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A b s t r a c t .  We study John domains in the metric space associated with a 
system of diagonal vector fields. 

1 In troduc t ion  

We study domains with the twisted cone property in I~ '~ equipped with the 

control distance generated by a family of diagonal vector fields X1, ..., Xn, where 

Xj = Aj(x)0~j, j = 1 , . . . , n .  Bounded domains satisfying similar geometric 

conditions are relevant, for instance, in the global theory of second order PDEs 
;q 

related to subelliptic operators of the form 11 = ~]j=l X~. 

The twisted cone property was introduced in the Euclidean setting by John in 

his seminal paper [Joh] on the rigidity of quasiisometric maps in II~ n. Besides 

its importance in geometric function theory, this property plays a central role 

in the theory of first order Sobolev spaces; see, e.g., the papers by Reshetnyak 

[R], Besov [Be], Martio [M], Bojarski [Bo] and the monograph by Maz'ya and 

Poborchi IMP]. More recent references are [SS], [BK], [HK1], [KOT]. Other 

classes of domains appearing in more refined questions in harmonic analysis and 

PDEs can be defined through cone conditions: uniform and NTA domains are the 

most important examples (see [MS], [Jon] and [JK]). 

Domains with the cone property can be defined in any metric space and, in par- 

ticular, in Carnot-Carath6odory spaces. Given a metric space (M, d), a rectifiable 

path 3' : [0, 1] ~ M and a positive number e > 0, the twisted cone with core at "~ 

and aperture e is the set C.~,e = U 0 < t < l  B (7(t), e length(7](0,t))). A bounded domain 

ft c M is a John domain with John constant e and center x0 E fl if, for any x Eft ,  
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there is a cone C~,~ c f~ such that 7(0) = z and 0'(1) = z0. John domains are also 

known as domains with the twisted cone property. In the Euclidean setting, the 

"rigid" cone property is more general than the "twisted" cone property, as the von 

Koch snowflake in the plane shows. 

Several theorems involving the cone property have been generalized from the 

Euclidean to the Carnot-Carathdodory setting. If a bounded open set ft satisfies 

an exterior cone property with respect to the distance generated by a family of 

HSrmander vector fields, then the Wiener criterion is satisfied at any boundary 

point and f~ is regular in the sense of Perron, Wiener, Brelot and Bony for the 

Dirichlet problem for the subelliptic Laplacian/~; see the papers by Negrini and 

Scornazzani [NS], Hueber [Hu] and Danielli [D]. 

Moreover, the interior cone property is related to chaining conditions that 

are useful in the proof of subelliptic Sobolev-Poincar6 inequalities. This fact was 

recognized by Jerison in [Je], and later used by several authors; see the contributions 

by Lu[L] ,  Franchi, Gutierrez and Wheeden [FGW], Garofalo and Nhieu [GN1], 

Franchi, Lu and Wheeden [FLW], Buckley, Koskela and Lu [BKL], Hajtasz and 

Koskela [HK2]. 

Despite all these results, no easy condition is known which ensures the John 

property in metric spaces associated with vector fields. This problem, which 

has somehow eluded study in the literature, requires a precise knowledge of the 

structure of control balls. To emphasize the nontrivial nature of the situation, 

we mention an example in [Je]: in the apparently simple situation of the vector 

fields X1 = 01, X2 = z~02 in the plane, the Poincard inequality may fail for smooth 

domains, which, therefore, need not be John domains for the related control metric. 

Thus, in Camot-Carathdodory spaces, Euclidean regularity is not sufficient to 

ensure the cone property. An even more striking example is that "gauge balls" in 

homogeneous groups may fail to be John domains if the group has step greater 

than 2 (see [MM2]). See also [HH], where examples of regular and irregular sets 

in Potential Theory are discussed. 

The John property for a set ~ with respect to a system of vector fields may fail 

owing to the presence of characteristic points. A point z E af~ is characteristic 

if all the vector fields Xj are tangent to the boundary tgfl at z. Note that in the 

Euclidean case s = A (equivalently Xj = cqj, j = 1 , . . . ,  n), the characteristic set 

is empty. A relevant problem in the study of the regularity up to the boundary for 

elliptic degenerate operators is to understand how a boundary having characteristic 

points interacts with the vector fields. The purpose of this paper is to analyze the 

structure of John domains in Carnot-Carathdodory spaces for diagonal families of 

vector fields. 
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We briefly recall some known results. Capogna and Garofalo proved in [CG] 

that Cl'l-domains in step 2 homogeneous groups are John domains (see also 

[MM2], where the NTA property is proved under the same assumptions). In 

the same setting, examples of John and NTA domains are provided by Capogna 

and Tang [CT], Gresbnov [G2] and Capogna, Garofalo and Pauls [CGP]. For 

the vector fields in the plane X1 = 01, )(2 = ]X1[~ 0" > 0, it is not difficult 

to check that a-admissible domains in the sense of [MM1] are John domains 

(compare Jerison's example mentioned above and see also [FF 1 ] and the discussion 

in [DGN]). Finally, a sufficient condition ensuring the John property for open 

sets in step 3 homogeneous groups is given in [MM2]. The analysis becomes 

considerably harder in groups of higher step. 

We study domains with the cone property in a class of Camot-Carathfodory 

spaces with no underlying group structure. We consider a system of diagonal 

vector fields in ~'~ of the form X1 = AI(x)01,...,Xn = A,~(x)0n, whose control 

metric, under suitable assumptions on the functions A j, has been studied in detail 

by Franchi and Lanconelli in [FL]. Our basic model is given by the following 

vector fields on R a 

0 0 0 
(1.1) X 1  -'~ OXl X 2  = x ~ l  Ggx2 X 3  ~- 271 x2 •x  3 

Consider an open set in ~3 of the form f / =  {x3 > ~o(x)}, x = (xl,x2) �9 •2, where 

~p �9 C I(IR 2 ). By the results of [FL], control balls are comparable with boxes of the 

form Q(x, r) • Ix3 - F3(x, r), x3 + F3(x, r)[, where Q(x, r) are suitable rectangles 

in the plane and F3(x, r) > 0. We say that the boundary 0~ is admissible if for all 

x E R 2 , r > 0 ,  

i~1,2 i=1,2 

The oscillation of the derivatives of the function qo along the vector fields X1 and 

X2 should be bounded by a sum of two terms. The first term in the right hand 

side vanishes on the characteristic set, while the second one gives an amount of 

oscillation admitted also at characteristic points. The latter is determined by the 

oscillation on Q(x,r) of the function ~3(Y) = al a2 Yl Y2 �9 This oscillation is strictly 

related to the size of control balls in the vertical direction. The appropriate balance 

between the two terms is given by the power 

0"1 "t- 0' 2 -']-" 0"10"2 -- 1 
m :  

G1 "~- 0"2 "4- 0"10"2 

This choice is a key point. In Definition 2.8, generalizing (1.2), we introduce a 

class of domains with admissible boundary in the n-dimensional situation. Our 

main result is the following 
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T h e o r e m  1.1. Domains with admissible boundary are John domains. 

The class of  domains with admissible boundary is nonempty. In Theorem 2.10, 

w e  show that the open set [2 = {(Xa, x2,  z3)  (~ ]~3 : (127112(oq+l) --t- x22) l+or2 --t-- x 2 ( 1} 

has admissible boundary for the vector fields in ( I. 1). The basic tool in the proof of  

this result is the following criterion for checking the admissibility condition (1.2). 

