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Abstract. We prove that the boundary of H-perimeter minimizing sets in the

Heisenberg group can be approximated by graphs that are intrinsic Lipschitz in

the sense of [10]. The Hausdorff measure of the symmetric difference in a ball of

graph and boundary is estimated by excess in a larger concentric ball. This result is

motivated by a research program on the regularity of H-perimeter minimizing sets.

1. Introduction

The Heisenberg group is the set Hn = Cn×R, n ≥ 1, with group law ∗ : Hn×Hn →
Hn, (z, t) ∗ (ζ, τ) =

(
z + ζ, t + τ + Q(z, ζ)

)
, where Q : Cn × Cn → R is the bilinear

form

Q(z, ζ) = 2Im
( n∑
j=1

zj ζ̄j

)
, z, ζ ∈ Cn.

We identify the element z = x+ iy ∈ Cn with the pair (x, y) ∈ R2n. The Lie algebra

of Hn is generated by the horizontal left invariant vector fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n. (1.1)

These vector fields span a distribution of 2n-dimensional planes that is called hori-

zontal distribution.

In Section 2, we recall the definition of several objects depending on the horizon-

tal distribution. The H-perimeter of a measurable set in Hn is the total variation

of its characteristic function in horizontal directions. We also introduce a distance

with its balls Br(p) and Br = Br(0), p ∈ Hn and r > 0, that is equivalent to the

Carnot-Carathéodory distance. Using this distance one can define a family of Haus-

dorff measures Ss, s ≥ 0. In particular, the measure S2n+1 is strictly related to

H-perimeter, see (2.4). Finally, in Section 4 we recall the central notion of intrinsic

Lipschitz graph, see Definition 4.6.

Aim of this paper is to prove the following theorem.
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Theorem 1.1. Let L > 0 be a constant, that is suitably large when n = 1. For any

set E ⊂ Hn that is H-perimeter minimizing in Bkr with 0 ∈ ∂E and r > 0, there

exists an intrinsic L-Lipschitz graph Γ ⊂ Hn such that

S2n+1
(
(Γ∆∂E) ∩Br

)
≤ c (kr)2n+1Exc(E,Bkr), (1.2)

where k > 1 is a large geometric constant, c > 0 is a constant depending on n and L,

and Exc denotes the horizontal excess, see Definition 3.1.

The reader is invited to consider the precise formulation given in Theorem 5.1. When

n = 1, the theorem holds only for Lipschitz constants L that are large enough.

Geometric measure theory in the Heisenberg group started from the pioneering

work [9] and now there is a wide literature in the area. One of the most important

open problems is the regularity of sets that are H-perimeter minimizing. The issue

of regularity is also relevant in the resolution of the Heisenberg isoperimetric prob-

lem. All known regularity results assume some strong apriori regularity and/or some

restrictive geometric structure of the minimizer, see [7], [6], [5], and [19]. On the

other hand, there are examples of minimal surfaces in Hn with n = 1 that are only

Lipschitz continuous in the standard sense, see for instance [16] and [17].

The first step in the regularity theory is a good approximation of the boundary

of minimizing sets. In De Giorgi’s original approach, the approximation is made by

convolution and the techniques rely on the monotonicity formula (see, e.g., [12]).

The validity of a monotonicity formula for H-perimeter, however, is not clear. A

more flexible approximation scheme is via Lipschitz graphs (see, e.g., [18]). The

approximation of area minimizing integral currents of general codimension by means

of multiple valued Lipschitz functions is one of the central results of Almgren’s book

[1, Chapter 3]. These results have been recently improved in [8].

In this paper, we follow the Lipschitz approximation scheme. The boundary of

sets with finite H-perimeter is not rectifiable, and, in fact, it may have fractional

Hausdorff dimension (see [13]). Nevertheless, the notion of intrinsic graph turns out

to be effective in the approximation. The starting point is the analysis of pair of

points with small horizontal excess and then we use some ideas from [2, Sections 4.3,

4.4] to prove Theorem 5.1.

The second step in the regularity theory is the harmonic approximation. Elliptic

estimates imply the decay estimate for excess and this, in turn, yields the interior

partial regularity of the support of the current (the regularity of the reduced boundary

for perimeter minimizing sets, respectively). In the Heisenberg group, the harmonic

approximation with its various adaptations cannot be easily implemented and, so far,

the regularity problem remains open.
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Section 2 fixes notation and definitions. In Section 3, we prove some auxiliary

results on sets with zero or small horizontal excess in a ball, see in particular Propo-

sitions 3.7, 3.9, and 3.10. In Section 4, we start the construction of the intrinsic Lip-

schitz approximation (see Propositions 4.1 and 4.2) and we prove a covering lemma

(see Theorem 4.14). Finally, in Section 5 we prove Theorem 5.1.

Acknowledgements. It is a pleasure to acknowledge with gratitude L. Ambrosio

and D. Vittone for their careful reading of an early version of this paper.

2. Preliminary definitions and results

For any p = (z, t) ∈ Cn × R = Hn we let ‖p‖ = max{|z|, |t|1/2}. The homogeneous

norm ‖ · ‖ satisfies the triangle inequality

‖p ∗ q‖ ≤ ‖p‖+ ‖q‖, p, q ∈ Hn. (2.1)

Moreover, the function d : Hn × Hn → [0,∞), d(p, q) = ‖p−1 ∗ q‖, is a left invariant

distance on Hn equivalent to the Carnot-Carathéodory distance. Using this distance,

we define the ball centered at p ∈ Hn and with radius r > 0

Br(p) =
{
q ∈ Hn : d(p, q) < r

}
= p ∗

{
q ∈ Hn : ‖q‖ < r

}
. (2.2)

In the case p = 0, we let Br = Br(0).

The horizontal divergence of a vector valued function ϕ ∈ C1(Hn;R2n) is

divHϕ =
n∑
j=1

Xjϕj + Yjϕj+n.

This is the standard divergence of the vector field
∑n

j=1 ϕjXj + ϕj+nYj with respect

to the Lebesgue measure L2n+1, that is the Haar measure of Hn. A measurable set

E ⊂ Hn is of locally finite H-perimeter in an open set Ω ⊂ Hn if there exists a

R2n-vector valued Radon measure µE on Ω such that∫
E

divHϕdp = −
∫

Ω

〈ϕ, dµE〉

for all ϕ ∈ C1
c (Ω;R2n). Here, 〈·, ·〉 denotes the standard scalar product in R2n. We

denote by |µE| the total variation measure of µE. If |µE|(Ω) <∞ we say that E has

finite perimeter in Ω. We also use the notation

P (E;B) = |µE|(B),

for any Borel set B ⊂ Ω, to denote the H-perimeter of E in B. When B = Hn

we write P (E) = P (E;Hn). By Radon-Nykodim theorem (equivalently, by Riesz

representation theorem), there exists a Borel function νE : Ω→ R2n such that µE =

νE|µE|. Moreover, we have |νE| = 1 |µE|-a.e. in Ω. The function νE is called measure

theoretic inner normal.
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When E is a set with Lipschitz boundary ∂E, the Heisenberg perimeter of E can

be represented by the following area formula

P (E; Ω) =

∫
∂E∩Ω

( n∑
j=1

〈N,Xj〉2 + 〈N, Yj〉2
)1/2

dH2n, (2.3)

where N is the standard unit normal to ∂E, 〈·, ·〉 is the standard scalar product of

vectors of R2n+1, andH2n is the standard 2n-dimensional Hausdorff measure of R2n+1.

The measure theoretic boundary of a measurable set E ⊂ Hn is

∂E =
{
p ∈ Hn : |E ∩Br(p)| > 0 and |Br(p) \ E| > 0 for all r > 0

}
.

Here and in the sequel, we denote by |E| = L2n+1(E) the Lebesgue measure of E.

Assume that E has locally finite H-perimeter in Hn. The reduced boundary of E is

the set ∂∗E of all points p ∈ Hn such that the following three conditions hold:

(1) |µE|(Br(p)) > 0 for all r > 0;

(2) We have

lim
r→0

1

|µE|(Br(p))

∫
Br(p)

νE d|µE| = νE(p);

(3) There holds |νE(p)| = 1.

This definition is introduced and studied in [9].

The Heisenberg perimeter has the following representation in terms of Hausdorff

measures. For any s ≥ 0 we denote by Ss the spherical Hausdorff measure in Hn

constructed with the left invariant metric d. Namely, for any set E ⊂ Hn we let

Ss(E) = sup
δ>0
Ssδ (E)

where

Ssδ (E) = inf
{∑

i∈N

(diamBi)
s : E ⊂

⋃
i∈N

Bi, Bi balls as in (2.2), diam(Bi) < δ
}
,

and diam is the diameter in the distance d. Then there exists a constant δ(n) > 0

depending on n ∈ N such that for any set E ⊂ Hn with locally finite H-perimeter

and for any Borel set B ⊂ Hn we have

P (E,B) = δ(n)SQ−1
(
∂∗E ∩B

)
, (2.4)

where the integer Q = 2n + 2 is the homogeneous and metric dimension of Hn.

Formula (2.4) is proved in [9].

Definition 2.1. Let Ω ⊂ Hn be an open set. A set E ⊂ Hn with locally finite

H-perimeter in Ω is H-perimeter minimizing in Ω if for all p ∈ Hn and r > 0 and for

any F ⊂ Hn such that E∆F ⊂⊂ Br(p) ⊂ Ω we have

P (E,Br(p)) ≤ P (F,Br(p)). (2.5)
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Sets that are H-perimeter minimizing admit lower and upper density estimates

with geometric constants. The proof of the following lemma is well known in the case

of the standard perimeter.

Lemma 2.2. Let E ⊂ Hn be an H-perimeter minimizing set in Br for some r > 0.

