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ABSTRACT. We study non-tangentially accessible (NTA)
domains for diagonal vector fields. We introduce a geometric no-
tion of “admissible boundary” ensuring the NTA property. For
general Hörmander vector fields, we prove that a domain with
non characteristic boundary is NTA.

1. INTRODUCTION

Analysis of second order elliptic degenerate PDEs has been characterized in re-
cent years by the prominence of metric aspects. Distances associated with sec-
ond order operators appeared in the late 70s in the work of Nagel and Stein
[50], and then in the work of Fefferman and Phong [19] on subellipticity of op-
erators of the form

∑n
j,k=1 ∂/∂xj(ajk∂/∂xk), and in the work of Franchi and

Lanconelli [25] on Hölder regularity for weak solutions of equations of the form∑n
j=1 λ

2
j(∂

2/∂x2
j )u = 0 in Rn. The control distance associated with a system of

vector fields X1, . . . , Xm also played a central role in the work by Jerison [38]
on the Poincaré inequality and in the estimates of Sánchez Calle [53] for the fun-
damental solution of Hörmander operators. Deep structure theorems for such
metrics were proved by Nagel, Stein and Wainger [51]. Finally, integral curves of
the vector fields Xj also played a role in Bony’s paper [8].

After these seminal papers, the local and global theory of second order PDEs
has been intensively studied from a metric point of view. The boundary behav-
ior in Hölder spaces for the Dirichlet problem in the Heisenberg group has been
studied in [37]. Wiener criterion for Hörmander sum of squares has been stud-
ied in [52], [15], and [35]. After the paper [38], Poincaré inequalities for vector
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fields and functional analysis for Sobolev and BV functions have been studied in
[42], [43], [23], [29], [26], and [34]. Jones’ theorems on extension of functions
have been generalized to the Carnot-Carathéodory setting in [55], [30] and [31].
Properties of the trace at the boundary have been studied in [16], [7], [17], [47],
[1]. Properties of subelliptic harmonic measures have been studied in [9], [11],
[12], [20], and [21]. Finally, Fatou type theorems for positive subelliptic harmonic
functions have been proved in [9]. Several more references could be enumerated
concerning non linear PDEs.

All the difficulties in the analysis at the boundary of a set Ω stem from char-
acteristic points, i.e., points x ∈ ∂Ω where all the given vector fields X1, . . . , Xm
are tangent to the boundary. Note that in the Euclidean case (Xj = ∂j , j = 1, . . . ,
n) there are no such points. If x ∈ ∂Ω is characteristic, then any integral curve
of the vector fields starting from x is tangent to the boundary at x. On the other
hand, if x is noncharacteristic, then there exist integral curves transversal to the
surface at x. This difference has a great influence on the size of control balls and
in their interplay with ∂Ω. The quantitative understanding of this phenomenon
is the key point in problems at the boundary for degenerate PDEs. In general,
nontrivial assumptions are expected to be added to the Euclidean regularity. This
is suggested by the work [38] (see also [48]), where examples of smooth sets whose
boundary has a “cuspidal behavior” in the control metric are exhibited.

There are several definitions of regular domain which can be formulated in
metric spaces, for instance (somehow from the weakest to the strongest) domain
with the interior corkscrew property, domain with the twisted cone property (or
John domain), (ε, δ)-domain (also called uniform domain), and non-tangentially
accessible (briefly NTA) domain. Properties of PDE’s which can be established
starting from these notions have been studied in many papers (see the list below).
In the framework of vector fields the problem is that only few examples of such
regular domains are known, and most of them are in the setting of homogeneous
groups. In groups of step 2, bounded open sets with boundary of class C2 are
known to be NTA (see [48], [9], [13]). In groups of step 3, the cone property has
been studied in [48]. In the specific case of the Heisenberg group, a C1 condition
does not even guarantee the boundary accessibility through rectifiable curves (see
[3]); Carnot-Carathéodory balls are uniform (see [55]) but not NTA (see [9]),
cubes centered at the origin are uniform (see [32]); finally, the uniformity is pre-
served under quasi-conformal mappings (see [14]). When no group structure is
available no general result is known, except the easy fact that Carnot-Carathéodory
balls are John domains. In the case of Grushin vector fields, a class of regular do-
mains (called ϕ-Harnack domains) has been recently studied in [20]. A partial
survey on such results can be found in [10].

In Section 3 we begin our investigation by considering a general system of
Hörmander vector fields. We prove the following result.

Theorem 1.1. A smooth, bounded open domain which is noncharacteristic for a
system of Hörmander vector fields is NTA for the control distance.
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This result, which answers a question raised in [17], is natural but it was
known only for step 2 homogeneous groups (see [9] and see also [17] for exam-
ples of noncharacteristic sets in groups of Heisenberg type). The class of non-
characteristic open sets is believed not to be very rich. On the other hand, it is
known that the characteristic set has vanishing surface measure (see [18], [28],
and see also the recent references [2] and [44]), and regularity properties related
to the noncharacteristic part of the boundary have been widely studied by several
authors, see [41], [18], [6], and [27]. In Example 3.4, we give examples of non-
characteristic sets for vector fields of step greater than 2, which naturally arise in
the study of solutions of sublaplacians at the boundary of complex domains of the
form {(z1, z2) ∈ C2 | =(z2) > |f(z1)|2}.

In Section 4, which is the central part of the paper, we tackle the problem of
characteristic points. We study NTA domains in a class of metric spaces generated
by vector fields with no underlying group structure, and with an arbitrarily high
order of degeneration. We consider a system of diagonal vector fields in Rn of the
form

X1 = λ1(x)∂1, X2 = λ2(x)∂2, . . . , Xn = λn(x)∂n,
whose control metric, under suitable assumptions on the functions λj , is known
in detail (see [24]). The basic model case we shall study can be exemplified in R3

by the following vector fields

(1.1) X1 = ∂
∂x1

, X2 = xα1
1

∂
∂x2

, X3 = xα1
1 x

α2
2

∂
∂x3

, α1, α2 ∈ N.

Consider an open set in R3 of the form Ω = {x3 > ϕ(x′)}, x′ = (x1, x2) ∈
R2, where ϕ ∈ C1(R2). By the results of [24], control balls can be written as
Q(x′, r )× ]x3 − F3(x, r), x3 + F3(x, r)[, where Q(x′, r ) are suitable rectangles
in the plane and F3(x, r) > 0. We say that the boundary ∂Ω is admissible if for all
x′ ∈ R2 and r > 0

(1.2)
∑
i=1,2

osc(Xiϕ,Q(x′, r )) ≤ C
(
r
∑
i=1,2

|Xiϕ(x′)|m + osc(λ3;Q(x′, r )
)
,

where m is a power suitably dependent on the numbers α1 and α2 in (1.1). This
inequality is a requirement on the oscillation of the derivatives of the function ϕ
along the vector fields X1 and X2. The first term in the right hand side vanishes
exactly in the characteristic set, while the second one gives an amount of oscillation
admitted also at characteristic points. This latter is determined by the oscillation
of the function λ3(x) = xα1

1 x
α2
2 , which is strictly related to the size of control

balls in the vertical direction. The balance between the two terms is a very delicate
point and it turns out that the correct choice of the power is m = (α1 + α2 +
α1α2 − 1)/(α1 +α2 +α1α2). In Definition 4.9, generalizing (1.2), we introduce
a class of domains with admissible boundary in the n-dimensional setting. The
main result of the paper is the following theorem.
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Theorem 1.2. Domains with admissible boundary are NTA.