T h e o r e m  1.2. Let N ( z )  = [Zl [2(~+i) + x~ and assume that ~o(z) = g(N(z)) ,  

where g E C2(0, +oo) is a function such that for  some constant C > O, 

0 <_ g'(t) <_ Ct (~2-1)/2, ig"(t)r _< C g'(t), g'(2t) _< Cg'(t), t > O. 
t 

Then the surface {x3 -: r x2)} is admissible. 

Together with the "two dimensional" examples discussed in [FFI], our results are 

the only examples of  regular domains for diagonal vector fields. 

Finally, we mention some more papers dealing with regularity of  domains. The 

notion of  uniform domain (or (E, ,~)-domain) for a family of  vector fields has been 

introduced and studied by Garofalo and Nhieu in [GN2], and by Vodop'yanov and 

Greshnov in [VG] and [GI]. They generalized the Jones extension theorem to the 

setting of  subelliptic Sobolev spaces. Capogna and Garofalo [CG] introduced the 

notion of  NTA domain in Carnot-Carath6odory spaces and studied the boundary 

behavior of  positive Z:-harmonic functions. The papers [CGN] and [G2] deal with 

examples of  uniform and NTA domains in homogeneous groups of  step 2. In 

[DGN] the problem of  the trace of  Sobolev functions in Carnot-Carathdodory 

spaces is studied (see also [MMI]).  In [FFI] and [FF2], a new class of  domains, 

called ~-Harnack domains, is introduced and studied. In the Heisenberg group, the 

problem of  boundary accessibility through rectifiable curves is examined in [BM]. 

Finally, we mention [MM3], which is the continuation of  the research initiated in 

the present work. In this paper we prove that "admissible domains" in the sense of  

Definition 2.8 are NTA domains. 

The plan of  the paper is the following. In Section 2, we introduce "admissible 

domains"  and show that the class is nonempty. In Section 3, we prove that these 

domains are John domains. 

N o t a t i o n .  If  u, v > 0, we write u < v for u < Cv, where C > 1 is an absolute 

constant. Analogously, u ~ v stands for u < v and v < u. By d we denote the 

control metric induced on ~'~ by a system of  vector fields. For K C II~ '~, we write 

diam(K) = supx,~eK d(x, y) and dist(x, K) = infy~K d(x, y). If  3' : [0, 1] --~ /l~'* is 

a curve and 0 < a < b < 1, we denote by ")'[[a,b] the restriction of  3' to the interval 

[a, b]. The coordinate versors of  IR" are denoted by e l , . . . ,  en. Finally, the symbol 
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a always denotes the "aperture" of a cone. In Section 3, we sometimes adopt a 

slight abuse of  notation by writing a instead of  f (a) ,  where f is a positive function 

whose relevant property is lim~---~0+ f ( a )  = O. 

2 G e o m e t r y  of diagonal  vector fields and flat surfaces  

In this section, we describe the geometry of diagonal vector fields and introduce 

the basic definitions of  regularity for surfaces in the metric space associated with 

them. We also provide examples of regular surfaces. 

2.1 

vector fields 

P r e l iminar i e s  and def in i t ion o f  admiss ib le  surface .  Consider the 

0 
(2.1) Xj = A j ( x ) o x j ,  j = 1 , . . . ,n ,  

where 

j - 1  

(2.2) Ai(x) = 1 and Ai(x ) = 1 ] l x i l ~  
i=l 

j = 2 , . . . , n .  

Assume that the real numbers cri satisfy 

(2.3) c t i = 0  or cqE[1,c~[. 

This condition ensures that the functions Aj, and thus the vector fields X j ,  are 

locally Lipschitz continuous. If the numbers c~i are integers, then we can change 

'~' instead of Ixi[ ~,, The vector fields then the functions Aj in (2.2), writing x, 

become a HSrmander system. 

We introduce some notation, following [FL]. For all j = 1, ..., n, define induc- 

tively the functions Fj : •" x [0, +co) ~ [0, + ~ )  by 

(2.4) 
F l ( z , r )  = ,', F2(z , r )  = ",~2(Izll + F l ( z , r ) ) ,  . . .  

FAx,  r) : r:~j (Ix, I + r, Ix~l + F : (x ,  ~ ) , . . . ,  Ix~-~ I + F j_ :  (x, , ' )) .  

An inspection of  the explicit form (2.2) of  the functions Aj shows that 

(2.5) F j + l ( x , r )  = fj(x,r)(Ixjl § Fj(~,r)) ~, j = 1 , . . .  , n  - 1. 

Note that Fj (x ,  r) actually depends only on Xl , . . . ,  x j -1 .  Moreover, r ~ F j (x ,  r) 

is increasing and satisfies the doubling property 

(2.5) Fj (x, 2r) < CFj  (x, r), x E 11~ n , 0 < r < cxD 
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for all j = 1, ..., n. This also implies 

(2.7) Fj(x , r  + s) < C(Fj(x ,r )  + Fj(x ,s)) ,  0 < r,s  < oc. 

Finally, for any fixed x �9 IR n, the function Fj(x,  .) is strictly increasing and maps 

]0, +oo[ onto itself. We denote its inverse by Gs (x, .) = Fj (x, .)-1. 

Define inductively the real numbers dj by 

(2.8) 

dl = 1, 
j--1 

d 2 = l + c q ,  . . .  , d j =  l + Z dic~i = ( l  + a l ) ' . . . ' ( l  + aj_l  ). 
i = I  

We say that dj is the degree o f  the variable z3. Note that Fj (0, r) = r dj . 

It is well-known that the vector fields (2.1) induce on II~ n a metric d in the 

following way (see [FL], [FP] and [NSW]). A Lipschitz continuous curve 3' : 

[0, T] -~ II~ '~, T _> 0, is subunit if  there exists a vector of  measurable functions 
r$ h = (h l , . . . ,hn) :  [0, T] --+ I~" such that ~,(t) = ~ j = 1  hj(t)Xj('y(t)),  Ih(t)] < 1 for 

a.e. t E [0, T]. Define d : 11~ '~ x/I~" --+ [0, +c~) by setting 

d(x, y) = inf{T > 0 : there exists a subunit curve 3' : [0, 7'] ~/I~ n 
(2.9) 

such that 7(0) = x and 3`(T) = y}. 

The definition of  the metric d still makes sense for any system of smooth vector 

fields XI , . . . ,Xm,  even with m < n, provided d(x,y)  is finite for all x ,y  (this 

happens, for instance, if the vector fields satisfy the H6rmander condition; see 

[NSW]). We denote by B(x ,  r) the balls in II~ '~ defined by the metric d. 

The structure of  the control balls can be described by means of the boxes 

(2.10) Box(x,r) := { x + h :  Ihjl < Fj(x ,r) ,  j = 1,.. . ,n}. 

The following theorem is proved in [FL]. 

