Calc. Var. 13, 339-376 (2001)
Digital Object Identifier (DOI) 10.1007/s005260000076

Surface measures in Carnot-Carateodory spaces

Roberto Monti, Francesco Serra Cassano

Dipartimento di Matematica, Univeraidi Trento, Via Sommarive 14,
38050 Povo (Trento), Italy (e-mai{rmonti,cassanp@science.unitn.it)

Received May 30, 2000 / Accepted October 10, 2000 /
Published online December 8, 200Q5-Springer-Verlag 2000

Abstract. Inthe framework of Carnot-Carathdory spaces we study Min-
kowski content and perimeter, we prove some coarea formulas, and finally
we prove some variational approximations of the perimeter.

1. Introduction

In this paper we deal with some problems concerning Geometric Measure
Theory and Calculus of Variations in metric spaces. Although such a theory
is in embryonic stage contained in Federer's book [22], its systematic study
has been carried out only since a few years (see also Mattila’s recent book
[43] and references therein). An interesting proposal of a general Geometric
Measure Theory in metric spaces was given in [20] and the program has
been developed in [4] and [5]. A general report on problems and techniques
of Analysis and Geometry on metric spaces can be found in [19], [35], [54].
In our framework we actually consider a special class of metric spaces,
the Carnot-Carattodory (C-C) spaces. More precisely, given a famiily=
(X1, ..., X:m) of Lipschitz vector fieldsX;(z) = > aii(2)0; (j =
1,...,m) with a;; € Lip(R") (j = 1,...,m, 7 = 1,...,n), we callsub-
unita Lipschitz continuous curve: [0,7] — R" such that

(1.1)

A(t) = ihj(t)Xj(y(t)), and ih]z(t) <1 fora.e.te]|0,T],
j=1 j=1

* The authors were supported by GNAFA, Italy and by MURST, Italy.
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with hq, ..., by, measurable coefficients. Then define the C-C dinstance be-
tween the points, y € R™ as

(x,y) = inf{T > 0 : there exists a subunit path: [0,7] — R"

d
(1.2) such thaty(0) = z and~(T') = y}.

If the above set is empty pul(z,y) = +oo. If d is finite onR", i.e.
d(z,y) < oo for everyz,y € R, it turns out to be a metric oR"™ and
the metric spacéR”,d) is called C-C space (see, for instance, [33]). In
particular we shall always assume that

(H1) the metricd is finite and the identity mapl : (R™,d) — (R™,]|- ) is
a homeomorphism.

Such spaces have been much studied in the last years with applications
ranging from degenerate elliptic equations to optimal control theory and
differential geometry (see, for instance, [37], [53], [49], [26], the recent
book [9] and references therein). On the other hand even some topics of
Geometric Measure Theory have been studied in the setting of these spaces.
In particular the space of functions witlounded variatiorwith respect to
X has been introduced in [12], [15], [27], [30]. Namely, given an open set
2 C R", the spaceBVx () is the set of functiong € L!(£2) such that

IX£1(2)
= sup /Q F@) S0 3 Ohlag(@)p; (@) da ¢ = (1, e 9m) €

j=1i=1

€ C3(2;R™) and|p(z)| < 1Vz € Q} < 00.

Many interesting properties @Vx functions have been investigated and in
particularisoperimetric type inequalitiesave been proved for th& —pe-
rimeter |OE| x associated to a measurable &tc R”™ of locally finite
perimeter that is

(1.3) [0E]x(£2) :== | Xx&[(£2) < o0

for every open bounded s&t C R™ (see [51], [25] and [30]). Moreover, the
existence of minimizing sets of locally finite perimeter has been obtained
in [30], generalizing similar De Giorgi’s results for the Euclidean perimeter
measurdoE| := |0F|x with X =V = (04, ..., 0n) (see [32]).