Then we have

P (E,Br) ≤ c1r
Q−1, (2.6)

where c1 = P (B1).

Proof. Let 0 < s < r. Since the sets E and E \Bs agree inside Br \ B̄s, we have

P (E,Br \ B̄s) = P (E \Bs, Br \ B̄s) = P (E \Bs, Br)− P (E \Bs, B̄s).

On the other hand, using P (E \Bs, Bs) = 0 and (2.4) we obtain

P (E \Bs, B̄s) = P (E \Bs, ∂Bs) = δ(n)SQ−1(∂∗(E \Bs) ∩ ∂Bs)

≤ δ(n)SQ−1(∂Bs) = P (Bs) = c1s
Q−1.

The formula P (Bs) = sQ−1P (B1) follows by an elementary homogeneity argument.

Then we obtain the inequality P (E \ Bs, Br) ≤ P (E,Br \ B̄s) + c1s
Q−1. For E is

H-perimeter minimizing in Br, by (2.5) we get

P (E,Br) ≤ P (E \Bs, Br) ≤ P (E,Br \ B̄s) + c1s
Q−1,

and, letting s ↑ r, we obtain (2.6). �

The proof of the following lemma is in [19], Proposition 2.14 (see also Theorem

2.4).

Lemma 2.3. There exist constants c2, c3 > 0 depending on n ≥ 1 such that for any

set E ⊂ Hn that is H-perimeter minimizing in B2%, % > 0, we have, for all p ∈ ∂E∩B%

and for all 0 < r < %,

min
{
|E ∩Br(p)|, |Br(p) \ E|

}
≥ c2r

Q, (2.7)

and

P (E,Br(p)) ≥ c3r
Q−1. (2.8)

We always have the inclusion ∂∗E ⊂ ∂E. This follows from the structure theorem

for sets with locally finite H-perimeter of [9]. If we also have the uniform density

estimate (2.8), then the difference ∂E \ ∂∗E is negligible.

Lemma 2.4. Let E ⊂ Hn be an H-perimeter minimizing set in an open set Ω ⊂ Hn.

Then we have

SQ−1
(
(∂E \ ∂∗E) ∩ Ω

)
= 0. (2.9)
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Proof. Let K = (∂E \ ∂∗E) ∩ Ω, let A ⊂ Ω be an open set containing K, and fix

δ > 0. For any p ∈ K there is an 0 < rp < δ/10 such that B5rp(p) ⊂ A. Then

{Brp(p) : p ∈ p ∈ K} is a covering of K and by the 5-covering lemma, there exists a

sequence pi ∈ K, i ∈ N, such that the balls Bi = Bri(pi), with ri = rpi , are pairwise

disjoint and

K ⊂
⋃
i∈N

B5ri(pi).

It follows that

SQ−1
δ (K ∩ A) ≤

∑
i∈N

diam(B5ri(pi))
Q−1 = 10Q−1

∑
i∈N

rQ−1
i

≤ 10Q−1c−1
3

∑
i∈N

P (E,Bri(pi)) ≤ 10Q−1c−1
3 P (E,A).

Because δ > 0 is arbitrary, we deduce that SQ−1(K) ≤ 10Q−1c−1
3 P (E,A). As A is

arbitrary and, by (2.4), P (E,K) = 0, we conclude that SQ−1(K) = 0. �

The density estimates (2.6), (2.7), and (2.8) are the unique facts concerning H-

perimeter minimizing sets that are used in the rest of the paper.

3. Sets with locally constant measure theoretic normal

In this section, we discuss some properties of sets in Hn having zero or small excess

in a ball. In the following, we let m = 2n − 1 and Sm =
{
ν ∈ R2n : |ν| = 1

}
. With

abuse of notation, we identify ν ∈ Sm with (ν, 0) ∈ R2n × R = Hn.

Definition 3.1 (Excess). Let E ⊂ Hn be a set of locally finite H-perimeter, p ∈ Hn,

and r > 0. For any ν ∈ Sm, we define the ν-directional (horizontal) excess of E in

Br(p)

Exc(E,Br(p), ν) =
1

rQ−1

∫
Br(p)

|νE(q)− ν|2d|µE|.

The (horizontal) excess of E in Br(p) is

Exc(E,Br(p)) = min
ν∈Sm

Exc(E,Br(p), ν).

Remark 3.2. (i) Using |ν| = 1 and |νE| = 1 |µE|–a.e., we obtain the equivalent

definition

Exc(E,Br(p)) =
2

rQ−1
min
ν∈Sm

{
|µE|(Br(p))− 〈ν, µE(Br(p))〉

}
. (3.1)

The minimum is achieved at the vector ν = µE(Br(p))/|µE(Br(p))|, when µE(Br(p)) 6=
0, and we have

Exc(E,Br(p)) =
2

rQ−1

{
|µE|(Br(p))− |µE(Br(p))|

}
. (3.2)
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(ii) By the continuity of measures on increasing sequences of sets, we have

lim
s↑r

Exc(E,Bs(p)) = Exc(E,Br(p)). (3.3)

(iii) If Br(p) ⊂ B%(q) we also have the monotonicity

r2n+1Exc(E,Br(p)) ≤ %2n+1Exc(E,B%(q)). (3.4)

Lemma 3.3. Let E,Eh ⊂ Hn, h ∈ N, be sets of locally finite H-perimeter such that

µEh
⇀ µE in the weak sense of Radon measures, as h → ∞. Then for any ν ∈ Sm,

p ∈ Hn, and r > 0 we have∫
Br(p)

|νE(q)− ν|2d|µE|(q) ≤ lim inf
h→∞

∫
Br(p)

|νEh
(q)− ν|2d|µEh

|(q). (3.5)

In particular, we have the lower semicontinuity of excess

Exc(E,Br(p)) ≤ lim inf
h→∞

Exc(Eh, Br(p)). (3.6)

Proof. For a.e. s > 0 we have |µE|(∂Bs(p)) = 0. By the weak convergence of Radon

measures, we have for any such s∫
Bs(p)

|νE(q)− ν|2d|µE|(q) = lim
h→∞

∫
Bs(p)

|νEh
(q)− ν|2d|µEh

|(q). (3.7)

Approximating r > 0 by an increasing sequence of s such that (3.7) holds, we obtain

(3.5).

The same argument starting from (3.2) proves (3.6).

�

The automorphisms δλ : Hn → Hn, λ > 0, of the form

δλ(z, t) = (λz, λ2t), (z, t) ∈ Hn,

are called dilations. We use the abbreviations λp = δλ(p) and λE = δλ(E), for p ∈ Hn

and E ⊂ Hn. Left translations τq : Hn → Hn

τq(p) = q ∗ p, p, q ∈ Hn, (3.8)

and rotations of the form

(z, t) 7→ (Tz, t), (z, t) ∈ Hn, with T ∈ U(n) (3.9)

are isometries of Hn with the distance d.

The proof of the following lemma follows elementarly from the invariance properties

of H-perimeter and we omit it.

Lemma 3.4. Let E ⊂ Hn be a set with locally finite H-perimeter, p ∈ Hn, and r > 0.

(i) For any λ > 0

Exc(λE,Bλr(λp)) = Exc(E,Br(p)). (3.10)
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(ii) For any isometry T : Hn → Hn

Exc(T (E), T (Br(p))) = Exc(E,Br(p)). (3.11)

The proof of the following lemma is in [15, Lemma 2.1]. Recall that a horizontal

left invariant vector field Z in Hn is a linear combination with constant coefficients

of the vector fields X1, . . . , Xn, Y1, . . . , Yn.

Lemma 3.5. Let E ⊂ Hn be a set with finite H-perimeter in Br, r > 0, and let Z be

a horizontal left invariant vector field such that∫
E

Zϕ(p) dp ≤ 0 for all ϕ ∈ C1
c (Br) with ϕ ≥ 0. (3.12)

Then for any L2n+1-measurable set A ⊂ Br we have |E ∩ A| ≤ |E ∩ exp(sZ)(A)| for

all s ≥ 0 such that exp(sZ)(A) ⊂ Br.

In the following proposition, we require n ≥ 2. This is a localized version of an

important lemma in the theory of sets with finite horizontal perimeter, see [9]. See

also [14] for the problem of characterizing sets with constant horizontal normal in the

Engel group.

Proposition 3.6. Let E ⊂ Hn, n ≥ 2, be a set with finite H-perimeter in Br(q),

q ∈ ∂E and r > 0, and let ν ∈ Sm. If νE(p) = ν for |µE|-a.e. p ∈ Br(q) then, up to a

L2n+1-negligible set, we have

E ∩Br(q) =
{
p ∈ Br(q) : 〈ν, q−1 ∗ p〉 > 0

}
. (3.13)

Proof. Possibly modifying E in a L2n+1-negligible set, we can assume that E coincides

with the set of its Lebesgue points:

E =
{
p ∈ Hn : lim

r↓0

|E ∩Br(p)|
|Br(p)|

= 1
}
. (3.14)

By (3.11) and (3.8)-(3.9), we can assume that ν = (1, 0, . . . , 0) and q = 0. Thus, for

any ϕ ∈ C1
c (Br;R2n) we have∫

E

divHϕ(p) dp = −
∫
Hn

〈ϕ, νE〉d|µE| = −
∫
Hn

ϕ1d|µE|.

Then (3.12) holds with Z = X1 and it follows that

p ∈ E ∩Br ⇒ exp(sX1)(p) ∈ E for s > 0, (3.15)

as long as exp(sX1)(p) ∈ Br.