The proof partially relies on some results in [49], where we prove that ad-
missible domains are John domains. In the paper [49], we also show that the
“homogeneous ball” Ω = {(x1, x2, x3) ∈ R3 | (|x1|2(α1+1) + x2

2)1+α2 + x2
3 < 1}

has admissible boundary for the vector fields in (1.1), and we give a criterion for
checking the admissibility of surfaces of the form x3 = g(|x1|2(α1+1) + x2

2). Our
examples of NTA domains are the first ones in a setting different from homoge-
neous groups of step 2 and from diagonal vector fields in the plane. In Example
4.15, we also show that Carnot-Carathéodory balls not necessarily are uniform
domains.

Notation. If u, v ≥ 0, we write u Ü v for u ≤ Cv, where C ≥ 1 is an
absolute constant. Analogously, u ' v stands for u Ü v and v Ü u. By d
we denote the control metric induced on Rn by a system of vector fields. For
K ⊂ Rn we write diam(K) = supx,y∈K d(x,y) and dist(x,K) = infy∈K d(x,y).
The Lebesgue measure of a measurable set E ⊂ Rn will be denoted by |E|. If
γ : [0,1]→ Rn is a curve and 0 ≤ a ≤ b ≤ 1, we denote by γ|[a,b] the restriction
of γ to the interval [a, b].

2. BASIC DEFINITIONS

In this section we recall all basic definitions and we prove some preliminary propo-
sitions that will be used later. We begin with the definition of the control metric
associated with a family of vector fields.

Let X = (X1, . . . , Xm) be a system of vector fields Xj =
∑n
i=1 aij∂/∂xi, j =

1, . . . , m, where the functions aij are locally Lipschitz continuous in Rn. A
Lipschitz curve γ : [0, T] → Rn, T ≥ 0, is X-subunit if there exists a measurable
function h = (h1, . . . , hm) : [0, T] → Rm such that γ̇(t) = ∑m

j=1 hj(t)Xj(γ(t))
for a.e. t ∈ [0, T] with |h(t)| ≤ 1 a.e. Define d : Rn ×Rn → [0,+∞] by setting

(2.1) d(x,y) = inf
{
T ≥ 0 | there exists a subunit curve γ : [0, T] → Rn

such that γ(0) = x and γ(T) = y}.
If d(x,y) < +∞ for all x, y ∈ Rn, then d is a metric on Rn, sometimes called
control distance (or Carnot-Carathéodory, or sub-Riemannian metric). By Chow
theorem, the function d is finite if the vector fields Xj ∈ C∞(Rn,Rn) satisfy the
Hörmander condition, see e.g. [51]. We denote by B(x, r) the balls inRn defined
by the metric d.

Now we introduce domains with the corkscrew property, John domains, (ε, δ)-
domains, and non-tangentially accessible domains.

Definition 2.1. An open set Ω ⊂ (Rn,d) satisfies the interior (exterior)
corkscrew condition if there exist r0 > 0 and ε > 0 such that for all r ∈ (0, r0)
and x ∈ ∂Ω the set B(x, r) ∩ Ω (the set B(x, r) ∩ (Rn \ Ω)) contains a ball of
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radius εr . An open set Ω satisfies the corkscrew condition if it satisfies both the
interior and the exterior corkscrew condition.

Definition 2.2. An open set Ω ⊂ (Rn,d) is a John domain (or a domain with
the interior cone property) if there exist x0 ∈ Ω and σ > 0 such that for all x ∈ Ω
there exists a continuous curve γ : [0,1] → Ω such that γ(0) = x, γ(1) = x0 and

(2.2) B
(
γ(t),σ diam

(
γ
∣∣
[0,t]

)) ⊂ Ω.
A curve satisfying (2.2) will be called a John curve of parameter σ .

Remark 2.3. If both Ω and Rn \ Ω̄ are John domains, then Ω satisfies the
corkscrew condition.

Definition 2.4. An open set Ω ⊂ (Rn,d) is a uniform domain if there exists
ε > 0 such that for every x, y ∈ Ω there exists a continuous curve γ : [0,1] → Ω
such that γ(0) = x, γ(1) = y ,

(2.3) diam(γ) ≤ 1
ε
d(x,y),

and for all t ∈ [0,1]

(2.4) dist(γ(t), ∂Ω) ≥ εmin
{

diam
(
γ
∣∣
[0,t]

)
,diam

(
γ
∣∣
[t,1]

)}
.

It is known that for bounded domains the uniform property is equivalent to
the (ε, δ)-property. Recall that the (ε, δ)-property has been introduced in [40] in
the Euclidean case, and in [30] for vector fields. This property requires that (2.3)
and (2.4) hold only for all pairs of points x, y such that d(x,y) ≤ δ, where δ is
a suitable positive number.

Remark 2.5. In the definition of John and uniform domain the curves γ
are usually required to be rectifiable, and the diameter is replaced by their length
(see, for instance, [54]). Anyway, in metric spaces of homogeneous (doubling)
type and with geodesics, as the metric spaces we are working with, these stronger
definitions are equivalent to the weaker ones we are giving here (this is proved in
[45, Theorem 2.7]).

The notion of non-tangentially accessible domain was introduced in the Eu-
clidean case by Jerison and Kenig in [39], and then generalized to the setting of
vector fields in [9]. Let Ω ⊂ (Rn,d) be an open set and α ≥ 1. A sequence
of balls B0, B1, . . . , Bk ⊂ Ω is an α-Harnack chain in Ω if Bi ∩ Bi−1 ≠ ∅
for all i = 1, . . . , k, and α−1 dist(Bi, ∂Ω) ≤ r(Bi) ≤ αdist(Bi, ∂Ω), where
dist(Bi, ∂Ω) = infx∈Bi,y∈∂Ω d(x,y) and r(Bi) is the radius of Bi.

Definition 2.6. A bounded open set Ω is a NTA domain in the metric space
(Rn,d) if the following conditions hold:
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(i) there exists α ≥ 1 such that for all η > 0 and for all x, y ∈ Ω such that
dist(x, ∂Ω) ≥ η, dist(y, ∂Ω) ≥ η and d(x,y) ≤ Cη for some C > 0, there
exists an α-Harnack chain B0, B1, . . . , Bk ⊂ Ω such that x ∈ B0, y ∈ Bk
and k depends on C but not on η;

(ii) Ω satisfies the corkscrew condition.

Remark 2.7. If Ω is a uniform domain according to Definition 2.4, then
condition (i) in Definition 2.6 is fulfilled (see [14, Proposition 4.2]).

The following lemma gives a useful sufficient condition for an open set to be
uniform. Roughly speaking, we prove that a domain is uniform if, for any pair of
points x and y , there exist curves γx and γy moving far away from the boundary
but not from each other.

