ;E).

So (5.7) implies P (E;F ′) ≤ P (F ;E), and this is equivalent to (5.6).

5.2.2. An H-minimal intrinsic graph with discontinuous normal. In this example, we

study an H-minimal intrinsic Lipschitz graph with discontinuous horizontal normal.

This surface is a t-graph with standard C1,1-regularity.

Let ϕ : R2 → R be the function ϕ(y, t) = sgn(t)
√
|t|. The intrinsic epigraph of ϕ

in the sense of Definition 3.3 is the set

E =
{

(s, y, t+ 2ys) ∈ H1 : (y, t) ∈ R2, s > ϕ(y, t)
}
.

The boundary of E is the intrinsic graph of ϕ:

∂E =
{

(ϕ(y, t), y, t+ 2yϕ(y, t)) ∈ H1 : (y, t) ∈ R2
}
.

The intrinsic gradient of ϕ in the sense of Definition 3.4 reduces to the Burgers’

component

∇ϕϕ = Bϕ = ϕy − 4ϕϕt = −2sgn(t), t 6= 0.

Then ∇ϕϕ ∈ L∞(R2) and gr(ϕ) is an intrinsic Lipschitz graph, see Theorem 3.9.

Moreover, by formula (3.13) the horizontal normal to ∂E is

νE =
(1,−∇ϕϕ)√
1 + |∇ϕϕ|2

=
1√
5

(
1, 2sgn(t)

)
.

The normal can be extended in a constant way to H1 \ {x 6= 0}, when x > 0 and

x < 0, separately.
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Letting x = sgn(t)
√
|t|, we realize that ∂E is the t-graph of the function f : R2 →

R, f(x, y) = x|x|+ 2xy:

∂E =
{(
x, y, f(x, y)

)
∈ H1 : (x, y) ∈ R2

}
.

Clearly, we have f ∈ C1,1(R2).

We claim that E is a local minimizer for H-perimeter in H1. Namely, we prove that

for any bounded open set A ⊂ H1 and for any measurable set F ⊂ H1 with locally

finite H-perimeter and such that E∆F ⊂⊂ A there holds

P (E;A) ≤ P (F ;A). (5.8)

Without loss of generality, we assume that ∂F ∩A is a smooth surface. Let G = E∆F

and consider the subsets of G:

G− = (E∆F ) ∩ {x < 0} and G+ = (E∆F ) ∩ {x > 0}.

Let NE, NF , NG be the Euclidean outer normals to ∂E, ∂F , and ∂G, respectively. To

fix ideas, we assume that F \ E = ∅, so that we have

NG = NE a.e. on ∂E ∩ Ḡ,

NG = −NF a.e. on ∂F ∩ Ḡ.

Define the horizontal vector field V in H1 by V =
√

5(ν1
EX + ν2

EY ), where νE =

(ν1
E, ν

2
E) is the extended horizontal normal. Namely, we let

V =

{
X − 2Y x < 0

X + 2Y x > 0.

The vector field V is not defined on the plane x = 0. When x 6= 0 we have divV =

divHνE = 0. By the divergence theorem applied to G− and G+, we obtain

0 =

∫
G

divV dzdt =

∫
G−

divV dzdt+

∫
G+

divV dzdt

=

∫
∂G−
〈V,NG−〉dH 2 +

∫
∂G+

〈V,NG+〉dH 2.

We denote by V − and V + the traces of V onto {x = 0}, from the left and from the

right. The integral on ∂G− is∫
∂G−
〈V,NG−〉dH 2 =

∫
∂G∩{x<0}

〈V,NG〉dH 2 +

∫
G∩{x=0}

〈V −, NG〉dH 2

=

∫
∂E∩{x<0}

〈V,NE〉dH 2 −
∫
∂F∩{x<0}

〈V,NF 〉dH 2

+

∫
G∩{x=0}

〈V −, e1〉dH 2.
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Using the identities and inequalities

〈V,NE〉 = −|NE
H | = −

√
〈NE, X〉2 + 〈NE, Y 〉2 on ∂E,

〈V,NF 〉 ≥ −|NF
H | = −

√
〈NF , X〉2 + 〈NF , Y 〉2 on ∂F ,

and 〈V −, e1〉 = 1, we conclude that∫
∂G−
〈V,NG−〉dH 2 ≤−

∫
∂E∩{x<0}

|NE
H |dH 2 +

∫
∂F∩{x<0}

|NF
H |dH 2

+ H 2(G ∩ {x = 0}).