Condition (3.12) holds also with Z ∈ {±X2, . . . ,±Xn,±Y1, . . . ,±Yn
}

. In particu-

lar, the positive and negative flow along Z preserves Lebesgue measure. Thus

p ∈ E ∩Br ⇒ exp(sZ)(p) ∈ E for s ∈ R, (3.16)



LIPSCHITZ APPROXIMATION 9

as long as exp(sZ)(p) ∈ Br. Finally, for s ∈ R consider the mappings Φs,Ψs : Hn →
Hn

Φs(p) = exp(−sY2) exp(−sX2) exp(sY2) exp(sX2)(p) = p ∗ (0,−4s2),

Ψs(p) = exp(−sX2) exp(−sY2) exp(sX2) exp(sY2)(p) = p ∗ (0, 4s2).

Then we have

p ∈ E ∩Br ⇒ Φs(p),Ψs(p) ∈ E for s > 0 small enough. (3.17)

If 0 ∈ ∂E ∩Br, from (3.15)–(3.17) it follows that E ∩Br =
{
p ∈ Br : p1 > 0

}
. �

When n = 1, the situation is different. Let Z be a horizontal left invariant vector

field. We say that a set E ⊂ H1 is Z-ruled in a set A ⊂ H1 if

p ∈ E ∩ A ⇒ exp(sZ)(p) ∈ E

for all s ∈ R such that exp(sZ)(p) ∈ A.

In the following proposition, it will be useful to work with suitable boxes in H1

replacing the balls Br(p). For r > 0 and p ∈ H1, we let

Qr =
{

(x, y, t) ∈ H1 : |x| < r, |y| < r, |t| < r2
}
,

Qr(p) = p ∗Qr.
(3.18)

For r > 0 and (y0, t0) ∈ R2, we also define

Dr =
{

(y, t) ∈ R2 : |y| < r, |t| < r2
}
,

Dr(y0, t0) =
{

(y, t) ∈ R2 : |y − y0| < r, |t− t0| < r2
}
.

(3.19)

Proposition 3.7. Let E ⊂ H1 be a set with finite H-perimeter in Q4r, r > 0, with

0 ∈ ∂E. Assume that νE(p) = (1, 0) ∈ S1 for |µE|-a.e. p ∈ Q4r. Then there exists a

function g : Dr → (−r/4, r/4) such that:

(i) Up to an L3-negligible set we have

E ∩Qr =
{

(x, y, t) ∈ Qr : x > g(y, t)
}
.

(ii) g(0) = 0 and for all (y, t), (y′, t′) ∈ Dr

|g(y, t)− g(y′, t′)| ≤ |y − y′|+ 1

2r
|t− t′|. (3.20)

(iii) The graph of g is Y1-ruled in Qr and namely

g(y, t) = g(0, t+ 2yg(y, t)), (y, t) ∈ Dr. (3.21)

Proof. As in the proof of Proposition 3.6, we can assume that

E =
{
p ∈ H1 : lim

s↓0

|E ∩Bs(p)|
|Bs(p)|

= 1
}
.
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For any α, β ∈ R with α ≥ 0, let Z = αX1 + βY1. Then, for any ϕ ∈ C1
c (Q4r) with

ϕ ≥ 0, we have ∫
E

Zϕdp = −α
∫
Q4r

ϕd|µE| ≤ 0.

By Lemma 3.5, it follows that

p ∈ E ∩Q4r ⇒ exp(sZ)(p) ∈ E, (3.22)

for all s ∈ R such that exp(sZ)(p) ∈ Q4r.

For any point q ∈ E ∩Q2r consider the set Eq = q−1 ∗E. The set Eq has constant

measure theoretic normal (1, 0) ∈ S1 in Q2r. We apply (3.22) to the set Eq starting

from the point p = 0 ∈ Eq. We deduce that{
(x, y, 0) ∈ Q2r : x > 0

}
⊂ Eq.

Then we apply apply (3.22) to the set Eq starting from a generic point p = (x, y, 0) ∈
Q2r ∩ Eq with |y| < 2r and x > 0, and we let x→ 0. We deduce that{

(x, y, t) ∈ Q2r : x > 0, |t| < 4rx
}
⊂ Eq.

In other words, we have

q ∈ E ∩Q2r ⇒ q ∗
{

(x, y, t) ∈ Q2r : x > 0, |t| < 4rx
}
⊂ E. (3.23)

From (3.23), it follows that E∩Q2r∩{y = 0} is a planar set with the cone property,

the cones having all axis parallel to the x-axis and aperture 4r. We deduce that there

exists a Lipschitz function h : (−r2, r2)→ R such that:

(a)
{

(x, t) ∈ R2 : (x, 0, t) ∈ E
}

=
{

(x, t) ∈ D2r : x > h(t)
}

;

(b) |h(t)− h(t′)| ≤ 1

4r
|t− t′| for all t, t′ ∈ (−r2, r2).

Because 0 ∈ ∂E, we infer that h(0) = 0. From (3.23), we also deduce that ∂E is

Y1-ruled in Q2r. Then we have

∂E ∩Q2r =
{

(h(τ), σ, τ − 2σh(τ)) ∈ H1 : (σ, τ) ∈ D2r

}
. (3.24)

For any (y, t) ∈ Dr, the system of equations

σ = y, τ − 2σh(τ) = t

has a unique solution (σ, τ) ∈ D2r. This is an easy consequence of the Banach fixed

point theorem and we omit the details. We claim that the solution τ = τ(y, t) of

the equation τ − 2yh(τ) = t is Lipschitz continuous. Namely, by (b), we have for

(y, t), (y′, t′) ∈ Dr

|τ(y, t)− τ(y′, t′)| = |t− 2yh(τ(y, t))− t′ + 2y′h(τ(y′, t′))|

≤ |t− t′|+ 2|y||h(τ(y, t))− h(τ(y′, t′))|+ 2|h(τ(y′, t′))||y − y′|

≤ |t− t′|+ 1

r
|τ(y, t)− τ(y′, t′)|+ 1

2r
|τ(y′, t′)||y − y′|,
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and this implies

|τ(y, t)− τ(y′, t′)| ≤ 4r|y − y′|+ 2|t− t′|. (3.25)

The function g = h ◦ τ satisfies (i), (ii), and (iii). In particular, (3.20) follows from

(3.25), and (3.21) follows from (3.24). Finally, |g(y, t)| < r/4 follows from (b). �

Remark 3.8. If in Proposition 3.7 the radius r can be taken arbitrarly large, then

from (3.20) we deduce that the function g does not depend on t. Then from (3.21),

we deduce that g does not depend on y, either. Thus E is a vertical half-space.

Proposition 3.9. Let n ≥ 2. For any 0 < τ < 1 there exists an η > 0 such that for

all p ∈ Hn, r > 0, ν ∈ Sm, and for any set E ⊂ Hn that is H-perimeter minimizing

in B3r(p) with p ∈ ∂E we have

Exc(E,B3r(p), ν) < η ⇒ P
(
E,Br(p ∗ q)

)
> 4τω2n−2r

Q−1

for all q ∈ B2r such that 〈q, ν〉 = 0. Above, ω2n−2 is the Lebesgue measure of the

standard unit ball in R2n−2.

Proof. By contradiction, there exists 0 < τ < 1 such that for all h ∈ N there are

ph ∈ Hn, rh > 0, νh ∈ Sm and qh ∈ B2rh such that 〈qh, νh〉 = 0, and sets Eh ⊂ Hn

that are H-perimeter minimizing in B3rh(ph) with ph ∈ ∂Eh such that

Exc(E,B3rh(ph), νh) <
1

h
and P

(
Eh, Brh(ph ∗ qh)

)
≤ 4τω2n−2r

Q−1
h .

By (3.10) and (3.11), we can assume that rh = 1, ph = 0, and qh ∈ B2. Moreover, by

compactness we can assume that νh → ν, qh → q ∈ B̄2 with 〈q, ν〉 = 0.

By the compactness theorem for sets with finite H-perimeter, [11, Sec. 4], we can

assume that, up to a subsequence, Eh → E as h → ∞ in the L1(B3)-convergence of

characteristic functions, for some set E ⊂ Hn with finite H-perimeter in B3.

As 0 ∈ ∂Eh, by (2.7), we have for 0 < r < 1

min
{
|Eh ∩Br|, |Br \ Eh|

}
≥ c3r

Q. (3.26)

Passing to the limit as h → ∞ in (3.26), we obtain the same estimate for the set E

and thus 0 ∈ ∂E.

Passing to the limit as h→∞ in

Exc(Eh, B3, νh) <
1

h
,

using (3.5) and νh → ν, we deduce that Exc(E,B3, ν) = 0 and thus νE(p) = ν for

|µE|-a.e. p ∈ B3. By Proposition 3.6, E coincides in B3 with a vertical half-space

having boundary ∂E orthogonal to ν. As q ∈ ∂E and B1(q) ⊂ B3, we have

P (E,B1(q)) = P (E,B1) = 4ω2n−2.

The exact formula for P (E,B1) follows from the area formula (2.3).
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On the other hand, for any 0 < r < 1 we have

P (E,Br(q)) ≤ lim inf
h→∞

P (Eh, Br(q)) ≤ lim inf
h→∞

P (Eh, B1(qh)) ≤ 4τω2n−2,

and thus P (E,B1(q)) < 4ω2n−2. This is a contradiction. �

Next, we prove a version of Proposition 3.9 in the case n = 1.

Proposition 3.10. There are constants k0, η > 0 such that for all p ∈ H1, r > 0,

ν ∈ S1, k ≥ k0, and for any set E ⊂ H1 that is H-perimeter minimizing in Bkr(p)

with p ∈ ∂E, we have

Exc(E,Bkr(p), ν) < η ⇒ P (E,Br(p ∗ q)) >
r3

32
, (3.27)

for all q ∈ B2r such that 〈q, ν〉 = 0. In fact, we can choose k0 = 370.

Proof. By (3.10) and (3.11), it is enough to prove the proposition for p = 0, ν =

(1, 0) ∈ S1, and r = 1. We replace the balls Br with the boxes Qr introduced in

(3.18). Notice that Qr/2 ⊂ Br ⊂ Qr.