T h e o r e m  2.1. There exists a constant C > 0 such that 

Box(x, C - l  r) C B(z ,  r) C Box(x, Cr), z E l~ n, r E ]0, +oo[, 

(2.11) C - i d ( x , y )  < Z G j ( z , [ y j  - zjl  ) <_ Cd(x,y) ,  x ,y  �9 I~ n. 
j=l 

Theorem 2.1, the triangle inequality and the doubling property (2.6) (or a direct 

computation) give the estimate 

(2.12) Fi(x  + Fk(x ,r)ek ,s)  <_ CF~(x,s ) x e lRn, O < r <_ s < +oo. 
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Introduce the following convention. If  j = 1, ..., n and x = (Xl,..., x,~) E R '~, 

we write ~3 = (x l ,  . . . , X j - l , X j + l ,  . . . ,x~)  =_ (Xl, . . . , x j - l , 0 ,  Xj+l,  . . . , x , ) .  

In Section 3, we study regularity properties connected with the boundary of  an 

open set ft C E ~ o f  class C 1. Here,  we introduce the basic assumptions on Oft. 

Given a point x E 0ft,  we write OFt locally as a graph of  the form xj  = qo(~:j) for  

some j = 1 , . . . ,  n. We first discuss the case j = n, which is the most significant. 

Introduce the (n - 1)-dimensional box 

(2.13) Boxn(~:n, r) = {~;n + h,~: Ihil < F~(3c~,r), i = 1 , . . .  , n  - 1}, 

and let An(~:n, r) = suptg.EBox,(~,,,r)IAn(~n) - An(:cn)l. 
The following proposition records some properties of  An needed in the sequel. 

The proof  is postponed to the Appendix.  It relies on the simple fact that if a _> 1, 

then 

(2.14) (t + r) ~ - t ~ ~_ a r ( t  + r) ~-1, t_>0,  r_>0 .  

P r o p o s i t i o n  2.2.  Assume  that  at  least  one o f  the numbers  aj ,  j = 1 , . . . ,  n, is 

strictly posit ive.  Then there exists a cons tan t  r 1 > 0 such that  f o r  all  ~Cn E ~ - x ,  

R > 0 a n d a  E ]0,1], 

(2.15) A,,(J:n,aR) <_ h(a)A~(]c~,R) ,  

Moreover, An(]Cn,r)) >_ r an-l ,  An(fCn,r) 

where h(a) - 
a + r/(1 - a) 

< ( C / r ) F n ( x , r ) a n d  A~(x, 2r) < 

CAn(x ,  r) f o r  some  cons tan t  C > O, a n d  f o r  all r > 0 and  kn E I~ n -x .  

In order to introduce our notion o f  "admissible surface," we first give the 

definition for a graph of  the form x,, = qo(kn). This is the most degenerate  case and 

contains all the difficulties of  the problem. Then we show that a graph of  the form 

xj = ~p(~:j) with j ~ n can be studied by reducing to the previous case. Finally, 

in Definition 2.8, we introduce the notion of  open set with admissible boundary. 

Recall the standard notation osc(f, A) := sup~,uea I S ( z )  - Y(u)I .  

D e f i n i t i o n  2.3.  Let  ~ E Cl(l~n-1).  The surface {xn = ~o(~:,~)} is said to be 

admissible  if there exist C > 0 and r0 > 0 such that for all :~n E E ~-1 , r E ]0, r0], 

(2.16) E Osc(siqo,BOxn(fcn,r)) <- C(r EIXi~D(T,n)I (d~-2)/(d~-a) -[- An(~Cn,r)). 
iCn iCn 

Note that if we are not in the Euclidean case, i.e., at least one of  the numbers ai 

is strictly positive, then d,~ > 2 (compare  (2.3)) and the exponent  (d,~ - 2)/(dn - 1) 

is nonnegative. 
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We are actually interested in surfaces which are the boundaries of  bounded sets. 

Definition 2.3 can be stated also for a bounded graph xn = qo(~:n), letting ~,~ belong 

to a bounded open set of  II~ '~- i.  

P r o p o s i t i o n  2.4. Let ~o E CI(~ n-l)  satisfy (2.16). Then there exists C > 0  

such that for all Yc~ E Nn-1 and r E ]0, r0], 

(2.17) osc(~o, Boxn(.~n,r)) < C(r  E IXiqo(&n)[ + rAn(5:n,r)). 
iCn 

P r o o f .  Fix &n, ~,~ E 1r '~-1 , and let 5 = d(k,,, ~)n). Then there is a subunit curve 

7 : [0, 5] ~ I~ '~-1 -~ IR n-1 x {0} such that 3'(0) = ~,~ and 7(6) = yn. Then we have 

/o' (2.18) I~(:~,~)-~(~)n)l _< ~-~]Xi~('~(t))]dt<5 sup ~ lXi~o[ .  
iCn Box,, ( in  ,5) iCn 

By (2.16), 

Zix, l < + 
Box~ ( ~ , 6 )  iCn  i C n  i~n 

5 + 5y"  IX, cp(~,n)[ (a"-~)/(a'-~) + A,-,(:L,, 5) 
i~n i•n 

< ~ Ix,~(~)l + An(~n, 5). 
ir 

Here we have used H61der's inequality 5lXi~(&,~)[ (a. -2)/(a,-1) < 5a,-1 + igi~o(~n)l 

and the inequality 5 a--1 < A,~(5:n, 5) proved in Proposition 2.2. Now, (2.17) follows 

from Proposition 2.1 and from the doubling property An(~Cn, 2r) < CAn(kn, r), 
proved in Proposition 2.2. fq 

R e m a r k  2.5. Let ~ E C2(~ n-l). Assume that 

(2.19) 
n--1 n - 1  

E IXiXj~o(ff2n)[ ~- C E IXi~(Xn)[(d"--2)/(dr'-l) 
i,j=l i : 1  

for all 5:n E I~ n-1 with xlx2 .... "xn-1 r O. Then the surface {xn = ~o(:~n)} is 

admissible. It is not difficult to see that condition (2.19) implies (2.16). This can 

be checked by a suitable adaptation of  the Gronwall inequality. Condition (2.19) is 

also easier to check than (2.16). Surfaces of  the form x,~ = Ix1 Ira, where m is large 

enough, satisfy (2.19). The drawback is that this condition is not refined enough 

to give examples of admissible surfaces which are boundaries of  bounded sets (see 

Theorems 2.9 and 2. I0). 
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Next we introduce admissible surfaces of  the form {xj = qo(~:j)}, j # n. We 

would like to give a definition similar to Definition 2.3. The set Boxn(~,~,r) is 

the intersection of  Box(z,r) with the plane {y E I~ '~ : yn = zn}. When j # n, 

the intersection of  Box(x,r) with the plane {y E I~ n : yj = zj} depends on xj. 

Thus (2.13) cannot be trivially generalized. But, roughly speaking, the vector 

fields Xj+I , . . . ,  Xn are "more degenerate" than Xj; and this suggests that the 

dependence of  the function ~(~j) on z3+1, . . . ,  xn needs a less careful control than 

the dependence on Xl , . . . ,  zj-1. In order to make this remark rigorous, define new 

functions and vector fields 

(2.20) "~i(x) = ~ "~i(x) if/___ j ,  a n d  .eY i = ~iOi, i = 1, . . . ,n .  
I,)~J(x) i f i > j ,  

In this situation, we can view the variable xj as the n-th variable with respect to the 

new vector fields. All previous results hold for these vector fields. The functions 

Fi(x, r) are defined exactly as in (2.4). Set 

Bo'-'~(x,r) = { x +  h :  Ih, I < F,(x,r), i = 1,.. . ,n} 

and denote by d the  metric constructed as in (2.9) using subunit curves with respect 

to the vector fields Xj. Let /3(x,  r) be the corresponding balls. In the following 

proposition, we list some easy relations between the distances d and d. 