More recently, introducing a suitable intrinsic notion of rectifiability in
the Heisenberg group, a counterpart of De Giorgi’s result on the structure of
sets of finite Euclidean perimeter (see [32]) has been obtained in [29] (see
Sect. 5 and see also [2] and [52]). Finally area formulas have been proved
in the setting of Carnot groups (see [56] and [41]).
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In this work we tackle the problem of investigating the relations among
some classical measures of the Geometric Measure Theory concentrated
on surface type sets in the setting of C-C spaces, sucki-agerimeter
and Minkowski content. To this aim we are able to prove for some C-C
dinstances the followingikonal type equatio(see Theorem 3.1):

(H2) Let K C R" be a closed set. lfix(z) := infycx d(z,y) then
Xdg(z) = (Xqdg (), ..., Xmdi () € R™ exists and X dg (z)| =
1fora.ex e R"\ K.

Actually, we stress that only assumption (H1) and (H2) are needed in
order that our main results turnto be true in ageneral C-C space. In particular,
assuming (H1) we will get that th€ —perimetet0 E'| x (R™) coincides with
the Minkowski content 0 F

M@E)R") = lim 12 ER" dop(x) <1}

r—0t 2r

forallbounded sel’ C R™ with C'*° boundary (see Theorem 5.1). The proof
relies on &Riemannian type approximatiarfithe metricd (see Remark 5.2),
and as a preliminary step we also proveoarea formuleaof the following

type

(1.4) /]Rn u(z)| X f(x)|de = /+oo </{f=t} ud,ut> dt,

—00

wherew is an integrable function andl is a Lipschitz continuous func-
tion with respect to the C-C metri¢, E; = {x € R" : f(z) > t} and
ur = |OE¢| x (see Theorem 4.2). This coarea formula extends previous
ones already known in the literature (see [27], [30] and [29]). Moreover let
us note that, although only assumption (H1) is involved in the proof of for-
mula (1.4), looking at the weighX f| one can immediately guess the key
role played by hypothesis (H2) in integration over level sets of dinstance
functions.

Our main result is the variational approximation of the perimgiér| x
by means of degenerate elliptic functionals of the type: L'(£2) —
[0, +00]

/ (] Xul® + éW(u))da: if ue Hi(2)
—l—%o if ue LY(02)\ H¥(2)

(1.5) F(u) =

whereW (u) = u?(1—u)? andH (2) is the set of the functions € L?(£2)
such thatX,u € L*(£2), j = 1,...,m, exist in distributional sense. More
precisely for every bounded, regular open@et R™ we get the existence of
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the I'—limit functional F := I'(L'($2)) — lim._,¢ F. : L'(2) — [0, +00]
with

F(u) . 20[|‘8E”)((Q) if u= XE € BVX(.Q)
) oo otherwise

provided assumptions (H1) and (H2) hold, with= fol VW (s)ds (see
Definition 6.1 and Theorem 6.5). In the ca¥e= V = (04, ..., 0,) this

result is proved in [47] for the classical Euclidean perimeter. The same
variational approximation was used in [46] to establish a connection between
the classical model and the Cahn-Hilliard model of phase transition (see
[8], [1] and references therein). More recently the general non degenerate
anisotropic case was also studied, namely when one considers the functionals
F.: LY(02) — [0, +o0]

(1.6)
/ (e(BDu, Du) + éW(u))dm it uc H'(0)
+%o if ue LY(02)\ HY(2)

Fe(u) =

whereH ! (2) is the classical Sobolev space ailr) is an x n symmetric
matrix of bounded measurable functions@rsuch that

(1.7) (B(x)€,€) > \o|¢)?>  fora.e.x € 22 and for allé € R™,

for a given)\y > 0 (see for instance [13] and [10]). However, we explicitly
point out that the case (1.6) is not comprehensive of the one (1.5). In factin
this case, ifA(z) = (ai;(x)) is the matrix of the coefficients of the vector
fields, thenB(z) = A(x)A(x)™ would be the appropriate matrix in (1.6),
but it could not satisfy (1.7) (see Remark 6.6).