Assume by contradiction that there exist a sequence of sets Eh, h ∈ N, that are

H-perimeter minimizing in Qk/2 with 0 ∈ ∂Eh, and a sequence of points qh ∈ B2 ⊂ Q2

such that 〈qh, ν〉 = 0, and moreover

Exc(Eh, Qk/2, ν) <
1

h
, P (Eh, Q1/2(qh)) ≤

1

32
.

By compactness, we can assume that qh → q ∈ Q̄2 with 〈q, ν〉 = 0. Moreover, by the

compactness theorem for sets with finite H-perimeter we can assume that, up to a

subsequence, Eh → E as h→∞ for some set E ⊂ Hn such that

Exc(E,Qk/2, ν) = 0 and P (E,Q1/2(q)) ≤ 1

32
. (3.28)

By Proposition 3.7, there exists a function g : Dk/8 → R such that:

(i) ∂E ∩Qk/8 =
{

(g(y, t), y, t) ∈ H1 : (y, t) ∈ Dk/8

}
;

(ii) g(0) = 0 and |g(y, t)− g(y′, t′)| ≤ |y− y′|+ 4
k
|t− t′| for all (y, t), (y′, t′) ∈ Dk/8;

(iii) The graph of g is Y1-ruled in Qk/8, and namely for any (y, t) ∈ Dk/8 we have

g(y, t) = g
(
0, t+ 2yg(y, t)

)
. (3.29)

We claim that for any q = (y0, t0) ∈ D̄2, i.e.,

max{|y0|, |t0|1/2} ≤ 2, (3.30)

and for any (y, t) ∈ D1/4(q), i.e.,

max{|y − y0|, |t− t0|1/2} <
1

4
, (3.31)

we have

|g(y, t)| < 1

2
, |y − y0| <

1

2
, |t− t0 − 2y0g(y, t)| < 1

4
. (3.32)
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The inequality |y− y0| < 1/2 is trivially satisfied by (3.31). Moreover, by (3.29), (ii),

(3.30), and (3.31), we have

|g(y, t)| = |g(0, t+ 2yg(y, t))|

≤ 4

k
|t+ 2yg(y, t)|

≤ 4

k

[
|t− t0|+ |t0|+ 2(|y − y0|+ |y0|)|g(y, t)|

]
≤ 1

k

[65

4
+ 18|g(y, t)|

]
.

Then we have for k > 18

|g(y, t)| ≤ 65

4(k − 18)
. (3.33)

This implies |g(y, t)| < 1/2 for k > 51. Moreover, by (3.30), (3.31), and (3.33)

|t− t0 − 2y0g(y, t)| ≤ |t− t0|+ 2|y0||g(y, t)| ≤ 1

16
+

65

k − 18
, (3.34)

and this implies |t− t0 − 2y0g(y, t)| < 1/4 for k ≥ 370.

Then, by (3.31)–(3.34), we have

G =
{(
g(y, t), y, t

)
∈ R3 : (y, t) ∈ D1/4(q)

}
⊂ ∂E ∩Q1/2(q),

and, by the area formula (2.3), it follows that

P (E,Q1/2(q)) ≥
∫
G

√
〈X1, N〉2 + 〈Y1, N〉2dH2,

where N is the standard unit normal to G and H2 is the standard 2-dimensional

Hausdorff measure in R3. We deduce that

P (E,Q1/2(q)) ≥
∫
D1/4(q)

√(
1− 2y∂tg

)2
+
(
∂yg − 2g∂tg

)2
dydt.

By (ii) we have |∂tg| ≤ 4/k a.e. on Dk/8, and thus

∣∣1− 2y∂tg
∣∣ ≥ 1− 2|y|

∣∣∂tg∣∣ ≥ 1− 18

k
>

1

2
,

for k > 36. We conclude that for k ≥ 370, we have

P (E,Q1/2(q)) ≥
∫
D1/4(q)

∣∣1− 2y∂tg
∣∣dydt > 1

2
|D1/4(q)| = 1

32
.

This contradicts (3.28). �
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4. Intrinsic Lipschitz graphs

Let ν ∈ Sm. With abuse of notation, we identify ν with (ν, 0) ∈ Hn. For any

p ∈ Hn, we let ν(p) = 〈p, ν〉ν ∈ Hn and we define ν⊥(p) ∈ Hn as the unique point

such that

p = ν⊥(p) ∗ ν(p). (4.1)

We use the coordinates p = (z, t) ∈ Cn × R and we let

z> = 〈z, ν〉ν and z⊥ = z − z> = z − 〈z, ν〉ν. (4.2)

In the notation for z⊥ and z>, we omit reference to ν. Then we have

ν⊥(p) =
(
z⊥, t−Q(z⊥, z>)

)
. (4.3)

Recall that the homogeneous norm of p = (z, t) ∈ Cn×R is ‖p‖ = max{|z|, |t|1/2}.
By the triangle inequality (2.1), there holds

‖ν(p)‖ = ‖〈ν, p〉ν‖ = |〈ν, z〉| ≤ |z| ≤ ‖p‖, (4.4)

‖ν⊥(p)‖ = ‖p ∗ ν(p)−1‖ ≤ ‖p‖+ ‖ν(p)−1‖ = ‖p‖+ ‖ν(p)‖ ≤ 2‖p‖. (4.5)

Proposition 4.1. Let n ≥ 2 and ν ∈ Sm. For any L > 0 there exists a σ > 0 such

that for all r > 0 and for any set E ⊂ Hn that is H-perimeter minimizing in B3r the

condition

Exc(E,Bs(u), ν) < σ for all 0 < s < 2r and u ∈ {p, q} ⊂ ∂E ∩Br (4.6)

implies

‖ν(q−1 ∗ p)‖ ≤ L‖ν⊥(q−1 ∗ p)‖. (4.7)

Proof. By contradiction, assume that there exists an L > 0 such that for all h ∈ N
there are rh > 0, sets Eh ⊂ Hn that are H-perimeter minimizing in B3rh , and points

ph, qh ∈ ∂Eh ∩Brh such that

Exc(Eh, Bs(u), ν) <
1

h
for all 0 < s < 2rh and u ∈ {ph, qh} (4.8)

and

‖ν(q−1
h ∗ ph)‖ > L‖ν⊥(q−1

h ∗ ph)‖. (4.9)

By (3.10), we can without loss of generality assume that rh = 1 for all h ∈ N. Possibly

taking a subsequence, we can assume that as h→∞ we have:

i) ph → p and qh → q with p, q ∈ B̄1. In particular, passing to the limit in (4.9),

we have

‖ν(q−1 ∗ p)‖ ≥ L‖ν⊥(q−1 ∗ p)‖. (4.10)
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ii) Eh → E in L1(B3), for some set E ⊂ Hn that is H-perimeter minimizing

in B3. This can be proved by the compactness theorem of [11, Sec. 4]. In

particular, by the lower semicontinuity (3.5), we have for any 0 < s < 2, and

in fact for s = 2,

Exc(E,Bs(u), ν) = 0 for u ∈ {p, q}. (4.11)

As in Lemma 3.9, we have p, q ∈ ∂E.

Now there are two cases:

a) ‖ν(q−1 ∗ p)‖ > 0;

b) ‖ν(q−1 ∗ p)‖ = 0.

By (4.11) and Proposition 3.6, the set E coincides in B2(p)∩B2(q) with a vertical

half-space H having boundary orthogonal to ν, with p, q ∈ ∂H. In the case a), this

is a contradiction.

In the case b), we have λh = ‖ν(q−1
h ∗ ph)‖ → 0 as h → ∞, and λh > 0 for all

h ∈ N, by (4.9). Let us define

Fh =
1

λh

(
q−1
h ∗ Eh

)
and vh =

1

λh
(q−1
h ∗ ph), h ∈ N.

Then we have 0, vh ∈ ∂Fh and, by (4.9), 1 = ‖ν(vh)‖ > L‖ν⊥(vh)‖. By (4.1) and

(2.1), we get ‖vh‖ ≤ ‖ν(vh)‖+ ‖ν⊥(vh)‖ ≤ 1 + 1/L.

Let R > 0 be any large number, e.g., R > 1 + 1/L. Possibly taking a subsequence,

we can assume that, as h→∞, we have:

1) vh → v with ‖v‖ ≤ 1 + 1/L and ‖ν(v)‖ = 1.

2) Fh → F in L1(B3R), for some set F ⊂ Hn that is H-perimeter minimizing in

B3R. In particular, we have Exc(F,B2R(u), ν) = 0 for u ∈ {0, v}.
Then F coincides in B2R(v) ∩ B2R with a halfspace H having boundary orthogonal

to ν with 0, v ∈ ∂H. This contradicts ‖ν(v)‖ = 1. �

Proposition 4.2. For any L > 2 there exists a σ > 0 such that for all r > 0, for

all ν ∈ S1, and for any set E ⊂ H1 that is H-perimeter minimizing in B128r, the

condition

Exc(E,Bs(u), ν) < σ for all 0 < s < 64r and u ∈ {p, q} ⊂ ∂E ∩Br (4.12)

implies

‖ν(q−1 ∗ p)‖ ≤ L‖ν⊥(q−1 ∗ p)‖. (4.13)

Proof. The first part of the argument is the same as in the proof of Proposition 4.1.

We arrive at the following statement: by contradiction, there are points p, q ∈ ∂E∩B̄r

such that

Exc(E,Bs(u), ν) = 0 for all 0 < s < 64r and u ∈ {p, q} (4.14)
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and

‖ν(q−1 ∗ p)‖ ≥ L‖ν⊥(q−1 ∗ p)‖. (4.15)

There are two cases:

a) ‖ν(q−1 ∗ p)‖ > 0;

b) ‖ν(q−1 ∗ p)‖ = 0.