Lemma 2.8. Let Ω ⊂ (Rn,d) be an open set. Assume that there exist constants
σ , C3, C2 > 0 such that for all x, y ∈ Ω there are John curves γx : [0, tx]→ Ω and
γy : [0, ty]→ Ω of parameter σ , with γx(0) = x and γy(0) = y , and such that

diam(γx) ≥ C3d(x,y),(2.5)

d(γx(tx), γy(ty)) ≤ σ
2
C3d(x,y),(2.6)

and

max{diam(γx),diam(γy)} ≤ C2d(x,y).(2.7)

Then Ω is a uniform domain.

Proof. There exists a continuous curve γ̃ joining the point γx(tx) to the
point γy(ty) and satisfying the condition diam(γ̃) ≤ d(γx(tx), γy(ty)). Con-
sider the sum path γ = −γy + γ̃ +γx , where −γy stands for a reverse parameter-
ization. We first show condition (2.3):

diam(γ) ≤ diam(γx)+ diam(γ̃)+ diam(γy)

≤ C2d(x,y)+ σ2 C3d(x,y)+ C2d(x,y)

≤
(
σ
2
C3 + 2C2

)
d(x,y).

Now we check (2.4). The proof also shows that Ω is arcwise connected. Take
a point γx(t) with t ≤ tx. Since γx is a John curve of parameter σ we have

dist(γx(t), ∂Ω) ≥ σ diam
(
γx
∣∣
[0,t]

)
≥ σ min

{
diam

(
γx
∣∣
[0,t]),diam

(− γy + γ̃ + γx∣∣[t,tx])}.
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The same argument works for a point γy(t), t ≤ ty . Finally, given a pointw ∈ γ̃,
by the triangle inequality, (2.5) and (2.6) we get

dist(w, ∂Ω) ≥ dist(γx(tx), ∂Ω)− d(w,γx(tx))
≥ σ diam(γx)− σ2 C3d(x,y)

≥ σ diam(γx)− σ2 diam(γx) = σ
2

diam(γx).

In order to provide a lower bound for the last term it is enough to note that the
hypotheses of the lemma ensure that diam(γx) ' diam(γ) through constants
depending on σ , C3 and C2. ❐

3. NON CHARACTERISTIC BOUNDARY FOR
HÖRMANDER VECTOR FIELDS

In this section we show that a bounded smooth domain without characteris-
tic points is NTA with respect to the control metric induced by a system of
Hörmander vector fields X = (X1, . . . , Xm). Recall that the system X is of Hör-
mander type in Rn if the vector fields are smooth and for some p ∈ N

span
{
Xj1(x), [Xj1 , Xj2](x), . . . [Xj1 , [Xj2 , . . . , [Xjp−1 , Xjp]] · · · ](x)

| jk = 1, . . . ,m
}

has dimension n for any x ∈ Rn. Here, [Xj,Xk] denotes the commutator of Xj
and Xk.

A point x ∈ ∂Ω is characteristic if all the vector fields X1, . . . , Xm are tangent
to ∂Ω at x. We say that Ω is non characteristic if all its boundary points are non
characteristic.

If x̄ ∈ ∂Ω is non characteristic and ν is a normal vector to ∂Ω at x, then
we can find a vector field, say Xm, such that 〈Xm(x), ν〉 ≠ 0. By a standard
argument, it can be shown that for a suitable neighborhood U of x̄, there exists
a diffeomorphism Φ : U → Φ(U) such that dΦ(x)Xm(x) = ∂n for all x ∈ U ,Φ(x̄) = 0, and Φ(∂Ω ∩ U) ⊂ {yn = 0}. Therefore, possibly performing such a
change of variable, the vector fields can be assumed to be of the form

Yj = bj(y)∂yn +
n−1∑
i=1

aij(y)∂yi , j = 1, . . . ,m− 1, Ym = ∂yn,

and we can consequently assume that Ω = {yn > 0} in a neighborhood of the
origin. The vector fields Y1, . . . , Ym still satisfy Hörmander condition and induce
the control metric dY . It is now easy to check that the new family of vector fields

(3.1) Xj =
n−1∑
i=1

aij(y)∂i, j = 1, . . . ,m− 1, Xm = ∂n,
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still satisfies Hörmander condition. Moreover, if dX is the corresponding control
metric, it is not difficult to show (see [28] for a proof ) that there exist two con-
stants c1 and c2 such that in a neighborhood of the origin we have c1dY ≤ dX ≤
c2dY .

We give now an easy lemma.

Lemma 3.1. Let X1, . . . , Xm be Hörmander vector fields of the form (3.1) with
aij ∈ C∞(Rn). Then, for all (x′, xn), (y ′, yn) ∈ Rn,

d((x′, xn), (y ′, yn)) ≥ |yn − xn| = d((x′, xn), (x′, yn)).

Proof. Let γ : [0, T] → Rn be a subunit curve connecting (x′, xn) = γ(0)
and (y ′, yn) = γ(T), for some T > 0. Then γ̇(t) = ∑m

j=1 hj(t)Xj(γ(t)) with
|h| ≤ 1 almost everywhere. Since all the vector fields X1, . . . , Xm−1 lie in Rn−1,
we have

|yn − xn| =
∣∣∣∣∫ T

0
hm(t)dt

∣∣∣∣ ≤ T.
Taking the infimum over all possible such curves we get d((x′, xn), (y ′, yn)) ≥
|yn − xn|.

Moreover, the subunit curve γ(t) = (x′, xn + t sgn(yn − xn)), with 0 ≤
t ≤ |yn − xn|, is a geodesic between (x′, xn) and (x′, yn). Thus |yn − xn| =
d((x′, xn), (x′, yn)). ❐

Now we recall a deep result due to Nagel, Stein and Wainger. Given a system
of Hörmander vector fields X1, . . . , Xm and a compact set K ⊂ Rn, denote by
Y1, . . . , Yq a family of commutators which are of maximal rank at every point
x ∈ K. Assign to any commutator Y in this family a degree equal to its length,
that is, write d(Y) = k if Y has length k ≥ 1. Given a n-tuple I = (i1, . . . , in) ∈
{1, . . . , q}n, write

B2(x, r) = {exp(u1Y1 + · · · +uqYq)(x) : |uj| < rd(Yj)}.

Theorem 3.2 ([51]). Let d2(x,y) = inf{r > 0 | y ∈ B2(x, r)}. Then d2 is
locally equivalent to the control distance d.

Now we are ready to prove the main theorem of this section.

Theorem 3.3. A smooth non characteristic bounded domain with respect to a
family of Hörmander vector fields is NTA for the control distance.

Proof. We prove that Ω is a uniform domain in the sense of Definition 2.4,
and by Remark 2.7 condition (i) in Definition 2.6 will be satisfied. Moreover, the
proof will show that both Ω and Rn \ Ω̄ are John domains and condition (ii) will
be satisfied, as well.
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By a general result of Väisälä [54, Theorem 4.1], it is sufficient to prove the
uniform condition in a neighborhood of a fixed point x ∈ ∂Ω (see also [48, Propo-
sition 2.5], where the same localization argument is described). Then, with-
out loss of generality we assume that the vector fields are of the form (3.1) andΩ = {x ∈ Rn | xn > 0}. Consider two points x = (x′, xn) and y = (y ′, yn)
with xn, yn > 0 and assume for instance yn ≥ xn. First of all, we define two
John curves starting from x and y , in the following way

γx(t) = (x′, xn + t), 0 < t ≤ yn − xn + d(x,y) := tx,
γy(t) = (y ′, yn + t), 0 < t ≤ d(x,y) := ty.