Moreover we are able to prove that the-perimeter (1.3) is thé&'—limit
of a suitable family oRiemannian type perimetefsr a general family of
Lipschitz vector fields without assumptions (H1) and (H2) (see Theorem 6.4
and Remark 5.2). These arguments show that the definitidh-gferimeter
is from the variational point of view as stable as the Euclidean perimeter.

Finally let us give a short abstract of the paper. In Sect. 2 we establish
our notations and recall some known results about C-C spaces. In Sect. 3
we prove (H2) for some C-C metrics by means of an extension of a well
known differentiability theorem due to Pansu. In Sect. 4 we prove coarea
formula (1.4) and get some applications. In Sect. 5 we study the relation be-
tweenX —perimeter and Minkowski content, proving that they coincide for
regular surfaces. Finally, in Sect. 6 we perform the stud¥ efperimeter’s
approximations by means éf—convergence.
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2. Notations and preliminary results

In this section we recall some well known results about C-C spaces that will
be used in the sequel. Consider the vector filgs..., X, € Lip(R™; R™).
We shall as usual identify vector fields and differential operators. If

X](x) = Zazj(m)&-, j = 1, ey,
=1

define the matrix

aip -+ Gim
(2.2) A=colXy,.., X, =

anl *** Gnm

We shall denote byX; the operator formally adjoint t&; in L?(R™), that
is the operator which for alp, ¢ € C5°(R") satisfies

/Rn p(2)Xji(x) de = /Rn () X o(x) da.

We first introduce some functional spaces associated with the vector
fields. If f is a scalar function ang is am—vector valued function, define
the X —gradientand X —divergence

Xfi=(Xf s Xmf), divx(e) =) Xfop;.
j=1

If 2 C R™is an open set, the anisotropic Sobolev spHé{é’f(Q), 1<p<
o0, is the set of functiong’ € LP(2) such that the derivativeX; f, j =
1,...,m, existinthe sense of distributions 8%({2) functions. We shall write
HY(£2) := Hy*(12). The spacé? ) (£2) is the set of functions belonging
to H)l(ip(U) for each open sdf compactly contained if2 (U CC (2).

We now introduce functions of bounded—variation and recall some
of their properties (see [27] and [30]). L&t C R™ be an open set and let

F(2;R™) :={p € C3(2;R™) : |p(x)] <1 Vx € 2}.
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The spaceBVy (12) is the set of functiong € L'(§2) such that
(2.2)  |Xf|(2):= sup / f(x)divy (p)(z) dz < co.

PEF(2;R™)

The spaceBVx ;,.(£2) is the set of functions belonging B8Vx (U) for
each open se/ cC (2. A measurable sekk C R” is of locally finite
X —perimeter inf2 (or aX —Caccioppoli set) ify z € BVx j0.(£2), namely
if

(2.3) [0E|x(U) := | Xxe|(U) < oo

for every open se/' CC (2. By means of Riesz representation Theorem
one can prove that if € BV j..({2) then|X f| is a Radon measures on
2 (see [22, 2.2.5]).

Proposition 2.1.Let f, fr € L'(£2), k € N, be suchthaf;, — fin L'(2),
then

tim inf |X /] (2) 2 1X£1(2)

Proposition 2.2.1f E is a X —Caccioppoli set withC' boundary the
perimeter has the following representation

(2.9) 0E]x(22) = /6 _(C@m(a) i,

wheren(z) is the Euclidean normal toF atz andC = A" (recall (2.1)).

Theorem 2.3.Let f € BVx(f2) and writex = | X f|. There exists a
p—measurable functiop; : 2 — R™ such thafos| = 1 p—a.e. and

/ f(@)div (o) (x) do = /Q (@), 0y (),
forall ¢ € F(£2;R™).

Whenf = xg in Theorem 2.3, then the vector
(2.5) ve(z) = _UXE( )

will be called X —generalized inner normaif £ .