The analysis of case a) is more complicated than in Proposition 4.1. From (4.15)

and L > 4 we have in this case the strict inequality

‖ν(q−1 ∗ p)‖ > 4‖ν⊥(q−1 ∗ p)‖. (4.16)

By (3.11), we can assume that ν = (1, 0) ∈ S1. By (4.14), we have Exc(E,Qs(u), ν) =

0 for all 0 < s < 32r and u ∈ {p, q}. By (3.11) again, we can assume that q = 0 and

Exc(E,Qs(u), ν) = 0 for all 0 < s < 16r and u ∈ {p, 0} with p ∈ B̄2r ⊂ Q̄2r.

By Proposition 3.7, there exists a function g : D4r → (−r, r) such that:

(i) Up to an L3-negligible set we have

E ∩Q4r =
{

(x, y, t) ∈ Q4r : x > g(y, t)
}
.

(ii) g(0) = 0 and for all (y, t), (y′, t′) ∈ D4r

|g(y, t)− g(y′, t′)| ≤ |y − y′|+ 1

2r
|t− t′|. (4.17)

(iii) The graph of g is Y1 ruled in Q4r, i.e., g(y, t) = g(0, 2yg(y, t)) for (y, t) ∈ Q4r.

Then we have p = (g(y, t), y, t) for some (y, t) ∈ D̄2r. By the formula ν(p) = 〈p, ν〉ν
and (4.3), we have

ν(p) = g(y, t)ν and ν(p)⊥ =
(
0, y, t− 2yg(y, t)

)
.

By |g(y, t)| ≤ r, (ii), and (iii), we obtain

‖ν(p)‖ = |g(y, t)| = |g(0, t+ 2yg(y, t))|

≤ 1

2r
|t+ 2yg(y, t)|

≤ 1

2r

{
|t− 2yg(y, t)|+ 4|y||g(y, t)|

}
≤ 1

2r

{√
8r|t− 2yg(y, t)|1/2 + 4r|y|

}
≤ 2
{
|t− 2yg(y, t)|1/2 + |y|

}
= 2‖ν(p)⊥‖.

This contradicts (4.16) with q = 0.

The analysis of the case b) is the same as in the proof of Proposition 4.1. In this

case, we use Remark 3.8. Details are omitted. �
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Definition 4.3. The (open) cone with vertex 0 ∈ Hn, axis ν ∈ Sm, and aperture

α ∈ (0,∞] is the set

C(0, ν, α) =
{
p ∈ Hn : ‖ν⊥(p)‖ < α‖ν(p)‖

}
. (4.18)

The negative and positive cones are, respectively,

C−(0, ν, α) =
{
p = (z, t) ∈ Hn : ‖ν⊥(p)‖ < α‖ν(p)‖, 〈z, ν〉 < 0

}
,

C+(0, ν, α) =
{
p = (z, t) ∈ Hn : ‖ν⊥(p)‖ < α‖ν(p)‖, 〈z, ν〉 > 0

}
.

The cone with vertex p ∈ Hn, axis ν ∈ Sm, and aperture α ∈ (0,∞] is the set

C(p, ν, α) = p ∗ C(0, ν, α). Analogously, we let C−(p, ν, α) = p ∗ C−(0, ν, α) and

C+(p, ν, α) = p ∗ C+(0, ν, α).

Remark 4.4. By (4.3) and (4.2), the inequality ‖ν⊥(p)‖ < α‖ν(p)‖, with p = (z, t),

defining the cone in (4.18) is

max
{
|z⊥|, |t−Q(z⊥, z>)|1/2

}
< α|z>|. (4.19)

In the next lemma, we collect some elementary facts about cones in the Heisenberg

group.

Lemma 4.5. Let ν ∈ Sm.

i) For any α > 0, p ∈ Hn, and s0 ∈ R we have⋃
s<s0

C+(p ∗ sν, ν, α) = Hn. (4.20)

ii) Let ι : Hn → Hn be the mapping ι(p) = p−1 = −p. For any α > 0 we have

C−(0, ν, α) ⊂ ιC+(0, ν, α + 2
√
α). (4.21)

iii) For all α, β ≥ 0 and p ∈ C+(0, ν, α), we have C+(p, ν, β) ⊂ C+(0, ν, γ) with

γ = max
{
α, β,

√
αβ + 2β

}
. (4.22)

Analogously, for any p ∈ C−(0, ν, α) we have C−(p, ν, β) ⊂ C−(0, ν, γ).

Proof. When p = 0, by (4.19) and the estimate |Q(z, ζ)| ≤ 2|z||ζ| we have

C+(sν, ν, α) = sν ∗ C+(0, ν, α)

= sν ∗
{

(z, t) ∈ Hn : max{|z⊥|, |t−Q(z⊥, z>)|1/2} < α〈ν, z〉
}

=
{

(z, t) ∈ Hn : max{|z⊥|, |t−Q(z⊥, z> − 2sν)|1/2} < α〈ν, z − sν〉
}
.

Claim (4.20) with p = 0 then follows from the fact that for any (z, t) ∈ Hn there

exists σ ∈ R such that for all s < σ there holds

|t−Q(z⊥, z> − 2sν)|1/2 < α〈ν, z − sν〉.

By left translation, the claim holds for any p ∈ Hn.
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We prove (4.21). Notice that, for any β > 0, we have

ιC+(0, ν, β) =
{

(z, t) ∈ Hn : max
{
|z⊥|, |t+Q(z⊥, z>)|1/2

}
< −β〈z, ν〉

}
.

For any (z, t) ∈ C−(0, ν, α), there holds |Q(z⊥, z>)| ≤ 2|z⊥||z>| ≤ 2α|z>|2 and

|t+Q(z⊥, z>)|1/2 ≤ |t−Q(z⊥, z>)|1/2 + |2Q(z⊥, z>)|1/2 ≤ −(α + 2
√
α)〈z, ν〉.

The claim follows.

We prove iii). A point p = (z, t) ∈ Hn belongs to C+(0, ν, α) if

max
{
|z⊥|, |t−Q(z⊥, z>)|1/2

}
≤ α〈z, ν〉. (4.23)

A point q ∈ C+(p, ν, β) = p∗C+(0, ν, β) is of the form q = p∗w where w = (ζ, τ) ∈ Hn

is such that

max
{
|ζ⊥|, |τ −Q(ζ⊥, ζ>)|1/2

}
≤ β〈ζ, ν〉. (4.24)

As q =
(
z + ζ, t+ τ +Q(z, ζ)

)
, the claim ‖ν⊥(q)‖ ≤ γ‖ν(q)‖ reads

max
{
|z⊥ + ζ⊥|, |t+ τ +Q(z, ζ)−Q(z⊥ + ζ⊥, z> + ζ>)|1/2

}
≤ γ〈z + ζ, ν〉. (4.25)

On the one hand, by (4.23), (4.24), and (4.22) we have

|z⊥ + ζ⊥| ≤ |z⊥|+ |ζ⊥| ≤ α〈z, ν〉+ β〈ζ, ν〉 ≤ γ〈z + ζ, ν〉.

Then, to prove (4.25) it is sufficient to show that

|t+ τ +Q(z, ζ)−Q(z⊥ + ζ⊥, z> + ζ>)| ≤ γ2{|z>|2 + 2〈z, ν〉〈ζ, ν〉+ |ζ>|2}. (4.26)

By the triangle inequality, we have

|t+ τ +Q(z, ζ)−Q(z⊥ + ζ⊥, z> + ζ>)| ≤|t−Q(z⊥, z>)|+ |τ −Q(ζ⊥, ζ>)|

+ |Q(z, ζ)−Q(ζ⊥, z>)−Q(z⊥, ζ>)|.
(4.27)

The first and second term in the right hand side of (4.27) are estimated by (4.23)

and (4.24). Moreover, we have

|Q(z, ζ)−Q(ζ⊥, z>)−Q(z⊥, ζ>)| = |Q(z⊥, ζ⊥) + 2Q(z>, ζ⊥)|

≤ 2
{
|z⊥||ζ⊥|+ 2|z>||ζ⊥|

}
≤ 2{αβ + 2β}|z>||ζ>|

≤ 2γ2〈z, ν〉〈ζ, ν〉.

(4.28)

Claim (4.26) follows. �

For ν ∈ Sm we denote by Hν = {p ∈ Hn : 〈p, ν〉 = 0} the vertical hyperplane in Hn

orthogonal to ν. We endow span{ν} = {(sν, 0) ∈ Hn : s ∈ R} with its natural total

ordering.
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Definition 4.6. (i) The intrinsic graph of a function ϕ : A → span{ν}, A ⊂ Hν , is

the set

gr(ϕ) =
{
p ∗ ϕ(p) ∈ Hn : p ∈ A

}
. (4.29)

In gr we omit reference to ν.

(ii) A function ϕ : A → span{ν}, A ⊂ Hν , is L-intrinsic Lipschitz, L ∈ [0,∞), if

for any p ∈ gr(ϕ) there holds

gr(ϕ) ∩ C(p, ν, 1/L) = ∅. (4.30)

Remark 4.7. The notion of intrinsic Lipschitz function of Definition 4.6 is introduced

in [10]. The cones (4.18) are relevant in the theory of H-convex sets [3].

The following extension theorem is proved in [10]. Here, we give a self-contained

proof with an estimate of the Lipschitz constant of the extension.

Proposition 4.8. Let ϕ : A → span{ν}, ν ∈ Sm and A ⊂ Hν nonempty set, be

an L-intrinsic Lipschitz function, L ≥ 0. Then there exists an M-intrinsic Lipschitz

function ψ : Hν → span{ν} with

M =
(√

1 +
1

L+ 2L2
− 1
)−2

, (4.31)

such that ψ(p) = ϕ(p) for all p ∈ A.