Proposition 2.6. For any C1 > O, there is C2 > 0 such that 

(i) /flxl, lyl,r < Cx then B(x,r) C B(x, C2r) andd(x,y) < C2d(x,y); 

(ii) writing x' = (xl, ..., xj) and x" = (xj+1,..., xn), we have d( (x', x"), (y', x")) 
x"), (y', 

P r oo f .  We have Fi(~j , r )  = -~i(~j,r) if i _< j ;  while for i > j ,  Fi(x,r)  = 

Fj(x,r). Then, i f / >  j ,  

F,(x,r) = f j (z ,r ) ( Ixyl  + F~(x,r)) ~ (Ix,-ll + F,-x(x,r))  ~'-' 

<_ CFj(x,r) <_ Fj(x, Cr) = _~,(x, Cr), 

as soon as Ixl, r < C. Then Box(x, r) C Box(x, Cr). Thus (i) follows by Theorem 

2.1. 

In order to see (ii), recall that the function Gi(x, .) is the inverse of  Fi(x, .). 

Moreover, if i < j ,  then Fi (x, r) = Fi (x, r). Thus Theorem 2.1 gives 

J J 
d((x', x"), (y', x")) ~_ ~_, Gi(x', Ixi-yil) = ~ G,(x', Ix,-y,I) ~- d((x', x"), (y', x")). 

i = 1  i = 1  

This concludes the proof of  (ii). [] 
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The sections of  the boxes Box(x, r) with the planes {y E IR n : yj = xj } do not 

depend on xj. Thus we can set with unambiguous meaning 

Bo~'xj(&j,r) = {~?j + h i :  [hil < Fi(xj,r), i 5~ j} (2.21) 

and 

(2.22) Aj(:cj) = sup IAj(~)j) - ~j(i:j)[. 
9i EBoxi (~J ,r) 

The function Aj enjoys the properties of  Proposition 2.2 (with the subscript n 

replaced by j).  

We are now ready to give the general definition of  admissible surface and of a 

set with admissible boundary. 

D e f i n i t i o n  2.7. Let  ~ E C a (IR n-a ). The surface {xj = ~(~j)} is said to be 

admissible if there exist C > 0 and r0 > 0 such that for all ~j E I~ n-1 and r E ]0, r0], 

iCj i~j 

D e f i n i t i o n  2.8 (Domain with admissible boundary).  A connected bounded 

open set f~ C II~ n is said to have admissible boundary if it is of  class C 1 and for 

all x E 0fL there exists a neighborhood/4 of  x such that 8f~ n / . / i s  an admissible 

surface according to Definition 2.3 or 2.7. 

2.2 E x a m p l e s  o f  a d m i s s i b l e  d o m a i n s  in  R a. We study some examples 

of  admissible surfaces and of  sets with admissible boundary in I~ 3. Consider the 

functions A1 -- 1, A2 = Ixx I al,  ,~3 ~ IZl I ~ IX21 ~ and the corresponding diagonal 

vector fields 

(2.24) x1 = o l ,  x 2 =  Ixll '02, x3 = Izll 'lx21 =03. 

We consider the case ai > 1, i = 1, 2. The degrees of  the variables x~, x2 and xa 

are d l =  1, d2 = 1 + ax, d3 = (1 + cq)(1 + a2), respectively. 

We begin with the study of  admissible surfaces of  the form {za = ~,O(Xx, x2)}. 

We write z = (xl,x2) and ]Xqa] = IXa~l + IX2~ol. I f ~  E CI(I~z), condition (2.16) 

reads 

(2.25) ~ osc(Xiqa, Box3 (x, r)) < rlSqa(x)} (a3-2)/(a~-l) + Aa (x, r), 
i=1,2 

where Boxz(z,r) = {(zl + ulFl(x,r),x2 + u2F2(xl ,r)):  luxl, lu21 <__ 1} and 

Aa(z,r) = sUPBox~(x,, ) IA3 - Aa(x)l. Here Fl(x,r) = r and F2(z,r) = r(lx,} + r) ~' .  
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We can write explicitly, by (2.14) (see also (A.2) in the Appendix),  

(2.26) 

Aa(x) > r(Ixll  + r)'~1-1 (Ix21 + F2(xl ,r))  ~2 + Ix~l~lF2(xl,r)(Ix2[ + F2(x~,r)) a2-x 

r(lxl]-{- r)~ + F2(xx,r)) ~2. 

T h e o r e m  2.9.  Let N(x)  = Ixll 2d: + x~ and assume that qo(x) = g(N(x)),  

where g E C2(0, +oc) is a function such that for  some constant C > O, 

(2.27) 

0 < g'(t) < Ct 2dn-~2-1 - Ct -~A,  [g"(t)l < C g'(t) g'(2t) < Cg'(t), t > O. 

Then the surface {x3 = 99(xl, x2)} is admissible. 

P r o o f .  We check (2.25). Note that in this example, inequality (2.19) fails. 

Without loss of  generality, we assume Xl, x2 > 0. A short computation gives 

IXl~(x)l ~- x~a~+lg'(N(x)) = x~ ~ {xd2g'(N(x))} := x~h l (X) ,  
(2.28) 

IS2~(x)l ~- x';' {x2g'(N(x))} := x~ ~ h2(x). 

Note that Ih(x)] = I(hx(x), h2(x)) I = N(x)l/2g'(x).  Then 

IX~(z)l ~-Ix~I~N(z)~/2g'(N(z)). 

Moreover, 

osc(Xi~o, Box3 (z, r)) 

](Xl -~ r ) ~ h i ( x  + F(x , r ) )  - x~lhi(x)l 

< ((xl + r) ~ - x~ ~)hi(x) + (xl + r) ~' (hi(x + F(x ,  r)) - hi(x)) 

,~ O~lr(Xl -~ r )~ ' - l  hi(x) + (xl + r)al (hi(x + F(x , r )  ) - hi(x)), 

where we have used (2.14). Writing h = (hi, h2), we estimate the oscillation from 

above by 

osc(Xi~o, Boxa(x, r)) < r(xl  + r) ~l-llh(x)l  
(2.29) i=1,2 

+ (Xl + r) '~ Ih(x + F(x , r ) )  - h(x)l. 

We already know that Ih(x)l - N(x)I /2g ' (N(x)) .  In order to estimate the last term 

on the right hand side, we use (as in (2.18)) the inequality 

Jhi(x + F(x ,  r)) - hi(x)[ < r sup [Xkhi(y)[. 
yqBox3(x,r), k=l,2 
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The computation of  the second derivatives and condition g"(t) <_ Cg'(t)/t give 

Xihi(x)  ~_ x~' {9'(U(x)) + x~(<~'+i) g"(U(x))} ~- xT'g'(U(x)), 
Z~ +127. 

X.xhl(x) ~- x2x~a'+l g"(N(x)) E l ~  2x~,g,(N(x)) < xTt g,(N(x)) ' 

Xth2(x) = z2x~'+i  g"(g(z))  < x?'g'(N(x)), 

X2h2(z) = z~' {g ' (Y(z ) )  + z~g"(Y(z ) ) }  ~_ zT 'a ' (Y ( z ) ) .  

Hence we find 

Ih(x + F(x,r)) - h(x)l < r(xl + r)~tg'(N(x + F(x,r))).  