It is easy to check, by Lemma 3.1, that γx and γy are John curves of parameter
σ = 1.

Denote by x̃ = (x′, yn+d(x,y)) and ỹ = (y ′, yn+d(x,y)) the endpoints
of γx and γy . Let W1, . . . , Wq−1,Wq = Xn be the family of all the commutators
of sufficiently high length in order to apply Theorem 3.2. Note that each com-
mutator Wj , j = 1, 2, . . . , q − 1, has n-th component equal to zero. Then, by
Theorem 3.2, we can write

ỹ = exp(u1W1 + · · · +uq−1Wq−1 +unXn)(x̃)

for some u ∈ Rq with |uj| ≤ Cd(x̃, ỹ)deg(Wj), |uq| ≤ Cd(x̃, ỹ). Since x̃ and ỹ
have the same n-th coordinate, it must be uq = 0. Define

γ̃(t) = exp(t(u1W1 + · · · +uq−1Wq−1))(x̃), 0 ≤ t ≤ 1.

By Theorem 3.2, we have diam(γ) ≤ Cd(x̃, ỹ). Moreover, by the triangle in-
equality and Lemma 3.1, d(x̃, ỹ) ≤ d(x̃, x) + d(x,y) + d(y, ỹ) Ü d(x,y).
Thus, condition (2.3) is satisfied. Finally, again by Lemma 3.1, we have
dist(γ̃(t), ∂Ω) ≥ yn + d(x,y). The path γ = −γy + γ̃ + γx satisfies all re-
quirements of Definition 2.4. ❐

Example 3.4. Consider in R3 the vector fields

(3.2) X = ∂
∂x

+ 2k|z|2k−2y
∂
∂t
, Y = ∂

∂y
− 2k|z|2k−2x

∂
∂t
,

where (z, t) = (x,y, t) ∈ R3. The vector fields X and Y naturally arise in the
analysis of the sublaplacian of the boundary of a domain in C2. Moreover, X and
Y satisfy, for any k ∈ N, the Hörmander condition. When k = 1 we have the
Heisenberg vector fields.

The open set Ω = {(z, t) ∈ C × R | (|z|k − 2)2 + t2 < 1} is bounded and
has boundary of class C∞. We show that Ω is non characteristic for X and Y (see
[17] for the same example in the setting of the Heisenberg group k = 1). Thus,
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by Theorem 3.3, Ω is a NTA domain in the associated metric space. A defining
function Φ = 0 for the boundary of Ω is Φ(z, t) = (|z|k − 2)2 + t2 − 1. Since

XΦ(z, t) = 2kx(|z|k − 2)|z|k−2 + 2ky|z|2k−2t,

YΦ(z, t) = 2ky(|z|k − 2)|z|k−2 − 2kx|z|2k−2t,

we find

|XΦ(z, t)|2 + |YΦ(z, t)|2 = 4k2|z|2k−2{(|z|k − 2)2 + |z|2kt2}.

The last expression never vanishes when (z, t) ∈ ∂Ω.
The vector fields X and Y appear in subelliptic analysis as follows. Let f(z) =

zk, where k ∈ N is a fixed integer and z ∈ C. We write (z1, z2) = (x1+ iy1, x2+
iy2) ∈ C2. Consider the domain D = {(z1, z2) ∈ C2 | =(z2) > |f(z1)|2} ⊂ C2.
The holomorphic tangent vector field to the boundary of D is

Z = ∂
∂z1

+ 2if ′(z1)f (z1)
∂
∂z2

, where
∂
∂zk

= 1
2

(
∂
∂xk

− i ∂
∂yk

)
.

In the tangential coordinates z = z1 and t = <(z2) we have

Z = ∂
∂z
+ if ′(z)f (z) ∂

∂t
.

Writing Z = 1
2(X− iY) we get the vector fields in (3.2). The subelliptic Laplacian

arising from this situation is studied in [33] and [4].

4. NON-TANGENTIALLY ACCESSIBLE DOMAINS FOR
DIAGONAL VECTOR FIELDS

In this section we describe the geometry of diagonal vector fields, we introduce a
class of admissible domains, and we show that they are NTA for the related control
metric. Consider

(4.1) Xj = λj(x) ∂∂xj , j = 1, . . . , n,

where

(4.2) λ1(x) = 1 and λj(x) =
j−1∏
i=1

|xi|αi, j = 2, . . . , n.
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We assume that

(4.3) αi = 0 or αi ∈ [1,∞[ , i = 1, . . . , n.

This condition ensures that the functions λj, and thus the vector fields Xj , are
locally Lipschitz continuous.

Remark 4.1. If the numbers αi are integers, then the functions λj in (4.2)
can be defined writing xαii in place of |xi|αi . In this case the vector fields X1, . . . ,
Xn are smooth and satisfy the Hörmander condition. In this smooth case, all the
definitions that follow remain unchanged and all the results still hold.

According to the definition in (2.1), the vector fields X1, . . . , Xn define a
control metric d in Rn. Thanks to the special form (4.2) of the functions λj,
the metric balls B(x, r) can be described rather explicitly. Following [24], for all
j = 1, . . . , n define inductively the functions Fj : Rn × [0,+∞) → [0,+∞) by

(4.4) F1(x, r) = r , F2(x, r) = rλ2(|x1| + F1(x, r)), . . . ,
Fj(x, r) = rλj(|x1| + r , |x2| + F2(x, r), . . . , |xj−1| + Fj−1(x, r)).

Equivalently, the definition can be also written in the following recursive way

(4.5) Fj+1(x, r) = Fj(x, r)(|xj| + Fj(x, r))αj .
Note that Fj(x, r) actually depends only on x1, . . . , xj−1. It is easy to check that
r , Fj(x, r) satisfies the following doubling property

(4.6) Fj(x,2r) ≤ CFj(x, r), x ∈ Rn, 0 < r < +∞,
for all j = 1, . . . , n. Here and in the sequel C > 0 is an absolute constant.
Moreover, an inspection of the form (4.4) of the functions Fj shows that

Fj(x, %r) ≤ %Fj(x, r), % ≤ 1, r > 0(4.7a)

(1+ η)Fj(x, r) ≤ Fj(x, (1+ η)r), η ≥ 0.(4.7b)

Finally, since for any fixed x ∈ Rn the function Fj(x, ·) is strictly increasing
from [0,∞[ onto itself, we denote its inverse by Gj(x, ·) = Fj(x, ·)−1.