Proof. Let α = 1/L and define the set

E =
⋃
p∈A

C+
(
p ∗ ϕ(p), ν, α

)
.

The set E is open, as it is the union of open half-cones, and, moreover, E 6= ∅ because

gr(ϕ) ∩ E = ∅, by (4.30).

Let

β =
α2

α + 2
. (4.32)

In view of Lemma 4.5, part iii), notice that
√
αβ + 2β ≤ α and β ≤ α. Then for any

q ∈ E we have

C+(q, ν, β) ⊂ E. (4.33)

By an elementary continuity argument, the inclusion (4.33) also holds for any q ∈ ∂E,

the topological boundary of E. Then we have the implication

p, q ∈ ∂E ⇒ p /∈ C+(q, ν, β). (4.34)

For any p ∈ Hν , the set Lp =
{
s ∈ R : p ∗ sν ∈ E

}
is open, because E is open; it

is nonempty (we skip the elementary proof); it is bounded from below by (4.20). In

fact, Lp is an open half-line. Then we can define the function ψ : Hν → span{ν}

ψ(p) = spν where sp = inf Lp ∈ R.
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We claim that ψ(p) = ϕ(p) for any p ∈ A. If p ∈ A we have p ∗ sν ∈ E for

all s > 〈ϕ(p), ν〉 and this implies that ψ(p) ≤ ϕ(p). By contradiction, assume that

ψ(p) < ϕ(p). Then there exists s < 〈ϕ(p), ν〉 such that p ∗ sν ∈ E and (4.33) implies

that

p ∗ ϕ(p) ∈ C+(p ∗ sν, ν, β) ⊂ E.

Then there exists q ∈ A such that p ∗ ϕ(p) ∈ C+(q ∗ ϕ(q), ν, α), and this contradicts

(4.30), because

gr(ϕ) ∩ C+(q ∗ ϕ(q), ν, α) 6= ∅.

Finally, we prove that ψ is M -intrinsic Lipschitz. Let p, q ∈ gr(ψ) ⊂ ∂E. The

inclusion gr(ψ) ⊂ ∂E follows easily from the construction of ψ. By (4.34), each of

the following equivalences holds true

p /∈ C+(q, ν, β) ⇔ q−1 ∗ p /∈ C+(0, ν, β) ⇔ p−1 ∗ q /∈ ιC+(0, ν, β), (4.35)

where ι : Hn → Hn is the map ι(p) = p−1. Let γ > 0 be such that γ + 2
√
γ = β, and

nameley

γ =
(√

1 + β − 1
)2
. (4.36)

By Lemma 4.5, (4.21), we have C−(0, ν, γ) ⊂ ιC+(0, ν, β), and thus, by (4.34), each

of the (4.35) implies that q /∈ C−(p, ν, γ). After all, we proved that

p /∈ C+(q, ν, β) ⇒ q /∈ C−(p, ν, γ).

Then for any p ∈ gr(ψ) it holds gr(ψ)∩C(0, ν, γ) = ∅, i.e., ψ is M -intrinsic Lipschitz

with M = 1/γ. By (4.32) and (4.36), M satisfies (4.31). �

For any r > 0 and p ∈ Hn, we let B⊥r =
{
q ∈ Br : 〈q, ν〉 = 0

}
and B⊥r (p) = p ∗B⊥r .

B⊥r (p) is the section of Br(p) with the hyperplane through p orthogonal to ν. Let

ψ : Hν → span{ν} be an M -intrinsic Lipschitz function. We denote by π : Hn → Hν

the projection π(p) = ν⊥(p), see (4.3).

Definition 4.9 (ψ-balls and ψ-cylinders). The ψ-ball with radius r > 0 and center

p ∈ Hν is the subset of Hν

Dψ
r (p) = π

(
B⊥r (p ∗ ψ(p))

)
.

The ψ-cylinder with base Dψ
r (p) is the subset of Hn

Cψ
r (p) =

{
q ∗ sν ∈ Hn : q ∈ Dψ

r (p), s ∈ R
}
.

Remark 4.10. If p = (z, t) ∈ Hν , i.e. z> = 0, we have the formula for ψ-balls

Dψ
r (p) =

{(
z + ζ, t+ τ +Q(z + 2ψ(p), ζ)

)
∈ Hn : (ζ, τ) ∈ B⊥r

}
. (4.37)

Formula (4.37) can be checked after a short computation.
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Notice that, by Fubini-Tonelli Theorem, the measure of ψ-balls is given by the

formula

L2n(Dψ
r (p)) = 2ω2n−1r

Q−1, (4.38)

where ω2n−1 is the Lebesgue measure of the standard unit ball in R2n−1.

A well known problem concerning sets as Dψ
r (p) is that they origin from a projec-

tion, the mapping π, that is not Lipschitz continuous for the Carnot-Carathéodory

metric. In the case of intrinsic Lipschitz functions, however, we have the following

fact.

Lemma 4.11. Let ψ : Hν → span{ν} be M-intrinsic Lipschitz, M ≥ 0. For all

points p, q ∈ Hν such that q ∈ Dψ
r (p), r > 0, there holds

|ψ(p)− ψ(q)| ≤ CMr, (4.39)

with

CM = (M +
√
M2 +M)2. (4.40)

Proof. Let p = (z, t) ∈ Hν and q =
(
z + ζ, t+ τ +Q(z + 2ψ(p), ζ)

)
∈ Dψ

r (p) for some

(ζ, τ) ∈ B⊥r , i.e.,

|ζ| < r and |τ | < r2. (4.41)

As ψ is M -instrinsic Lipschitz, the point w = ψ(q)−1 ∗ q−1 ∗ p ∗ ψ(p) satisfies

w /∈ C(0, ν, 1/M), i.e.,

‖ν(w)‖ ≤M‖ν⊥(w)‖. (4.42)

A short computation provides

ν⊥(w) =
(
− ζ,−τ − 2Q(ζ, ψ(q)− ψ(p))

)
and ν(w) = ψ(p)− ψ(q),

and thus, by (4.19), (4.42) is equivalent with the inequality

|ψ(p)− ψ(q)| ≤M max
{
|ζ|, |τ − 2Q(ζ, ψ(p)− ψ(q)|1/2

}
.

Then by the estimate |Q(z, ζ)| ≤ 2|z||ζ| and (4.41), we have

|ψ(p)− ψ(q)| ≤M max
{
|ζ|, |τ |1/2 + 2|ζ|1/2|ψ(p)− ψ(q)|1/2

}
≤M

(
r + 2r1/2|ψ(p)− ψ(q)|1/2

)
.

This implies |ψ(p)− ψ(q)| ≤ CMr with CM as in (4.40).

�

Lemma 4.12. Let ψ : Hν → span{ν} be M-intrinsic Lipschitz, M > 0.

i) There exists a constant λ = λ(M) > 0 such that for all p, q ∈ Hν and for all

r > 0 we have

p ∈ Dψ
r (q) ⇒ Dψ

r (q) ⊂ Dψ
λr(p). (4.43)
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ii) For any λ > 0 there exists a constant µ = µ(M,λ) such that for all r > 0 and

for all p, q ∈ Hν with p ∈ Dψ
r (q) we have Dψ

λr(p) ⊂ Dψ
µr(q).

Proof. i) Let p = (zp, tp) and q = (zq, tq). Pick a point (z, t) ∈ Dψ
r (q), i.e., by (4.37)

we have

z = zq + ζq, t = tq + τq +Q(zq + 2ψ(q), ζq), with (ζq, τq) ∈ B⊥r .

Analogously, we have zp = zq + ζp, tp = tq + τp +Q(zq + 2ψ(q), ζp), with (ζp, τp) ∈ B⊥r ,

and thus z = zp + ζ and t = tp + τ +Q(zp + 2ψ(p), ζ) with

ζ = ζq − ζp, τ = τq − τp +Q(zq − zp + 2(ψ(q)− ψ(p)), ζq − ζp).

We thus have |ζ| ≤ 2r, and using zp − zq = ζp and (4.39), we obtain

|τ | ≤ |τq|+ |τp|+ 2(|ζp|+ 2|ψ(q)− ψ(p)|)|ζq − ζp| ≤ r2(6 + 8CM),

where CM is the constant (4.40). Claim (4.43) follows.

ii) As above, let zp = zq + ζp, tp = tq + τp + Q(zq + 2ψ(q), ζp), with (ζp, τp) ∈ B⊥r .

Pick a point (z, t) ∈ Dψ
λr(p), i.e., by (4.37),

z = zp + ζ, t = tp + τ +Q(zp + 2ψ(p), ζ), with (ζ, τ) ∈ B⊥λr.

Thus we have z = zq + ζq and t = tq + τq +Q(zq + 2ψ(q), ζq) with

ζq = ζp + ζ and τq = τp + τ −Q(ζ − ζp + 2(ψ(q)− ψ(p)), ζ).

Then, by (4.39),

|ζq| ≤ (1 + λ)r and |τq| ≤ (1 + 3λ+ 2λ2 + 4λCM)r2,

and the claim ii) follows with µ =
√

1 + 3λ+ 2λ2 + 4λCM . �

Corollary 4.13. For any M > 0 there exists a µ > 0 with the following property. Let

ψ : Hν → span{ν} be M-intrinsic Lipschitz. Then for all r, s > 0 such that s ≤ 2r

and for all p, q ∈ Hν we have

Dψ
r (p) ∩Dψ

s (q) 6= ∅ ⇒ Dψ
s (q) ⊂ Dψ

µr(p). (4.44)

Proof. Let w ∈ Dψ
r (p) ∩Dψ

s (q). Let λ = λ(M) > 0 be the constant given by Lemma

4.12 part i), and let µ = µ(M, 2λ) be given by part ii). Then we have

Dψ
s (q) ⊂ Dψ

λs(w) ⊂ Dψ
2λr(w) ⊂ Dψ

µr(p).