Coming back to (2.29), we see that condition (2.25) is guaranteed by 

(2.30) 
r(xl + r)O'-X N(x)l/29'(N(x)) + r(xl + r)2~'~ g'(N(x + F(x,r))) 

5 r{x~'N(x) i l2g'(N(x))}  (d3-2)l(d3-1) + r(xl  + r) ~ ' - '  (x2 + F2(x,, r)) ~2, 

where the first term in the right hand side is provided by (2.28) and the second one 

comes from (2.26). 
oq+l Now two cases need to be distinguished: (A) x2 _> x~ '+l ;  (B) x2 < x 1 

Study of  Case (A). We ignore the contribution of  the first term on the right hand 

side of (2.30) and we consider the second one only. Thus (2.30) is implied by 

(2.31) N(x)I/~9'(N(x)) + (xl + r)CXl+lg'(N(x + F(x,r))) ~ (x2 -k- F2(Xl,r)) a2. 

Notice that in Case (A) N(x) ~_ x.~. 

We distinguish the following two subcases: (AI)  x2 < r~l+l;  (A2) x2 > r a~+x. 

Case (A1). We majorize the left hand side of  (2.31) using xx < r and 

x2 < r ~+1 and set x = 0 in the right hand side, obtaining the stronger condi- 

tion r~+Xg~(r2('~+l) ) < r '~2(~'+1), which can be rewritten as g'(r 2d2) ~ r d3-2d2. 

This last inequality is satisfied by assumption (2.27). 

Case (A2). Condition (2.31) is implied by 

N(x)I/29'(N(x)) + (Xl + r)a'+lg'(N(x + F(x,r))) < x~ 2. 

We can use x ~ + l , r ~ + l  < x2 and N(x) ~_ N(x  + F(x,r)) ~_ x~. This gives 
_d3/d2-2 x29'(x~) < x~ 2 , i.e., 9'(x~) < x2 . The latter inequality holds by assumption. 

Study of  Case (B), Here we have N(x) ~_ x~ (a1+1) Two subcases must be 

distinguished: (B1) Xl < r; (B2) xl > r. 



J O H N  D O M A I N S  271 

Case (B1). In this case we ignore the contribution of  the first term on the 

right hand side o f  (2.30) and consider the second term only. Condition (2.30) is 

guaranteed by 

(2.32) N(x)l l2g'(N(x))+ (Xl + r)a'+Xg'(N(x + F(x,r))) <~ (x2 + F2(Xl,r))  a2. 

Set x = 0 in the right hand side of  (2.32) and use xl < r and x2 < r ~1+1. We find 

the stronger inequality r~a+lg'(r 2(~+1)) < r a2('~+1), i.e., g'(r 2d2) < r d3-2d2. 
Case (B2). We use here the contribution of  the first term on the right hand side 

of  (2.30). Then we get the stronger inequality 

(xi + r ) ~ - l  N(x)ll2 g'(N(x)) + (xl + r)2~' g'(N(x + F(x,r))) 

{x~' Y(x)ll2 g'(N(x) ) } (d3--2)/(ds-1). 

Since r < x~ and x2 < _a1+1 - - ~1 , we finally find the stronger condition a. l-2c~l~#t'~2dzyl,,bl )~ 
{~l-~+d2 Y~'~-ed:)}(d~-2)/(d~-l),t~l i.e. g'(x~ d: ) < xld~-2d:" The proof  is complete. [] 

Finally, we give an example in 11( 3 of  a bounded open set with admissible 

boundary. 

T h e o r e m  2.10.  7Tie open set 

ft = { (~ : , x~ ,~3)  e ~3 : (1~:1 ~(<''+l) "t- X2)  l 't 'cl2 -t-X~ ( 1} 

has admissible boundary. 

P r o o f .  Let  e E (0, 1) be fixed. The surface 0ft N {Ix31 > ~} can be studied by 

means of  Theorem 2.9. Indeed, the lower cap can be written in the form 

x3 --- - ( 1  - N(xl,  x2)l+<~=) x/2 = g(N(xl,  x2)), 

where N(xl ,  x2) = Ix~ 12(<'~+1) + x~; and, for any fixed to < 1, it is easy to see that 

the function g(t) = - ( 1  - t l+ '~)  1/2 satisfies conditions (2.27) for t E (0, to). 

The surface Oft n {]x3i < e} is noncharacteristic, and hence admissible, away 

from a neighborhood of  its intersection with the plane x~ = 0. To complete the 

proof  of  the theorem it is enough to show that Oft is admissible in a neighborhood 

of  (0, 1, 0). Here,  01l can be parameterized as follows: 

x~ ( ( 1 - ~ )  '/<l+<':~ ~c<"+'~x'/~ = - z l  ) :=~(z l ,z3) .  

We check that the function ~ satisfies condition (2.23). To this end, as suggested 

by (2.20), we consider the vector fields )(1 = 01, )f2 = Ixllalo~, X3 = Ix11~103. 

We have to check 

(2.33) 
-- 27 " ~ ( d 2 - 2 ) / ( d l - - 1 )  osc(X'~, ffoox2(~2, r)) ~< r(12,~(~2)1 + IX3~(~2J s + ~.~(~, r), 

i=1 ,3  
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where d2 - 1 + O~ 1 and 

Bo-~2 (&2, r) = {~2 + ]~2: Jhl I < F1 (~72, r) = r, Ih3l < /~3 ( ~ ,  r) = r(lxl ] + r) ~ }. 

Write x = (xl, x3),/~ = (-~1, F3). An easy computation yields 

IXl~(x)l = hl(X)lXll ~'+1 and IX2cp(x)l = h2(x)lx31lx~] ~ ,  

where h~ and h2 are positive Lipschitz continuous functions in a neighborhood 

of  the origin (we do not need their explicit form here). Assume without loss of  

generality Xl, x3 > 0. 

We estimate the left hand side of  (2.33): 

(2.34) 

OSC(21~0 , Bo~-'-x2 (x2, r))  ~ ]h I (X "~ g ( x ,  r ) ) (x  1 -~- r) 2~1"t-1 -- hi (X)Xl2~ I 

+ h~(x + ~(x ,  r))I(x,  + ~)~~247 - x ~ ' + '  I 
~ _~2~i +1 

Here, we have used the Lipschitz continuity of  hi and the estimate IF(x, r)l < r. 
Moreover,  

(2.35) 

osc(.~3~, Bo'-'-x(~2, r)) < Ih~(z + if(x, r))(x~ + ~)~ (x3 + ff3(z~, ~)) - h2(x)x~ ~ x3 ! 

< Ih2(x+-F(x,r))  - h2(x) I x l'~' xz 

+ h~(~ + ~(x,  ~ ) )J(~  + ~)~, ( ~  + ~ ( x ~ ,  ~)) - x ~ x ~  I 

< ~ ' ~  + I(~ + r) ~ (x3 + ~ ( x l ,  r)) - x ~ x ~  I. 

The last term can be evaluated as follows: 

(2.36) 

(xl + r) ~1 (x3 + ~3(xi, r)) - x~l x~ 

< (xl + r) ~I - x~ ~ (x3 + F3 (xl, r)) + x~'~ ((x3 +/~3 (xl, r)) - xa) 

< ~(Xl + ~ )~ -~  + ~ ( x l , r ) ~ '  < ~(xl + ~)~'-~. 