The following theorem proved in [24] shows that the structure of the control
balls B(x, r) can be described by means of the following boxes

(4.8) Box(x, r) = {x + h : |hj| < Fj(x, r), j = 1, . . . , n}.
Theorem 4.2 ([24]). There exists a constant C > 0 such that:

Box(x,C−1r) ⊂ B(x, r) ⊂ Box(x,Cr), x ∈ Rn, r ∈ ]0,+∞[ ,(4.9a)

C−1d(x,y) ≤
n∑
j=1

Gj(x, |yj − xj|) ≤ Cd(x,y), x,y ∈ Rn.(4.9b)
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Remark 4.3. Looking at the form of the vector fields, it is easy to check that,
for all x ∈ Rn, t ≥ 0, k = 1, . . . , n, diam{x+sek | 0 ≤ s ≤ t} = d(x,x+tek) =
d((x1, . . . , xk−1,0, . . . ,0), (x1, . . . , xk−1, t,0 . . . ,0)).

Before proceeding we introduce the following convention. If j = 1, . . . , n
and x = (x1, . . . , xn) ∈ Rn, we write x̂j = (x1, . . . , xj−1,0, xj+1, . . . , xn) and
we identify it with (x1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−1.

Define

(4.10) Boxn(x̂n, r) = {x̂n + ĥn : |hi| < Fi(x̂n, r), i = 1, . . . , n− 1},

and let Λn(x̂n, r) = sup
ŷn∈Boxn(x̂n,r)

|λn(ŷn)− λn(x̂n)|.

For each j = 1, . . . , n define inductively the real number dj by

(4.11) d1 = 1, d2 = 1+α1, . . . , dj = 1+
j−1∑
i=1

diαi = (1+α1) · · · (1+αj−1).

We say that dj is the degree of the variable xj . Note that Fj(0, r ) = rdj .
The following proposition is proved in [49].

Proposition 4.4. There is η > 0 such that for all r > 0 and % ∈ ]0,1]

(4.12) Λn(x̂n, %r) ≤ h(%)Λn(x̂n, r), where h(%) = %
%+ η(1− %) .

Moreover, there exists a constant C > 0 such that Λn(x̂n, r) ≤ (C/r)Fn(x, r) andΛn(x̂n, r) ≥ rdn−1.

Denote in the following by c% any positive constant depending on % > 0 such
that c% → 0, as % ↓ 0. The following lemma holds.

Lemma 4.5. Box(y, r) ⊂ Box(x, (1+c%)r) for all x, y , r satisfying d(x,y) ≤
%r .

Proof. By definition, z ∈ Box(y, r) if and only if |zj − yj| ≤ Fj(y, r) for
all j = 1, . . . , n. We need to prove

(4.13) |zj − xj| ≤ Fj(x, (1+ c%)r), j = 1, . . . , n.

The assumptions of the lemma, Theorem 4.2, and the first inequality in (4.7) give

|zj − xj| ≤ |zj −yj| + |yj − xj|(4.14)

≤ Fj(y, r)+ Fj(x,Cd(x,y)) ≤ Fj(y, r)+ c%Fj(x, r).
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We claim that

(4.15) Fk(y, r) ≤ Fk(x, (1+ c%)r) for all k = 1, . . . , n.

If the claim is proved, then inserting (4.15) in (4.14) we conclude

|zj − xj| ≤ Fj(x, (1+ c%)r)+ c%Fj(x, r)
≤ (1+ c%)Fj(x, (1+ c%)r) ≤ Fj(x, (1+ c%)2r),

by (4.7) (in our notations (1+ c%)2 = 1+ c%). Then the lemma is proved.
In order to show (4.15) we use induction on k. The statement is trivial for

k = 1. If (4.15) holds for some k, then by (4.5)

Fk+1(y, r) = Fk(y, r)(|yk| + Fk(y, r))αk(4.16)

≤ Fk(x, (1+ c%)r)
× (|xk| + |yk − xk| + Fk(x, (1+ c%)r))αk .

Recall that, by Theorem 4.2, |yk − xk| ≤ Fk(x,Cd(x,y)) ≤ c%Fk(x, r), and

c%Fk(x, r)+ Fk(x, (1+ c%)r) ≤ (1+ c%)Fk(x, (1+ c%)r) ≤ Fk(x, (1+ c%)2r),

by (4.7). Inserting the last inequality into the second line of (4.16) we immediately
conclude the proof of (4.15). ❐

Now we introduce our definition of admissible surface with respect to the vector
fields X1, . . . , Xn in (4.1), for surfaces of the type {xn = ϕ(x̂n)}. We proceed
as follows. First of all we give the definition of “admissible surface” for a graph
of the form xn = ϕ(x̂n). This is the most degenerate case and contains all
the difficulties of the problem. Then, we will show that a graph of the form
xj =ϕ(x̂j), with j ≠ n, can be studied reducing to the previous case. Finally, in
Definition 4.9 we introduce the notion of open set with admissible boundary.

Definition 4.6. Let ϕ ∈ C1(Rn−1). The surface {xn = ϕ(x̂n)} is said to
be admissible if there exist C > 0 and r0 > 0 such that, for all x̂n ∈ Rn−1 and
r ∈ ]0, r0], ∑

i≠n
osc(Xiϕ,Boxn(x̂n, r))(4.17)

≤ C
(
r
∑
i≠n

|Xiϕ(x̂n)|(dn−2)/(dn−1) +Λn(x̂n, r)).
Note that the exponent (dn − 2)/(dn − 1) is nonnegative as soon as at least

one of the numbers αi is non zero (otherwise we are in the Euclidean case).
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In order to define admissible surfaces of the type {xj = ϕ(x̂j)} when j ≠ n,
we start with the following euristic remark. The variables xj+1, . . . , xn are “more
degenerate” than xj : the size of the balls in their direction is larger than the size in
the j-th direction. This suggests that the behavior of the function ϕ with respect
to the mentioned variables does not need to be controlled in a careful way.

To implement this idea, consider the new functions and vector fields

(4.18) λ̃i(x) =
{
λi(x) if i ≤ j,
λj(x) if i ≥ j, and X̃i = λ̃i∂i, i = 1, . . . , n.

The functions F̃j and Λ̃j are defined exactly as above, using X̃1, . . . , X̃n. Define
the boxes B̃oxj(x̂j, r) = {x̂j + ĥj : |hi| < F̃i(x̂j, r), i ≠ j} and denote by d̃
the metric constructed as in (2.1) using subunit curves with respect to the vector
fields X̃ = (X̃1, . . . , X̃n), and let B̃(x, r) be the corresponding balls. The new
vector fields have the advantage that the variable xj can be thought of as the n-
th variable. In [49] we prove the following proposition describing some relations
between d and d̃.

Proposition 4.7. The following properties hold:
(i) for any C1 > 0 there is C2 > 0 such that if |xj|, |yj|, r < C1, then B(x, r) ⊂

B̃(x,C2r) and d̃(x,y) ≤ C2d(x,y);
(ii) using the notation x′ = (x1, . . . , xj) and x′′ = (xj+1, . . . , xn), we have

d((x′, x′′), (y ′, x′′)) ' d̃((x′, x′′), (y ′, x′′)).
Definition 4.8. Let ϕ ∈ C1(Rn−1). The surface {xj = ϕ(x̂j)} is said to

be admissible if there exist C > 0 and r0 > 0 such that for all x̂j ∈ Rn−1 and
r ∈ ]0, r0] ∑

i≠j
osc(X̃iϕ, B̃oxj(x̂j, r))(4.19)

≤ C
(
r
∑
i≠j
|X̃iϕ(x̂j)|(dj−2)/(dj−1) + Λ̃j(x̂j, r)).