A similar computation for G+ yields∫
∂G+

〈V,NG+〉dH 2 ≤−
∫
∂E∩{x>0}

|NE
H |dH 2 +

∫
∂F∩{x>0}

|NF
H |dH 2

−H 2(G ∩ {x = 0}).

Adding the last two inequalities, the contribution from G ∩ {x = 0} cancels, and

using the area formula (3.2), we finally obtain

P (E; {x 6= 0} ∩ A) ≤ P (F ; {x 6= 0} ∩ A) ≤ P (F ;A).

Since P (E; {x = 0}) = 0, this proves the claim (5.8).

5.2.3. Sets with constant horizontal normal. In the previous two examples, the cal-

ibration is provided by a suitable extension of the horizontal normal νE, extension

that is divergence free. A special but interesting case of this situation is when the

normal is in fact constant. In this section, we describe sets in H1 that have, locally,

constant horizontal normal (see [50]).

For r > 0 and p ∈ H1, we let

Qr =
{

(x, y, t) ∈ H1 : |x| < r, |y| < r, |t| < r2
}
,

Qr(p) = p ·Qr.
(5.9)

For r > 0 and (y0, t0) ∈ R2, we also define

Dr(y0, t0) =
{

(y, t) ∈ R2 : |y − y0| < r, |t− t0| < r2
}
, (5.10)

and we let Dr = Dr(0)

Theorem 5.6. Let E ⊂ H1 be a set with finite H-perimeter in Q4r, r > 0, with

0 ∈ ∂E. Assume that νE(p) = (1, 0) ∈ S1 for µE-a.e. p ∈ Q4r. Then there exists a

function g : Dr → (−r/4, r/4) such that:

i) We have, up to a negligible set,

E ∩Qr =
{

(x, y, t) ∈ Qr : x > g(y, t)
}
.
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ii) g(0) = 0 and for all (y, t), (y′, t′) ∈ Dr

|g(y, t)− g(y′, t′)| ≤ |y − y′|+ 1

2r
|t− t′|. (5.11)

iii) The graph of g consists of integral lines of the vector field Y .

Proof. For the sake of simplicity, we assume that E is open. For any α, β ∈ R with

α ≥ 0, let Z = αX+βY . Then, for any ϕ ∈ C1
c (Q4r) with ϕ ≥ 0, by the Gauss-Green

formula (2.6) we have ∫
E

Zϕdzdt = −α
∫
Q4r

ϕdµE ≤ 0,

that is ZχE ≥ 0 in the sense of distribution. It follows that

p ∈ E ∩Q4r ⇒ exp(sZ)(p) ∈ E, (5.12)

for all s > 0 such that exp(sZ)(p) ∈ Q4r.

For any point q ∈ E ∩Q2r consider the set Eq = q−1 · E. The set Eq has constant

measure theoretic normal (1, 0) ∈ S1 in Q2r. We can apply (5.12) to the set Eq
starting first from the point 0 ∈ Eq and then from a generic point p = (0, y, 0) ∈ Eq
with |y| < 2r. We deduce that{

(x, y, t) ∈ Q2r : x > 0, |t| < 4rx
}
⊂ Eq.

In other words, we have

q ∈ E ∩Q2r ⇒ q ·
{

(x, y, t) ∈ Q2r : x > 0, |t| < 4rx
}
⊂ E. (5.13)

From (5.13), it follows that E∩Q2r∩{y = 0} is a planar set with the cone property,

the cones having all axis parallel to the x-axis and aperture 4r. We deduce that there

exists a Lipschitz function h : (−r2, r2)→ R such that:

(a)
{

(x, t) ∈ R2 : (x, 0, t) ∈ E
}

=
{

(x, t) ∈ D2r : x > h(t)
}

;

(b) |h(t)− h(t′)| ≤ 1

4r
|t− t′| for all t, t′ ∈ (−r2, r2).