Taking into account (2.34), (2.35), (2.36) and the equivalence A2(&2,r) 
r(xl + r) '~1-1, we conclude that condition (2.33) is implied by 

(Xl "k- r) 2al -k- xC~lx3 h- (Xl -t- r) al-1 ~ (x 1 -k- r) a ' - l ,  

which is trivially satisfied. [] 
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3 D o m a i n s  with admiss ible  boundary  are John domains  

In this section, we prove that admissible domains are John domains. 

Definition 3.1.  A bounded open set f C (II~ n, d) is a John domain if  there 

exist x0 E f and a > 0 such that for  all x E f ,  there exists a continuous curve 

3' : [0, 1] --+ f such that 3"(0) = x, 3'(1) = x0 and 

(3.1) dist(3'(t), Of )  _> adiam(Tl[o,t]). 

A curve satisfying (3.1) is a John curve,  xo is the center and a the John constant  

o f ~ .  

In order to avoid possible confusion concerning definitions, we stress that, in 

general metric spaces, the definition o f  John domain is given with length(3'l[0,t]) 

replacing diam(Tl[0,tl) in (3.1). By a general result due to Mart io and Sarvas [MS, 

Theorem 2.7], such definitions are in fact equivalent in doubling metric spaces 

with geodesics. Moreover,  in our proofs we shall always work with John curves 3' 

satisfying diam(3"l[0,t]) _~ d(3"(t), 3'(0)). 

For  the p roof  o f  the following easy proposition, we refer  to [MM2]. 

Proposition 3.2.  Let f~ C (I~ n , d) be a bounded open set, and  f o r  any r > 0 

define f r  = {Y E f~ : dist(y, Off) > r}. Assume  that there exist r > 0 and a > 0 such 

that f ~  is arcwise  connected and such that f o r  any x E [2, there is a continuous 

curve 3' : [0, 1] --+ f~ such that 3'(0) = x, 3"(1) E f~  and 

(3.2) dist(3'(t), 0~)  > adiam(3'lt0,t]) 

f o r  all t E [0, 1]. Then f is a John domain. 

Now we are able to state our main theorem. 

Theorem 3.3.  I f  f is an open set  with admissible boundary  according to 

Definition 2.8, then it is a John domain in the metric space (~n, d). 

P r o o f .  We use Proposition 3.2. Given ~ E Of ,  we show that there exists 

a n e i g h b o r h o o d / /  of  ~ and a > 0 such that, for all x E f~ M H, there exists a 

curve 7 starting f rom x and satisfying (3.2). The claim follows on choosing by 

compactness a finite covering of  Of .  

Fix ~ E f~ and write 0 f  locally as a graph of  the form xj = ~(~j)  for  some 

j = 1 , . . . , n ,  where ~ is a C 1 function. We begin with the basic case j = n. 

Let  ~ E C 1 (I~ '~-1 ) be a function satisfying the admissibility condition (2.16) and 

assume, for the sake of  simplicity, that f = {xn > ~(xn)}. 
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We have to construct a John curve starting from a point x = ~,~ + x,~e,~ E fh To 

this end, two different situations need to be distinguished: 

maxlXi~o(:~n)l < Xn(~:n) (Case 1), 
(3.3) i<,~ 

max [Xicp(:~,~)[ > ,L~(~n) (Case 2). 
i<n 

In Case 1, the characteristic case, we construct a John curve starting from x of  the 

form x + ten, t > O. In Case 2, the path must be split into two pieces. The first one 

starts from x in the coordinate direction ek, where k < n is such that the derivative 

[Xk~(:Ldl is "maximal" among all the IXir i = 1 , . . . ,  n -  1, and moves in this 

direction for a time t = t-(z) which must be established in a careful way (compare 

(3.7)). The second part of  the path will be of  the form 7(t~ + (t - t-)en. 

First of all, we introduce the following notation: 

vi if r i C O ,  i T ~ n ,  Pi = l/i(~'n) = --OiqO(ffCn), N i  = Iv, l' 

and w(i:,) = Z [ X i ~ ( ~ n ) l "  
iCn 

C a s e  1. Define 

(3.4) 7(t) = x+ten  = 3c ,+(xn+t)e ,  and di - 6(t) = Gn(~ , , t )  " d(3,(t),3,(0)). 

Consider for small a > 0 

Box(y(t),aS) = { ( x n + t + u n F , ( z ,  a6))e ,+~.n+finF,(x ,  aS): luil < 1, i =  1, . . . ,n}.  

Here, fin = (uz, u s , . . . ,  un-1,0). We used Fi(x + ten, 6) = Fi(x, 6). 
We claim that there exists a > 0 independent of  x such that Box(7(t), aS) C f~, 

i .e. ,  such that 

(3.5) z n + t + u n F , ~ ( z ,  aS )>~o(~ ,+ f~nFn( z ,  aS)), ~ > 0 ,  lud < 1. 

This is the John condition (3.2). Since x E f~, xn - qo(~:.) > 0. Take the worst case 

u,~ = - 1  in (3.5). Moreover, F,~(x,a~) < F~(x, 6) = F,~(x, Gn(x, t ) )  = t. Thus, 

condition (3.5) is easily seen to be implied by 

] q O ( X n + s  --qQ(Xn)]_ ( 1 - a ) t ,  6 > 0 ,  I~nl < 1. 

Using the control (2.17) for the oscillation of  ~o, Case I and Proposition 2.2, we 

may estimate the left hand side by 

I~'(~n + ~,,P~(x, a6)) - ~(~n)l -< osc(~,, Box, (e~. a6)) 

aSw(x) + a(fAn(&n, aS)) 

5 aSA.(~.)  + aFn(~n,8)  -~ aFn(~ . ,  8). 
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In the last equivalence, we have used the trivial estimate 5An(i:,,) < Fn(x, 5). Thus, 

(3.5) is implied by aF~(x,5) < aot, where a0 is a small but absolute constant. 

Since t = F~(x, 6), this inequality holds as soon as a < ao. 

C a s e  2. Assume that x satisfies Case 2 in (3.3). Take any k = 1 , . . . ,  n - 1 such 

that 

I ~(~) 
(3.6) I g ~ ( ~ ) l  _> ~ max IX,~'(~,dl > 

(The factors �89 and �88 will become relevant in [MM3], where we prove that 

admissible domains are non-tangentially accessible.) 

Take e0 > 0 and let 6 = 3(z) be the solution of  the equation 

(3.7) 

(The function An(z,-) is a homeomorphism of  [0, ec[ onto itself.) The number e0 

will be fixed and becomes an absolute constant in (3.16). Finally, set t = Fk(z, ~). 
Define the first piece of  the John curve, letting for t E [0, t-] 

7(t) = x + tNkek, and ~ = 6(t) = ak(x ,  t) ~" d(7(0), 7(t)). 

For a > 0, consider the box 

n 

Box(7(t), a6) = { (tNkek + ~ (zi + uiFi(z + tNkek,(ra))ei: lui[ <_ 1, i = 1, . . . ,n}.  
i = l  

We claim that there exist e0, a > 0 independent of  x such that the John condition 

(3.8) Box(7(t) ,a6( t ) )  C a, t E [0, t-] 

holds. Points of  the box belong to Ft as soon as for all u, lull < 1, i = 1 , . . .  ,n,  we 

have 

iT~n 

Take the worst case un = - 1  and use x,~ > ~o(:~,~). The inequality above is implied 

by 

i#n  

which can be rewritten as 

(3.9) I + II + Fn(x + tN~ek, aS) < O, 
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where we set 

II = ~a(tNkek + ~.n) -- ~(~:n). 