Definitions 4.6 and 4.8 can be stated also for a bounded graph xj = ϕ(x̂j),
where ϕ is defined on a bounded open set of Rn−1.

Definition 4.9. A bounded open set Ω ⊂ Rn is said to be with admissible
boundary with respect to X if it is of class C1, and for all x ∈ ∂Ω there exists
a neighborhood U of x such that ∂Ω ∩ U is an admissible surface according to
Definitions 4.6 or 4.8.

Example 4.10. Consider in R3 the vector fields

(4.20) X1 = ∂1, X2 = |x1|α1∂2, X3 = |x1|α1 |x2|α2∂3,
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with α1, α2 ≥ 1. In [49] the open set

Ω = {(x1, x2, x3) ∈ R3 | (|x1|2(α1+1) + x2
2)

1+α2 + x2
3 < 1}

is proved to have admissible boundary with respect to X = (X1, X2, X3) according
to Definition 4.9. A key tool in the proof is the following proposition.

Proposition 4.11 ([49]). Let N(x1, x2) = |x1|2(α1+1) + x2
2 and consider the

function ϕ(x1, x2) = g(N(x1, x2)), where g ∈ C2(0,+∞) is such that for some
C > 0

(4.21) 0 ≤ g′(t) ≤ Ct(α2−1)/2, |g′′(t)| ≤ C g
′(t)
t

, g′(2t) ≤ Cg′(t), t > 0.

Then the surface {x3 =ϕ(x1, x2)} is admissible according to Definition 4.6.

Now we recall how to construct a John curve starting from a point in an open
set with admissible boundary. The construction is taken from [49] and it relies
on (4.17). Here, we study the uniform property, which is stronger than the cone
condition. We need to deduce from (4.17) some deeper information describing
how the John curve starting from a point x changes when the point x moves.
This is done in Lemma 4.13.

Consider again an open set of the form Ω = {xn > ϕ(x̂n)}, take a point
x = x̂n + xnen ∈ Ω, and introduce the following notation

(4.22) νi = νi(x̂n) = −∂iϕ(x̂n) and Ni = νi
|νi| , if νi ≠ 0, i ≠ n.

In order to construct a John curve γx : [0,1] → Ω starting from x, two
different situations need to be distinguished:

max
i<n

|Xiϕ(x̂n)| ≤ λn(x̂n) (Case 1),(4.23a)

max
i<n

|Xiϕ(x̂n)| > λn(x̂n) (Case 2).(4.23b)

In Case 1, the characteristic case, define the curve

(4.24) γx(t) = x + ten = x̂n + (xn + t)en, t ≥ 0.

In Case 2, the curve γx is defined in two steps. First of all, take any k = 1, . . . ,
n− 1 such that |Xkϕ(x̂n)| is “maximal” in the following sense (this choice is not
unique)

(4.25) |Xkϕ(x̂n)| ≥ 1
2

max
i<n

|Xiϕ(x̂n)| > 1
4
λn(x̂n),
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and let δk(x) be the solution of the following equation in the variable δ

(4.26) Λn(x̂n, δ) = ε0|Xkϕ(x̂n)|,
(the solution is unique because Λn(x̂n, ·) is strictly increasing; here, ε0 > 0 is a
suitable constant which depends on the surface and whose choice is discussed in
[49]). Finally, define the positive time t(x) = tk(x) by

(4.27) tk(x) = Fk(x, δk(x)).
The first piece of γx is defined for t ∈ [0, tk(x)] by letting

(4.28) γx(t) = x + tNkek.
Here, Nk = Nk(x) depends on x. The number δk(x) essentially represents the
diameter of the first piece of the path. The second piece is

(4.29) γ(t) = x + tk(x)Nkek + (t − tk(x))en, t ≥ tk(x).
The following theorem is proved in [49].

Theorem 4.12. Assume that ϕ ∈ C1(Rn−1) satisfies (4.17). Let Ω = {xn >
ϕ(x̂n)}. Then there exists a constant σ > 0 such that: if x ∈ Ω and Case 1 holds,
then the curve γx defined as in (4.24) is a John curve of parameter σ ; if x ∈ Ω and
Case 2 holds, then for any k such that (4.25) holds, the curve γx defined in (4.28)–
(4.29) is a John curve of parameter σ .

Now we start the core of our discussion. For any x ∈ Ω for which Case
2 in (4.23) holds, fix a k = k(x) ∈ {1, . . . , n − 1} such that |Xkϕ(x̂n)| =
maxi<n |Xiϕ(x̂n)|. Introduce now the parameter ∆(x) (equivalent to the diam-
eter of the first piece of the path γx starting from x) as follows:

∆(x) = {0 if x satisfies (4.23), Case 1,
δk(x) if x satisfies (4.23), Case 2,

where, if x satisfies Case 2, δk(x) is given by (4.26).
Let % > 0 be a constant that will be fixed later. Given a pair of points x and

y ∈ Ω, we distinguish two cases. The first case is

(Case A) d(x,y) > %max{∆(x),∆(y)}.
If Case A does not hold, assuming for instance ∆(x) ≥ ∆(y), it should be
d(x,y) ≤ %∆(x). Moreover, if k = k(x) is the number selected above, we
can write ∆(x) = δk(x). Then the second case is

(Case B)

{|Xkϕ(x̂n)| = maxi≠n |Xiϕ(x̂n)| > λn(x̂n),
d(x,y) ≤ %δk(x).
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Case B is the more delicate one. The problem here is that if the points x and
y are very near and we want to connect them by a curve with total diameter com-
parable with d(x,y), we have to use only the first piece of the paths γx and γy
starting from x and y . The following lemma provides the suitable tools to prove
that if y is near x (in other words, if we are in Case B and % is small), then we
can choose a John curve γy from y which starts in the same direction of the curve
γx starting from x. This lemma gives the correct bound on the oscillation of the
horizontal derivatives Xiϕ near characteristic points. The properties established
in this lemma are crucial.

Lemma 4.13. Let ϕ ∈ C1(Rn−1) satisfy (4.17). There are a constant %0 > 0
and a function % , c% from (0, %0) to R+, with lim%↓0 c% = 0 and such that, if Case
B holds for a pair of points x, y ∈ {xn > ϕ(x̂n)} and for a number k = 1, . . . ,
n− 1, then we have

|Xiϕ(x̂n)−Xiϕ(ŷn)| ≤ c%|Xkϕ(x̂n)| ∀ i = 1, . . . , n− 1,(4.30)

|Xkϕ(ŷn)| ≥ (1− c%)λn(ŷn),(4.31)

and, denoting by δk(y) the solution of (4.26) with ŷn instead of x̂n,

(4.32) δk(y) ≥ 1
2
δk(x).

Using Lemma 4.13, whose proof will be given later, we can prove the main
theorem of this section.

Theorem 4.14. If Ω ⊂ Rn is an admissible domain for X1, . . . , Xn, then it is a
NTA domain in the metric space (Rn,d).