�

Theorem 4.14. For any M > 0 there exists a constant µ > 0 with the following

property. Let R ⊂ R+ and P ⊂ Hν be nonempty bounded sets, ψ : Hν → span{ν}
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be M-intrinsic Lipschitz, and let D =
{
Dψ
r (p) : r ∈ R, p ∈ P

}
. Then there exists a

sequence Dψ
ri

(pi) ∈ D, i ∈ N, such that

P ⊂
⋃
i∈N

Dψ
µri

(pi) and Dψ
ri

(pi) ∩Dψ
rj

(pj) = ∅ for i 6= j.

Proof. The proof is a variation, based on Corollary 4.13, of the proof of the 5r-covering

lemma in metric spaces. Let D1 = D, R1 = sup
{
r > 0 : there exists Dψ

r (p) ∈ D1

}
,

and pick D1 = Dψ
r1

(p1) ∈ D1 such that 2r1 ≥ R1. Then we let D2 =
{
Dψ
r (p) ∈ D :

Dψ
r (p) ∩ D1 = ∅

}
and R2 = sup

{
r > 0 : there exists Dψ

r (p) ∈ D2

}
. Then we pick

D2 = Dψ
r2

(p2) ∈ D2 such that 2r2 ≥ R2.

By induction, once D1, . . . , Di−1 are chosen, we let Di =
{
Dψ
r (p) ∈ D : Dψ

r (p) ∩
(D1 ∪ . . . ∪ Di−1) = ∅

}
and Ri = sup

{
r > 0 : there exists Dψ

r (p) ∈ Di
}

. Then we

pick Di = Dψ
ri

(pi) ∈ Di such that 2ri ≥ Ri.

If Di = ∅ for some i ∈ N then the selection process ends after a finite number of

steps. In this case, each ψ-ball Dψ
r (p) ∈ D intersects at least one of the D1, . . . , Di−1.

Otherwise, we obtain a disjoint sequence of sets (Di)i∈N. Because R and P are

bounded the union
⋃
i∈NDi is also bounded and has thus finite Lebesgue measure in

Hν . By (4.38), we obtain

L2n
(⋃
i∈N

Di

)
=
∑
i∈N

L2n(Di) = 2ω2n−1

∑
i∈N

rQ−1
i <∞,

and it follows that ri → 0 as i→∞.

Pick any Dψ
r (p) ∈ D, where r > 0. There exists i0 ∈ N such that 2ri < r for all

i > i0. Then there exists j ∈ {1, . . . , i0} such that Dψ
r (p)∩Dj 6= ∅, because otherwise

we would contradict the choice of ri for i = i0 + 1. Let j ∈ {1, . . . , i0} be the smallest

integer such that Dψ
r (p) ∩Dj 6= ∅. Then we have r ≤ Rj ≤ 2rj and thus, by (4.44),

Dψ
r (p) ⊂ Dψ

µrj
(pj), where µ > 0 is given by Corollary 4.13. �

5. Lipschitz approximation

In this section, we prove our main theorem, Theorem 5.1 below. In the proof we

need some further properties of instrinsic Lipschitz functions. Let ψ : Hν → R be

intrinsic Lipschitz. Here, we identify the target space with R and assume without loss

of generality that ν = (1, 0, . . . , 0) ∈ Sm. Then Hν = {p ∈ Hn : p1 = 0} and we can

identify Hν and R2n via the coordinates (x2, . . . , xn, y1, . . . , yn, t) ∈ R2n. With abuse

of notation, we denote by X2, ..., Xn and Y2, ..., Yn the restrictions of the vector fields

in (1.1) to R2n.

Let Wψψ be the distribution acting on ϑ ∈ C1
c (R2n) as

〈Wψψ, ϑ〉 = −
∫
R2n

(
ψ
∂ϑ

∂y1

− 2ψ2∂ϑ

∂t

)
dp̂,
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where dp̂ = dx2 . . . dxndy1 . . . dyndt is the Lebesgue measure on R2n. The intrinsic

gradient of ψ is then defined as the 2n− 1-vector

∇ψψ = (X2ψ, . . . , Xnψ,W
ψψ, Y2ψ, . . . , Ynψ). (5.1)

This gradient has to be understood in distributional sense. By [4, Theorem 1.2], ∇ψψ

is in fact a vector of L∞-functions. Moreover, we have the estimate

‖∇ψψ‖L∞(R2n) ≤M. (5.2)

This follows from [10, Prop. 3.18 and 4.8].

Before, stating our main result we recall that in Proposition 4.8 we have the relation

(4.31), and namely

M(L) =
(√

1 +
1

L+ 2L2
− 1
)−2

, L > 0.

Moreover, in Proposition 4.2 there is the restriction L > 2, for the case n = 1 only.

Theorem 5.1. Let L > 0 if n ≥ 2 and L > M(2) if n = 1. There are constants k > 1

and c(L, n) > 0 with the following property. For any set E ⊂ Hn that is H-perimeter

minimizing in Bkr with 0 ∈ ∂E and r > 0, there exist ν ∈ Sm and an L-intrinsic

Lipschitz function ϕ : Hν → span{ν} such that

SQ−1
(
(gr(ϕ)∆∂E) ∩Br

)
≤ c(L, n)(kr)Q−1Exc(E,Bkr). (5.3)

Proof. Step 1. Let ν ∈ Sm be such that

Exc(E,Bkr) = Exc(E,Bkr, ν) =
1

(kr)Q−1

∫
Bkr

|νE(w)− ν|2d|µE|(w). (5.4)

When n ≥ 2, let η > 0 be the constant depending on τ = (128ω2n−2)−1 of Proposition

3.9. When n = 1, let η > 0 and k0 be the constants given by Proposition 3.10.

When s > 0, p and q are as in Proposition 3.9 (as in Proposition 3.10 when n = 1,

respectively), then we have

P (E,Bs(p ∗ q)) >
sQ−1

32
, (5.5)

as long as Bk0s(p) ⊂ Bkr. Finally, let σ = σ(L) > 0 be the constant depending on

L > 0 of Propositions 4.1 and 4.2, and set

ε =
1

2
min{η, σ}. (5.6)

Let α > 0 be a parameter that will be fixed later, in (5.31). In view of Propositions

4.1 and 4.2, we require α ≥ 32. The set

G =
{
p ∈ B̄αr ∩ ∂E : Exc(E,Bs(p), ν) ≤ ε for all s ∈ (0, 2αr)

}
(5.7)
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is compact. The proof of this fact starts from the closure of the condition Exc(E,Bs(p), ν) ≤
ε for any s < 2αr such that |µE|(∂Bs(p)) = 0. The compactness of G then easily

follows.

Let π : Hn → Hν , π(p) = ν⊥(p), be the projection onto Hν defined in (4.3). By

Propositions 4.1 and 4.2, we have

‖ν(q−1 ∗ p)‖ ≤ L‖ν⊥(q−1 ∗ p)‖ for all p, q ∈ G. (5.8)

An elementary computation, that is omitted, shows that ν⊥(p) = ν⊥(q) implies

ν⊥(q−1 ∗ p) = 0. Then, by (5.8), we have

ν⊥(p) = ν⊥(q), p, q ∈ G ⇒ p = q.

In other words, the projection π is injective on G and thus there exists a function

ϕ : π(G) → span{ν} such that p 7→ p ∗ ϕ(p) is the inverse of π restricted to G.

By (5.8), the mapping ϕ is L-intrinsic Lipschitz. By Proposition 4.8, there exists

ψ : Hν → span{ν} that is M -intrinsic Lipschitz with M given by (4.31) and such

that ψ = ϕ on π(G). We denote by Γ = gr(ψ) the intrinsic graph of ψ, as in (4.29).

Notice that when n ≥ 2, M can be as small as we wish, provided that we start from

a small L. When n = 1, we can assume that M stays bounded near M(2), provided

that we choose L close to 2. From now on, we assume without loss of generality that

M ≤M(2) + 1. (5.9)

Step 2. Let U = (∂E \G)∩Bαr. For any p ∈ U there exists sp ∈ (0, 2αr) such that∫
Bsp (p)

|νE(w)− ν|2d|µE|(w) > εsQ−1
p . (5.10)

The family of balls
{
Bsp(p) : p ∈ U

}
is a covering of U . By the 5r-covering Lemma,

there exists a sequence of points pi ∈ U and radii si = spi , i ∈ N, such that the balls

Bsi(pi) are pairwise disjoint and
{
B5si(pi) : i ∈ N

}
is still a covering of U . To have

the inclusion B5si(pi) ⊂ Bkr, we require

11α ≤ k. (5.11)

By (2.9), (2.4) and (2.6), we obtain

SQ−1(U) ≤
∞∑
i=1

SQ−1(∂E ∩B5si(pi)) =
∞∑
i=1

SQ−1(∂E ∩B5si(pi))

= δ(n)−1

∞∑
i=1

P (E;B5si(pi)) ≤ c1δ(n)−15Q−1

∞∑
i=1

sQ−1
i .
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Now, by (5.4), (5.10), and (5.11)

SQ−1(U) ≤ c1δ(n)−15Q−1ε−1

∞∑
i=1

∫
Bsi (pi)

|νE(w)− ν|2d|µE|(w)

≤ c1δ(n)−15Q−1ε−1

∫
Bkr

|νE(w)− ν|2d|µE|(w)

= (kr)Q−1c4Exc(E,Bkr),

(5.12)

where we set c4 = c1δ(n)−15Q−1ε−1. Now, (5.12) implies the first half of (5.3); namely,

SQ−1((∂E \ Γ) ∩Br) ≤ SQ−1((∂E \G) ∩Br) ≤ (kr)Q−1c4Exc(E,Bkr). (5.13)

Step 3. We claim we can assume that G ∩ Br/3 6= ∅. If we had G ∩ Br/3 = ∅, then

by (2.9), (2.4), and (2.8)

SQ−1(U) ≥ SQ−1((∂E \G) ∩Br/3)

= SQ−1(∂E ∩Br/3) = δ(n)−1P (E,Br/3)

≥ δ(n)−1c3(r/3)Q−1.