The representation of the perimeter (2.4) is in [27, Remark 2.3.3]. The-
orem 2.3 is a direct consequence of Riesz Theorem (see for example [32]
or [21]).

We now turn back to C-C metrics (recall definitions (1.1) and (1.2)).
We already noticed that it is not always possible to connect two points by
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a subunit path. An interesting condition that implies the connectivity is
the so-called Chow-Brmander condition

(2.6) rankC(X1, ..., Xm)(xz) =n for everyz € R™.

L(X1,...,X) is the Lie algebra generated B, ..., X,,, € C*°(R"; R"™)

(see [37]). C-C metrics induced by vector fields satisfying (2.6) satisfy (H1).
Precisely, iff2 ¢ R" is a bounded open set andkife N is the minimum
length of the commutators necessary to guarantee (2.6) relativelyhien
there existg” > 0 such that

1 1
5\$—y! <d(z,y) < Clz —yl|*

for all z,y € £2 (see for example [39]).

Metric balls induced by vector fields satisfing the Chowridander con-
dition are well behaved with respect to Lebesgue measure?2letR™ be
a bounded open set and tgt> 0. Then there exists a constant> 0 such
that for allz € (2 and for all0 < r < ry the followingdoubling property
holds (see [49])

(2.7) |B(x,2r)| < 6|B(z,7)|.

Here and in the sequeFE| will always stand forL™(E), where £ is
the n—dimensional Lebesgue measure®h. B(x,r) is a C-C open ball
centered atr with radiusr. The constant is a doubling constant and
Q@ := log,d > n is alocal homogeneous dimensiah (2 relatively to
the vector fieldsXy, ..., X;,.

A subunit pathy : [0,7] — R"™ is ageodesidf d(y(0),~v(T)) = T. If
R™is X —connected then it has tlgeodesic segment properiye. for every
two points of R™ there exists a geodesic connecting them. The following
proposition can be proved by a classical compactness method due to Hilbert
(see for example [34, Theorem 1.10]).

Proposition 2.4.Let (R",d) be X —connected and complete. For every
x,y € R™ there exists a Lipschitz continuous subunit cupve[0, d(z, y)]
— R” such thaty(0) = z, y(d(z,y)) = y andt = d(v(1), x).

We state now a deep result which will be needed. Consider a C-C space
(R™,d). Afunction f : (R",d) — R is L—Lipschitz if

(2.8) |f(z) — f(y)] < Ld(z,y)

for all z,y € R™. In this case we shall writ¢ € Lip(R", d). The infimum
of the constant& such that (2.8) holds will be denoted byp( f). Lipschitz
functions are differentiable a.e. along the fiekis(see [28] and [31]).
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Theorem 2.5.Let(R", d) be a Carnot-CaratBodory space associated with
a family of vector fields(y, ..., X,,, € Lip(R"™; R™), and suppose that (H1)
holds. Then, for everf—Lipschitz functionf the derivativesy; f(z), j =
1,...,m, existand X f(z)| < L fora.e.xz € R™.

Next Morrey’s type estimate is proved in [40]. Here and in the sequel we
1

write+ v = — [ u.

5 |IBlJs

Lemma 2.6.Let Xy, ..., X;;, € C°(R"; R") satisfy the Chow-Birmander
condition (2.6) and let? ¢ R™ be a bounded open set with homogeneous
dimensior® > n (recall (2.7)). Ifp > Q there exist&’ = C(£2, X, Q,p) >

0 such that for every balB = B(xy,r) CC 2

2.9)  |f(z) - f(y)| < cr(]g X f(2)P dz)g fora.e.z,y € B

forall f € Hy"(B).