Proof. We show that Ω is a uniform domain in the sense of Definition 2.4,
and this will prove condition (i) in Definition 2.6. Condition (ii) is a direct con-
sequence of Theorem 4.12.

It will be enough to consider the case Ω = {xn > ϕ(x̂n)}, where ϕ ∈
C1(Rn−1) is a function satisfying (4.17). We start the discussion with Case B. Let
x, y ∈ Ω and k ∈ {1, . . . , n− 1} be as in Case B for some % > 0. The estimates
provided by Lemma 4.13 and a choice of % small enough easily imply

|Xkϕ(ŷn)| ≥ 1
2
|Xiϕ(ŷn)|, for all i ≠ n,(4.33)

|Xkϕ(ŷn)| > 1
2
λn(ŷn).(4.34)

By Theorem 4.12 and (4.25) there are two John curves γx and γy of param-
eter σ > 0, starting respectively from x and y , which are of the form (compare
(4.28))

(4.35) γx(t) = x + tNkek, t ≤ tk(x), and γy(t) = y + tNkek, t ≤ tk(y).
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The numbers tk(x) and tk(y) are respectively defined by tk(x) = Fk(x, δk(x))
and tk(y) = Fk(y,δk(y)), where δk(x) and δk(y) are solutions of equation
(4.26) written in x and y , respectively. Moreover, note that γx and γy are parallel.
This is a consequence of the fact that (4.33) and (4.34) give (4.25) with y instead
of x. In addition, Xkϕ(x̂n) and Xkϕ(ŷn) must have the same sign by (4.30)
and thus Nk(x) = Nk(y) (recall (4.22)). We denoted both by Nk.

We claim that if % > 0 is small enough, there exist constants C2, C3 > 0
(independent of x and y) and times tx ≤ tk(x) and ty ≤ tk(y) such that the
curves γx and γy satisfy assumptions (2.5)–(2.7) of Lemma 2.8. This will show
that Ω is a uniform domain.

Define the numbers

(4.36) δ∗ = 1
2%
d(x,y) and t∗ = Fk(x, δ∗).

Since we are in Case B, we trivially have δ∗ ≤ δk(x)/2, and by (4.32), δ∗ ≤
δk(y). It follows that t∗ ≤ tk(x), tk(y). We would like to apply Lemma
2.8 for the times tx = ty = t∗. This would require the estimate (2.6), i.e.,
d(γx(t∗), γy(t∗)) ≤ σC3/2d(x,y). Unfortunately, it may happen that γx(t∗)
belongs (or is very near) to the plane {xk = 0}. In this case the size of the boxes
may become too small (this can be seen letting xk = 0 in (4.4)), and the estimate
(2.6) does not seem to hold. To overcome this problem we operate as follows.

Consider the projection of x onto the k’th coordinate plane xk = 0 and
denote it by π(x) =∑i≠k xiei. We distinguish the following two cases:

d(x + t∗Nkek,π(x)) ≥ 1
4
d(x,π(x)),(4.37)

d(x + t∗Nkek,π(x)) < 1
4
d(x,π(x)).(4.38)

We first study case (4.37). Case (4.38) can be reduced to the first one (this is
discussed after equation (4.44)). Choose tx = ty = t∗, and let γx : [0, t∗] → Ω
and γy : [0, t∗] → Ω be as in (4.35). We first check (2.5), which is easier. By
Theorem 4.2

(4.39) diam(γx) ≥ C0δ∗ = C0
d(x,y)

2%
,

where C0 < 1 is an absolute constant. Then (2.5) holds with

(4.40) C3 = C0

2%
.

Now we have to check (2.6), which is

(4.41) d(γx(t∗), γy(t∗)) = d(x + t∗Nkek,y + t∗Nkek) ≤ σC0

4%
d(x,y).
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We claim that there exists a constant C4 > 0, independent of %, x, y , such
that

(4.42) d(γx(t∗), γy(t∗)) ≤ C4d(x,y),

whenever x satisfies (4.37). Then (4.41) follows choosing % small enough to
ensure C4 ≤ σC0/(4%).

To prove (4.42), first of all notice that, by Theorem 4.2, condition (4.37)
implies Gk(π(x), |xk + t∗Nkek|) ≥ CGk(π(x), |xk|) and thus

|xk + t∗Nkek| ≥ Fk(π(x),CGk(π(x), |xk|))
≥ CFk(π(x),Gk(π(x), |xk|)) = C|xk|,

for some absolute (small) constant C. This estimate together with the explicit
form (4.2) and (4.4) of the vector fields also implies

(4.43) Fi(x + t∗Nkek, s) ≥ ε1Fi(x, s), ∀s > 0, i = 1, . . . , n,

where ε1 > 0 is a new absolute small constant. Then

|yi − xi| = Fi(x,Gi(x, |yi − xi|)) ≤ Fi(x,Cd(x,y))
≤ ε−1

1 Fi(x + t∗Nkek, Cd(x,y)).
This is equivalent to saying that y + t∗Nkek ∈ Box(x + t∗Nkek, Cd(x,y)),
which gives (4.42) (by Theorem 4.2) provided C4 is large enough. Note that all
such estimates do not depend on %. This proves the claim (4.41).

We have proved hypotheses (2.5) and (2.6) of Lemma 2.8 under condition
(4.37). We discuss later the turning condition (2.7).

Now we study case (4.38). We shall show that it can be essentially reduced to
case (4.37). By continuity, there is t∗∗ < t∗ such that

(4.44) d(x + t∗∗Nkek,π(x)) = 1
4
d(x,π(x)).

In this case we choose tx = ty = t∗∗, and we define δ∗∗ by t∗∗ = Fk(x, δ∗∗).
Now we are using shorter paths. We have to make sure that their diameter

is large enough to ensure that (2.5) continues to hold. In order to check (2.5),
notice that the triangle inequality and (4.38) give

d(x,π(x)) ≥ d(x,γx(t∗))−d(π(x), γx(t∗)) > d(x,γx(t∗))− 1
4
d(x,π(x)),

which yields d(x,π(x)) ≥ 4
5d(x,γx(t

∗)). Thus, by (4.44)

diam
(
γx
∣∣
[0,t∗∗]

) ≥ d(x,π(x))− d(γx(t∗∗),π(x))
= 3

4
d(x,π(x)) ≥ 3

5
d(x,γx(t∗)) ≥ 3

5
C3d(x,y),
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where C3 is given by (4.40). In other words, changing δ∗ with δ∗∗ does not give
any problem in checking (2.5). We just have to modify slightly the constant C3 in
(4.40).

Moreover, since (4.44) holds, we can prove (4.42) and ultimately (4.41) with
t∗∗ instead of t∗. This shows that (2.6) holds in case (4.38), as well.