(5.14)

From (5.12) and (5.14), we would obtain

Exc(E,Bkr) ≥ c3c
−1
4 δ(n)−1(3k)1−Q.

Then, with Γ = Hν we would have

SQ−1((Γ \ ∂E) ∩Br) ≤ SQ−1(Γ ∩Br)

= δ(n)−1P ({p1 > 0}, Br) = δ(n)−12ω2n−1r
Q−1

≤ 2ω2n−1c
−1
3 c43Q−1(rk)Q−1Exc(E,Bkr),

and the claim (5.3) would follow.

Step 4. We claim that for all s, r > 0 and for all w ∈ π(Γ ∩Br) there holds

r ≤ s/5 ⇒ Br/3 ⊂ Cψ
s (w). (5.15)

It is sufficient to prove the inclusion π(Br/3) ⊂ Dψ
s (π(p)). Let w ∗ ψ(w) ∈ Br with

w = (z, t) and q = (ζ, τ) ∈ Br/3. Then we have

|ψ(w)| < r, max{|z|, |t|1/2} < 2r, max{|ζ|, |τ |1/2} < r/3. (5.16)

By (4.3), we have π(q) =
(
ζ⊥, τ − Q(ζ⊥, ζ>)

)
, and thus, by (4.37), ζ⊥ = z + ζ ′ and

τ −Q(ζ⊥, ζ>) = t+ τ ′ +Q(z + 2ψ(w), ζ ′) with

ζ ′ = z − ζ⊥ and τ ′ = τ − t−Q(z + 2ψ(w), ζ ′)−Q(ζ⊥, ζ>). (5.17)

From (5.16), we obtain |ζ ′| ≤ |z|+ |ζ| ≤ 7r/3 and

|τ ′| ≤ |τ |+ |t|+ 2(|z|+ 2|ψ(w)|)|ζ ′|+ 2|ζ⊥||ζ>| ≤ 23r2,

and the claim max{|ζ ′|, |τ ′|1/2} < s follows.
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Step 5. Let V = (Γ \ ∂E) ∩Br. We claim there exists a constant c5 > 0 such that

SQ−1(V ) ≤ c5SQ−1(U). (5.18)

The inequalities (5.18) and (5.12) complete the proof of the second half of (5.3). This

along with (5.13) proves the theorem. The proof of (5.18) finishes with Step 8.

Pick a point p = (z, t) ∈ π(V ). Because V ⊂ Br, then we have

‖p‖ = max{|z|, |t|1/2} < 2r. (5.19)

We also fix the number β = β(M) > 0 such that

3 + 4CMβ = β2, (5.20)

where CM is the constant (4.40). The choice (5.20) of β will ensure the inclusion

(5.29). Then we set

sp =
1

β
max{s > 0 : Cψ

s (p) ∩G = ∅}.

For a moment, we omit reference to p and write s = sp. We have Cψ
βs(p)∩G = ∅ and,

by Step 3, G∩Br/3 6= ∅. Thus Br/3 is not contained in Cψ
βs(p), and by Step 4, (5.15),

we have

βs < 5r. (5.21)

By the maximality of s > 0, there exists q ∈ ∂Dψ
βs(p) such that q ∗ ψ(q) ∈ G. By the

formula (4.37), q is of the form

q =
(
z + ζ, t+ τ +Q(z + 2ψ(p), ζ)

)
, with max{|ζ|, |τ |1/2‖ = βs,

where, by (5.19) and (5.21),

|z + ζ| < 2r + βs < 7r,

and, also using |ψ(p)| < r,

|t+ τ +Q(z + 2ψ(p), ζ)| ≤ (2r)2 + (βs)2 + 8rβs < 69r2.

We deduce that ‖q‖ < 9r. By (4.39) and (5.21), there also holds

|ψ(q)| ≤ |ψ(q)− ψ(p)|+ |ψ(p)| ≤ CMβs+ r < (1 + 5CM)r. (5.22)

We conclude that, by (2.1) , ‖q‖ < 9r, and (5.22)

‖q ∗ ψ(q)‖ ≤ ‖q‖+ ‖ψ(q)‖ ≤ (10 + 5CM)r. (5.23)

At this point, we require the condition on k

10 + 5CM ≤
k

2
, (5.24)

and so we have q ∗ ψ(q) ∈ Bkr/2.

We are going to use Lemmas 3.9 and 3.10, see (5.5), to estimate from below

P (E,Bs(p ∗ ψ(q)). To this aim, notice that we have p ∗ ψ(q) = q ∗ ψ(q) ∗ u where
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u = ψ(q)−1 ∗ q−1 ∗ p ∗ ψ(q) satisfies 〈u, ν〉 = 0. By the structure (4.37) of the box

Dψ
βs(p), after a short computation one can check that

u =
(
− ζ,−τ − 2Q(ψ(p)− ψ(q), ζ)

)
, with max{|ζ|, |τ |1/2} = βs. (5.25)

Using (5.25) and (4.39), we obtain

|τ + 2Q(ψ(p)− ψ(q), ζ)| ≤ (βs)2(1 + 4CM),

and so, by β ≤ 2 and (5.9), there exists a constant γ > 1 independent of M such that

‖u‖ ≤ β
√

1 + 4CMs ≤ γs. (5.26)

Let k0 = 370 be the constant given by Lemma 3.10. With the condition

k ≥ 2k0, (5.27)

by (5.24) and (5.23), we have the inclusion Bk0s(q ∗ ψ(q)) ⊂ Bkr. In particular, we

can use Lemma 3.10. Then we have

P (E,Bs/γ(p ∗ ψ(q)) ≥ 1

32
(s/γ)Q−1. (5.28)

Step 6. We claim that with the choice (5.20) we have

Bs(p ∗ ψ(q)) ⊂ Cψ
βs(p). (5.29)

To prove this inclusion, it is sufficient to show that π(Bs(p ∗ ψ(q)) ⊂ Dψ
βs(p). In fact,

a point p ∗ ψ(q) ∗ w with p = (z, t) and w = (ζ, τ) ∈ Bs is of the form p ∗ ψ(q) ∗ w =

(z + ζ ′, t+ τ ′ +Q(z,+2ψ(p), ζ ′)), where

ζ ′ = ζ⊥ and τ ′ = τ + 2Q(ψ(q)− ψ(p), ζ⊥)−Q(ζ⊥, ζ>),

and thus, by (4.39) and (5.20),

|τ ′| ≤ |τ |+ 4|ψ(q)− ψ(p)||ζ⊥|+ 2|ζ⊥||ζ>| ≤ s2(3 + 4CMβ) ≤ β2s2.

This proves (5.29). Moreover, we also have

Bs(p ∗ ψ(q)) ⊂ Bδr, with δ = 3 + 5CM +
5

β
. (5.30)

In fact, by (5.19) and (5.22),

‖p ∗ ψ(q)‖ ≤ ‖p‖+ ‖ψ(q)‖ ≤ (3 + 5CM)r,

an (5.30) follows from (5.21).

Step 7. We fix the constants α and k. Recalling (5.30), the final choice for α is

α = max{32, δ}. (5.31)

Now, (5.29) and (5.30) imply that

Bs(p ∗ ψ(q)) ⊂ Cψ
βs(p) ∩Bαr. (5.32)
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The constant k has to satisfy the conditions (5.11), (5.24), and (5.27). Then we

can choose

k = max{11α, 20 + 10CM , 2k0}. (5.33)

Step 8. We finish the proof of (5.18). Since we have G ∩ Cψ
βs(p) = ∅, by (5.32),

(2.9), (2.4), and (5.28) we obtain

SQ−1(U ∩ Cψ
βs(p)) = SQ−1((∂E \G) ∩Bαr ∩ Cψ

βs(p))

≥ SQ−1(∂E ∩Bs(p ∗ ψ(q)))

≥ δ(n)−1P (E,Bs(p ∗ ψ(q)))

≥ 1

32δ(n)
(s/γ)Q−1.

(5.34)

Recall that s = sp. The family of sets
{
Dψ
βsp

(p) : p ∈ π(V )
}

is a converging of

π(V ). By Theorem 4.14, there exists a sequence pi ∈ π(V ), i ∈ N, such that, with

si = βspi , we have

Dψ
si

(pi) ∩Dψ
sj

(pj) = ∅ for i 6= j and π(V ) ⊂
⋃
i∈N

Dψ
µsi

(pi), (5.35)

where µ = µ(M) is the constant given by Theorem 4.14.

By the area formula for intrisic Lipschitz functions (see Theorem [10, Lemma

4.30]),(5.2), (5.35), (4.38), (5.34), and si = βspi we have

SQ−1(V ) = δ(n)−1

∫
π(V )

√
1 + |∇ψψ(p̂)|2dp̂ ≤ δ(n)−1

√
1 +M2L2n(π(V ))

≤ δ(n)−1
√

1 +M2

∞∑
i=1

L2n(Dψ
µsi

(pi))

= 2ω2n−1δ(n)−1
√

1 +M2(µβ)Q−1

∞∑
i=1

sQ−1
pi

≤ c5

∞∑
i=1

SQ−1(U ∩ Cψ
βspi

(pi)) ≤ c5SQ−1(U),

with c5 = 64ω2n−1

√
1 +M2(µβ/γ)Q−1. This ends the proof of (5.18) and so of the

Theorem.

�
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