We claim that eo in (3.7) can be fixed independently f rom x in such a way that 

1 (3.10) II < -~tluk[ for all t E [0, t-]. 

Indeed, by  the mean value theorem, there exists 0 E [0, 1] such that 

~ ( e ,  + tNkek) - ~(~, )  = Ok~(~.n + OtNkek)tNk 

= cgk~(~c,)tNk + {0k~(~:,, + OtNkek) - O~(~c,,)}tNk 

= -i~'klt + {0k~(~,, + OtNkek)  -- O k ~ ( ~ , ) ) t g ~ .  

Notice that Case 2 in (3.3) ensures vk 4 0 and Ak(~:n) 4 0. The curly brackets 

can be estimated by (2.16) as follows (note that Ak does not depend on xk and 

t = Fk (x, J)): 

1 ^ 
I{Ok~(&n + OtNkek) - 0k~(&n)}l -- Ak(~cn~lXkcp(Xn + OtNkek) -- Xkqo(&n) I 

1 < ~ osc(Xk,;, Box~(~n, ~)) 

1 (,~w(~,,)(d"-~/(~o-~) + A, , ( :~ , , , ,~ ) )  
< ~k(~.) 

1 ((~[Xk~(Xn)[ (dn-2)/(dn-1) + A,~(~n, 5)). < ;~k(~.) 

In the last inequality, we have used (3.6). Now, (3.10) is guaranteed by 

1 1 
(3.11) Co(~lXkqo(.Tn)l (d"-2)/(d'~-l) "1- An(~rn , (~ ) )  <~ ~lPklAk(ffgn) = ~lXk~(~:,~)l, 

where Co is a large but absolute constant. By  H61der's inequality and Proposition 

2.2, 

Co~lXkq~ (d"-2)/(d~-l) <- 4 lXk~(Xn)l ~-C1 ~dn-1 <~ ~lX~(~.)l +C=A.(~.,~), 

where C2 is a new large absolute constant. Using An(~n,6) < An(~n,6) = 

e0lX~a(~n)[ (this is (3.7)), we see that (3.11) is guaranteed by a choice of  eo > 0 

such that 4(Co + C2)eo < 1. 
Now, by the estimate on II, inequality (3.9) is implied by 

1 
(3.12) I+Fn(x+tNke~,aJ)  < 5tirol, t ~ [0, t-]. 
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We claim that this inequality holds as soon as a > 0 is small enough, independent 

of  x. 
First of  all, by (2.17) we find 

I 

<_ osc (~o, Box,,(~:~ + tnk~k, ~ 
< aSw(5:n + tNkek) + a6An(.~,n + tNkek,aS), 

and by (2.16), 

w(~cn + tNkek) = E IXi~(e,~ + tNkek)l 

(3.13) 
_ w(~.) + ~ osc(X~, Box.(~., 6)) 

iCn 

< w(~n) + 5w(~.) (a"-z)/(a"-l) + A.(~:n, 6) 

< w(~.) + A.(~., 6). 

We have once again used HSlder 's  inequality and Proposition 2.2. Since 

A,~(:~. + tNkek, 16) < An(~,~, 6), using w(~:.) _< ]Xk~P(~:,~)I, we get finally 

(3.14) I < a6(Ixk~(~,,)l + A,,(~,,,6)). 

Now we show that the second term in the left hand side o f  (3.12) satisfies the 

same estimate (we will need (2.12)): 

Fn(x + tNkek,a6) <_ aF. (x  + tNkek,6) <~ aFn(x, 5) 

(3.15) = a6.X. (~:,~ + P . ( z ,6 ) )  < a6(h. (~: , .  6) + .X,,(~:,~)) 

< ~6(a.(~.,  6) + IXk~(~.)l). 

Here we have used (3.6). 

Taking into account  (3.14) and (3.15), and recalling that A.  (5:n, 6) < An (~n, $) = 

eolXk~(~.)l, we see that condition (3.12) holds as soon as a6lXk~O(~.)] < tluk[, 
i.e., Coa6lXk~(~n)l < tlukl, i.e., C0aSAk(:~,~) < t for all t > 0. Here Co > 0 is 

a large but absolute constant. This inequality holds if a > 0 is chosen in such a 

way that aCo < 1, because 5Ak(~:,,) < Fk(~,~,6) = t. This proves (3.12) and hence 

claim (3.8), as well. 

Thus far, we have defined a John curve 3' starting from a point x E f t  satisfying 

Case 2 in (3.3) for a time t E [0, t-I, where 

(3.16) t = F k ( x , 5 )  a n d S s o l v e s  A,~(~n,5)=e0lX~o(:~,,)l. 
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The constant e0 > 0 is from now on fixed. Now we define 7 for times t > t. Let 

(3.17) 7(t) = x + tNkek + (t -- {)en, t > t. 

We w r i t e s = t - L  Set 

(3.18) 6 = 5(t) = a + C , , (x , t  - t-) = a + C, , (x ,s )  "~- d("/(O), 7(t)) .  

For a > 0, consider the box 

n 

Box('y(t) ,a5) = {se,, + {Nkek + ~--~(xi + u iF i ( x  + tNkek,aS))ei  : l u i l <  1}.  
i=1 

Since So(Z,,) _< x,,, taking the worst case u?, = - 1 ,  the John condit ion Box(7(t) ,  a5) 

C f~ is implied by 

(3.19) J + J J  + F,,(x + tNkek, o'5) < 8, 

where 

J = q o ( t N k e k  + Z ( x i  +u iF i ( x  +tNkek ,aS) )e i ) - -~o({Nkek  + Y:n), 
i#n 

J J  = qo(tNkek + JCn) -- ~(]Cn). 

By (3.10) with t = {, we have J J  < - �89 luklL Hence, (3.19) is guaranteed by 

1 
(3.20) J + F,,(x + tNkek,aS) <_ s + ~lvklt. 

We begin with the estimate of J. By (2.17), 

J < osc (qo, Boxn(:~n + [Nkek,aS)) 

< o5(w(~ .  + iekN~) + h . ( e , ,  + {e~g~, .a ) ) ;  

and by (3.13), (3.6) and Proposition 2.2 (use 5 < 5), 

~w(~:,, + {ekNk) s aw(~n) -4- ann(&,,, a) s ~]Vkl,,kk (~n) 4- Fn(~n, 5). 

On the other hand, by Proposition 2.2, (2.12), (3.18) and (2.7), 

ah,~(:~,, + &,Nk, a) < Fn(~:,, + EekN,, 5) 

< F.(~, , ,  ~) : F,,(:~n, a + a,,(:~,,, s)) 

s F, , (~. ,8)  + F,,(~,,, C,,(~:,,, s)) = &(:~,,, 8) + s. 

Thus (3.20) is ensured by the inequality 

1 _ 

a(51uklAk(&,~) + Fn(:i:n,6) + s) ~< s + 51~,klt, 
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which reduces (recall that ~ - 6 = Gn(z,6),  by (3.18)) to 

(3.21) ~Co(~l"klAk(~.) + Gn(G~, s)Ak(G~) + F,~(2n, ~)) _< s + luklK 

for some large absolute constant Co > 0. If we put s = 0 in (3.21), we get 

which holds for a small enough (we have already proved this when we proved 

(3.12); see also (3.14), (3.15) and (3.7)). 