In order to finish the proof of the theorem in Case B, we have to check con-
dition (2.7). We check the upper bound for t∗, which is greater than t∗∗. The
estimate diam(γx|[0,t∗]) Ü Cd(x,y)/% follows from the definition of δ∗. It re-
mains to estimate the diameter of γy . Since by Theorem 4.2 diam(γy |[0,t∗]) '
Gk(y, t∗), the proof is concluded as soon as we show thatGk(y, t∗) ≤ 2Gk(x, t∗).
Since t∗ = Fk(x, δ∗), the claim is equivalent to

Gk(y, Fk(x, δ∗)) ≤ 2δ∗ ⇐⇒ Fk(x, δ∗) ≤ Fk(y,2δ∗),

which holds (also with 1+ c% instead of 2) in force of (4.15) (in the statement of
Lemma 4.5 x and y can be interchanged). The proof of Case B is concluded.

Case A is the easy part. Denote by x̃ and ỹ the endpoints of the paths γx and
γy at the end of their first piece, i.e.,

x̃ = x + tk(x)(x)Nk(x)ek(x) ,
ỹ = y + tk(y)(y)Nk(y)ek(y) .

Here k(x) may be different from k(y). This does not matter because the points
are not too near. It could also be x̃ = x or ỹ = y if one or both of the points
belong to Case 1 in (4.23). At any rate, we have

d(x, x̃) ≤ ∆(x) ≤ 1
%
d(x,y).

The same estimate holds for d(y, ỹ) (we are assuming ∆(x) ≥ ∆(y)). Here % is
small but has been fixed in the proof of Case B. We have the paths

γx(s) = x̃ + sen and γy(s) = ỹ + sen,

with s ≥ 0. The proof of Case A can be concluded noting that by invariance with
respect to translations along the n-th direction we have, independently of s,

d(x̃ + sen, ỹ + sen) = d(x̃, ỹ) ≤ d(x̃, x)+ d(x,y)+ d(ỹ,y)

≤
(

1
%
+ 1+ 1

%

)
d(x,y). ❐

Proof of Lemma 4.13. Fix k ∈ {1, . . . , n− 1} such that

|Xkϕ(x̂n)| = max
i=1,...,n−1

|Xiϕ(x̂n)|.
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Then (4.17) gives

|Xiϕ(x̂n)−Xiϕ(ŷn)|
≤ osc(Xiϕ,Boxn(x̂n, d(x,y)))

≤ C(d(x,y)|Xkϕ(x̂n)|(dn−2)/(dn−1) +Λn(x̂n, d(x,y)))
≤ C(%δk(x)|Xkϕ(x̂n)|(dn−2)/(dn−1) + C%Λn(x̂n, δk(x))),

by Case B and Proposition 4.4. Now, in order to estimate the right hand side,
note that, by (4.26), Λn(x̂n, δk(x)) = ε0|Xkϕ(x̂n)|. Moreover, by Proposition
4.4

δk(x) ≤ Λn(x̂n, δk(x))1/(dn−1) = (ε0|Xkϕ(x̂n)|)1/(dn−1).

Then (4.30) is proved. Letting i = k in (4.30) we get

(4.45) |Xkϕ(ŷn)| ≥ (1− c%)|Xkϕ(x̂n)|.
We are now ready to prove (4.31). By the definition of Λn we have

λn(ŷn) ≤ λn(x̂n)+Λn(x̂n, d(x,y)) ≤ λn(x̂n)+Λn(x̂n, %δk(x))
≤ λn(x̂n)+ c%ε0|Xkϕ(x̂n)| ≤ (1+ c%)|Xkϕ(ŷn)|,

where we used Case B to estimate λn(x̂n) and (4.45). Then (4.31) is proved.
We prove (4.32). By (4.45) and by the definition of δk, we have

Λn(ŷn, δk(y)) = ε0|Xkϕ(ŷn)| ≥ ε0(1− c%)|Xkϕ(x̂n)|(4.46)

≥ (1− c%)Λn(x̂n, δk(x)).
Assume by contradiction that δk(y) < 1

2δk(x). Then, we have

Boxn(ŷn, δk(y)) ⊂ Boxn
(
ŷn,

1
2
δk(x)

)
⊂ Boxn

(
x̂n,

1
2
(1+ c%)δk(x)

)
,

by Lemma 4.5 (recall that d(x,y) ≤ %δk(x), by Case B). Then

Λn(ŷn, δk(y)) = sup
ẑn∈Boxn(ŷn,δk(y))

|λn(ẑn)− λn(ŷn)|

≤ Λn (x̂n, 1
2
(1+ c%)δk(x)

)
+ |λn(x̂n)− λn(ŷn)|

≤ Λn (x̂n, 1
2
(1+ c%)δk(x)

)
+Λn(x̂n, %δk(x))

≤
(
h
(

1
2
(1+ c%)

)
+ h(%)

)Λn(x̂n, δk(x)),
where h is the function introduced in Proposition 4.4. By the properties of h, we
immediately see that the last chain of inequalities is in contradiction with (4.46),
if % is small enough. This finishes the proof of Lemma 4.13. ❐
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Example 4.15. It is known that control balls defined by vector fields are al-
ways John domains (see [23] and [29]). We show that they not necessarily are
uniform domains. Consider in R2 the vector fields X1 = ∂1 and X2 = x1∂2 and
let (R2, d) be the metric space with metric defined as in (2.1). Applying Theorem
4.2 to this special case it is not difficult to see that

(4.47) d((x1, x2), (0, y2)) ' |x1| + |x2 −y2|1/2.

The ball B = B(0,1) is a symmetric set with respect to x1 and x2, and can be
computed explicitly (see for instance [22] and [5]). Precisely,

∂B ∩ {(x1, x2) | x1, x2 ≥ 0}

=
{
(x1(ϑ),x2(ϑ)) =

(
sinϑ
ϑ

,
2ϑ − sin 2ϑ

4ϑ2

)
| 0 ≤ ϑ ≤ π

}
.

Notice that

(x1(π),x2(π)) =
(

0,
1

2π

)
, (x′1(π),x

′
2(π)) =

(
− 1
π
,− 1
π2

)
.

Then, all the points of the set {x | x2 = (1/(2π))(1+ |x1|)} belong to B, if |x1|
is small enough.

Take the points

x+ =
(
x1,

1
2π

(1+ |x1|)
)

and x− =
(
−x1,

1
2π

(1+ |x1|)
)
,

where x1 > 0 is small. If γ : [0,1] → B is a continuous curve joining the point x+
to the point x−, then it must intersect the x2 axis. Call (0, y2) this intersection
point. It must be the case that |y2| < 1/(2π). Then by (4.47)

diam(γ) ≥ d
((
x1,

1
2π

(1+ |x1|)
)
, (0, y2)

)
' |x1| +

(
1

2π
(1+ |x1|)−y2

)1/2
≥
(

1
2π

|x1|
)1/2

.

On the other hand, d(x+, x−) = 2|x1|, and we find

diam(γ) ≥ C
|x1|1/2d

((
x1,

1
2π

(1+ |x1|)
)
,
(
−x1,

1
2π

(1+ |x1|)
))
,

for some absolute constant C > 0. Letting x1 → 0 we see that condition (2.3) can
not hold uniformly.
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d’opérateurs elliptiques dégénérés, Rend. Sem. Mat. Univ. Politec. Torino, Proc. Conference on
Linear Partial and Pseudodifferential Operators (Torino, 1982), 1983, pp. 105–114 (1984).
MR0745979 (86d:35057) (French)
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