Since 0 ∈ ∂E, we infer that h(0) = 0. From (5.13), we also deduce that ∂E consists

of integral lines of Y in Q2r. Then we have

∂E ∩Q2r =
{

(h(τ), σ, τ − 2σh(τ)) ∈ H1 : (σ, τ) ∈ D2r

}
. (5.14)

For any (y, t) ∈ Dr, the system of equations

σ = y, τ − 2σh(τ) = t

has a unique solution (σ, τ) ∈ D2r. This is an easy consequence of the Banach fixed

point theorem. We claim that the solution τ = τ(y, t) of the equation τ − 2yh(τ) = t
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is Lipschitz continuous. Namely, by (b), we have for (y, t), (y′, t′) ∈ Dr

|τ(y, t)− τ(y′, t′)| = |t− 2yh(τ(y, t))− t′ + 2y′h(τ(y′, t′))|

≤ |t− t′|+ 2|y||h(τ(y, t))− h(τ(y′, t′))|+ 2|h(τ(y′, t′))||y − y′|

≤ |t− t′|+ 1

2
|τ(y, t)− τ(y′, t′)|+ 1

2r
|τ(y′, t′)||y − y′|,

and this implies

|τ(y, t)− τ(y′, t′)| ≤ 4r|y − y′|+ 2|t− t′|. (5.15)

The function g = h ◦ τ satisfies i), ii), and iii). In particular, (5.11) follows from

(5.15), and |g(y, t)| < r/4 follows from (b). �

There are H-perimeter minimizing surfaces in H1 with a diffuse Lipschitz regularity.

In fact, if g : Dr → (−r/4, r/4) is a function satisfying ii) and iii) of Theorem 5.6, then

its x-graph is a Lipschitz surface that has, H 2-a.e., constant horizontal normal. This

vector can be used to show that the x-graph of g is locally minimizing H-perimeter.

Remark 5.7. If, in Theorem 5.6, the radius r can be taken arbitrarily large, then

from (5.11) we deduce that the function g does not depend on t. Then from statement

iii), we deduce that g does not depend on y, either. Thus E is a vertical half-space.

This fact is used in Theorem 2.10.

When n ≥ 2, the situation is different and easier because if the horizontal normal

νE is constant in a small convex set then, inside this set, E is a vertical hyperplane

orthogonal to the normal (see [27]).

5.3. Lipschitz approximation and height estimate. The notion of horizontal

excess is natural:

Definition 5.8 (Horizontal excess). Let E ⊂ Hn be a set with locally finite H-

perimeter. The horizontal excess of E in a ball Br(p), where p ∈ Hn and r > 0,

is

Exc(E,Br(p)) = min
ν∈R2n

|ν|=1

1

rQ−1

∫
Br(p)

|νE − ν|2dµE.

Intrinsic Lipschitz graphs are introduced in Definition 3.3, the notion of L-intrinsic

Lipschitz function is introduced in Definition 3.8. The following theorem is proved in

[50].

Theorem 5.9 (Monti). Let n ≥ 1 and let L > 0 be a constant that is suitably large

when n = 1. There are constants k > 1 and c(L, n) > 0 with the following property.

For any set E ⊂ Hn that is H-perimeter minimizing in Bkr with 0 ∈ ∂E and r > 0,

there exist ν ∈ R2n with |ν| = 1 and an L-intrinsic Lipschitz function ϕ : Hν → R
such that

S Q−1
%

(
(gr(ϕ)∆∂E) ∩Br

)
≤ c(L, n)(kr)Q−1Exc(E,Bkr). (5.16)
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The following extension of the so-called “height estimate” to H-perimeter minimiz-

ing sets will be proved in the forthcoming paper [57].

Let ν = (1, 0 . . . , 0) ∈ R2n and let W = ∂Hν ⊂ Hn be the vertical hyperplane

orthogonal to ν, i.e., W = {x1 = 0}. For any r > 0 we let

Dr =
{
w ∈ W : ‖w‖∞ < r

}
,

and we define the truncated cylinder over Dr

Cr = Dr · (−r, r) =
{
w · (sν) ∈ Hn : |s| < r

}
.

The ν-directional excess of E inside the cylinder Dr is

Exc(E,Cr, ν) =
1

rQ−1

∫
Cr

|νE − ν|2dµE.

Theorem 5.10 (Monti-Vittone). Let n ≥ 2. There exist constants ε0 > 0, c0 > 0,

and k > 0 such that if E ⊂ Hn is an H-perimeter minimizing set in Ckr with

Exc(E,Ckr, ν) ≤ ε0,

then we have

sup {x1 = Re(z1) ∈ R : (z, t) ∈ ∂E ∩ Cr} ≤ c0rExc(E,Ckr, ν)
1

2(Q−1) . (5.17)

The proof follows the scheme of [70]. It relies on a nontrivial slicing technique and

on a lower dimensional isoperimetric inequality. The estimate (5.17) does not hold

when n = 1 because of the examples of Section 5.2.3, for which Exc(E,Br) = 0 but

∂E is not flat.
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