To complete the estimate (3.21), it is enough to show that 

(3.22) aG,~(~:,~, s).~k(~:n)l~'kl ___ s + I~'klL for all s > 0, 

as soon as a > 0 is small enough, independently of z. Now, (3.22) is equivalent to 

G,~(:~,~,s)<s+lvkl--------- ~ r  s < f , ~ ( ~ , ~ , s + l v k l t )  
- '~,~kl~kl -- ~,Xml~'kl/" 

Notice that the function fn(G~, r) = 1 ; F,~ (G~, r) is increasing in the variable r. From 

s + [vklt > [vklt = IvklFk(:~n,6) > Ivkl~)~k(:~n) > Crlvkl6Ak(~n) 

it follows that 

fn (xn ,  s + I~'kl~ ~,,Xkl~'kl J ----- fn (z ,~ )  > An(i:n,N), 

by Proposition 2.2. Finally, recalling (3.7), we find that (3.22) is implied by 

s + l u k l t  , , .  e0 
s _< ~;-r~:---rr-' I ZX'~tZr~' ~) ~ ~)l~'k = --(S,r + I~'k It-), 

which holds for all s > 0 as soon as a _< e0. This proves (3.19) and completes the 

discussion of  Case 2 and of  the parameterization z,~ = ~(i:,,). 

Now assume that :~ E Oft is a point such that for a neighborhood L / o f  :~ the 

piece of  boundary Oft r3/ / is  a surface of  type {x~ = ~o(~j)} for some j 7~ n and for 

some function q0 of  class C 1 which satisfies the admissibility condition (2.23). We 

explain how to construct a John curve starting from points z E/-/N {zj > qo(~3)}. 

The functions ~i and the vector fields Xi are defined in (2.20). By d'we denote 

the metric induced on I1~ n by the vector fields ,~i. The boxes Bo'-'-x3 (~:~, r) and the 

function Aj have been defined in (2,21) and (2.22), respectively. Without loss of  

generality, we can assume H C {Iz, I < 1 : i = 1, ...,n} and 10i~(i:,)l _< 1, i > j .  

Then 13fi~,(~/)l _< ~3(i:~), for all i > j .  Thus the distinction of  cases (3.3) simply is 

maxlJ(iq~(~:j)l < ~ ( i : j )  (Case 1), 
i<j 

max 12,~o(i:3) I > X~(i:j) (Case 2). 
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In Case 1, we define a curve 7 moving directly in the direction ej, analogously to 

(3.4). In Case 2, we first define "y(t) = x + tNk, where k = 1, . . . , j  - 1 is any index 

such that 

and t E [0, t-I, where now t = Fk(~?j, 5) and ~ solves Aj(~cj, 5) = eOl.Xk~a(~cj)} instead 

of  (3.7). Then we let ~, move  in the direction ej, analogously to (3.17). 

The curve 7 so defined satisfies, for some a > 0 independent of  x, the John 

condition with respect to the metric d, i .e . , /3(7( t ) ,  adia'--m(71[0.t])) C ft, t E [0, 1], 

where B denote balls in the metric d. The proof  of  this is exactly the same as for 

the case j = n. By Proposition 2.6 (ii) it follows that diam(Tl[0,t]) ~ diam(7]10.tl) 

and by (i) it also follows that B(7(t) ,  adiam(71[0,tl)) C ft. This remark ends the 

proof  o f  the theorem. [] 

Appendix 

P r o o f  o f  P r o p o s i t i o n  2.2.  

generality xi > 0, i = 1, ..., n - 1. 

(2.15) is equivalent to 

Let  ~2,~ E IR "-1 and assume without loss o f  

Take a < 1. The "reverse doubling" property 

A,~(x,R) - An(x, aR) > ,7(1 - a) 

An(x, aR) - a 

It is easy to see that An(x, t) ,~-x ~j , - 1  ~, = I-/5=1 (x~ + Fy (x, t)) - I-[3=1 x j . .  Then 

- -  - -  l-Ij----1 (Xj -I" f j ( x , t ~ ) )  - Y I j : I  (x j  + Fj (x ,a]~) )  ~ An(x, R) An(x, aR) n-1 oti n-1 

An(x, aR) ,~-1 IIj_-i (xj + Fj(x,  a n ) )  ~ - 
N 

D 

To write N,  recall that given nonnegative numbers mj  < Mj, j = 1 , . . .  ,p, the 

difference o f  their products can be written as 

(A.I) 
P k--1 p 

M1M2"" M , - m l m ~ . . . r n p  = Z ( M k -  ink) H Mi H mi. 
k = l  i = l  i = k + l  
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Then 
n - 1  

N :  ~ { ( ~  + v~(~, R)) ~ - ( ~  + F~(~, oR)) ~ } 
k = l  

k--1 n - -1  

�9 IX (xi + F,(x,R)) ~'' IX (xi + F,(x, aR)) ~' 
/ : 1  i:kq-1 

n - - I  

k = l  

k--1  n - -1  

�9 I X  (Xi-Jr S i ( x , a ~ ) )  ~ ~ X7 i. 
i=l i:kq-1 

Now note that, letting F~ (x, t) = tfk (x, t) (see (2.4)), we get 

Fk (x, R) - Fk (z, aR) = Rfk (x, R) - aRfk (x, aR) 

> R(1 - a)h(x ,  aR) - 1 - aFk(x, aR)" 
a 

Then 

Y~> 
_ n - - 1  k - 1  n - - 1  

oti 1 a ~ a k F k ( x ,  aR)(xk + Fk(x, aR)) ~k-z I t  (xi +F,(x,  aR)) ~' H xi 
~2 

k : l  / : 1  i : k q - 1  

l - a  
-- D~ 

again by (A.I) and (2�9149 
concluded�9 

Thus N / D  > a ~-a Therefore the proof of  (2�9 is - -  a " 

To prove the remaining statements, use again (A. 1) and (2.14) to write 

(A.2) 
n - - I  k - - I  

A~(~,n) ~_ Z ~F~(~,R)(~ + F~(~,n)) ~ IX (~' + F'(~,  n ) )  ~' 

n--I 

I I x 7  ' 
i = k + l  

n - -1  

I I x ~  , 
i=k-t-1 k = l  i = 1  

Now, for any k = 1, ..., n - 1, 

k - I  

~kFk(x,R)(xk + Fk(x,R)) ~ - 1  I I  (xi + Fi(x,R)) ~' 
i=1 

Then the second statement follows�9 

o f  An(x , r )  given in (A.2), together with (2.6), 

An(x, 2r) _< CAn(x, r). 

n- -1  

< ak IX (xi + Fi(x,  R)) ~' 1 _ = ~ F , , ( ~ ,  n) .  
i = 1  

Incidentally, note that the explicit estimate 
shows the doubling property 
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Finally, in order to prove that An(~:,~,R)) > R d"-x it is enough to estimate 

from below the right hand side of  (A.2) using xj + Fj(x, R) > Fj(x, R) >_ Fj(O, R), 
j =  1 , . . . , n :  

n--I k - I  n - I  

H (F,(o,n)) 1-[ 
k=l  i=1 i = k + l  

(F,(0, n))  = CR 

This ends the proof. [] 
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