Finally, we recall the definition a€arnot group(see also [36] and [50]).
Let (R™, -) be a nilpotent Lie group whose Lie algelradmits astratifica-
tion, i.e. there exisVy, ..., Vi linear subspaces gfsuch that

where[V1, V;] is the subspace af generated by the elemerit¥, Y| with
X € Vp andY € V. Itis well known that, identifyingg with R™ via the
exponential map, it is possible to induceRh a family of automorphisms
of the group, calledlilations ¢, : R® — R™ (A > 0) such that

A1y ey ) = (A 2y, .., A2y,

wherel = a1 = ... = oy < 41 < ... < ay, are integers anch =
dim(V1) (see [23, Chapter 1]). The integ@r = -7 a; = 3% jdim
(V;) is thehomogeneous dimensiofithe group, which turns out to be the
Hausdorff dimension ofR", d) (see [44]). The group law can be written in
the form

r-y=Ply) =c+y+Qy), =zycR"

whereP, ) : R" x R™ — R" have polinomial components agli = ... =
®m = 0 (see [55, Chapter 12, Sect. 5]). Note that the inverse of an element
r € R" has the formy=! = (—z1, ..., —p, i(x)) with i(z) € R*™.

Let X1, ..., X, form a basis of; and letd be the C-C metric induced
on R™ by them. The structur& = (R",-,d,,d) is said to be a Carnot
group. Let us point out that C-C metrics induced by different basé§ of
are equivalent (see [50, Sect. 1.3]).
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Then—dimensional Lebesgue measurdifis the Haar measure of the
groupG. This means that i C R™ is measurable, theln - E| = |E| for
all z € G. Moreover, ifA > 0 then|d,(E)| = \?|E).

The C-C metricd is well behaved with respect to left translations and
dilations. In fact one can prove that

d(z -2,z y) = d(x,y), d(0x(x),0x(y)) = Ad(z,y)

forz,y,z € Gand\ > 0.
The vector fieldsX; have polinomial coefficients and can be assumed
to be of the form

X](.f) = aj + Z aij(x)ai, Xj(O) = aj, j=1,....,m,
i=j+1

wherea;; are polinomials such thai;; (5, (z)) = A% a,;(x) (see [55,
p.621]). Sincen; = ... = «a,,, = 1 it follows thata;; is homogeneous of
degree zero for every = 1,...,m. Thus the conditionX;(0) = 0; for
j=1,...,mimplies thata;; = 0if ¢ = 1, ..., m. Consequently, we can also
write

(210) Xj(2)=0;+ Y ai(x)d, X;(0)=0;, j=1,...,m.
i=m-+1

By the same argument;(z) = a;;(x1, ..., x;—1) and thusX; = —X7. We
refer to (2.10) as theanonical generating vector fieldd the group.

Lipschitz maps between Carnot groups are differentiable in a suitable
sense. This is the content of a well known result due to Pansu (see [50] and
see also [16] for more general metric spaces). Here we consider as target
space the Carnot grou.

Theorem 2.7.Let f : G — R be a Lipschitz map. Then for ae.€ G
there exists & —linear differential D f(z) : G — R, i.e. D f(z) is a group
homomorphism an® f (z)(6x(£)) = AD f(z)(§) forall A > 0 and¢ € G,
and

=0.

. fy) = f@) = Df(z)(="" - y)
(2.11) lim o)

Note that Pansu’s differential is explicitely given by the “directional”
derivatives

(2.12) Df(z)(€) = lim fx-6:(§)) — fx)

t—0+ t ’

and the convergence is uniformgn
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3. Rademacher-Pansu type theorem and Eikonal equation
for some Carnot-Caratheodory metrics

Let (R",d) be a C-C space induced by the vector fies, ..., X,, €
Lip(R™;R™) and suppose that the metricsatisfies (H1). IfK° C R" is
a closed set definéx (x) := inf,cx d(x,y). Notice that if (y)ren is a
minimizing sequence for a fixedl we can suppose that € K N B(z, R)
for R large enough and for ak € N. Since K N B(z, R) is compact
there exists a convergent subsequence. thus) = inf,cx d(z,y) =
mingex d(z,y).

Since the functionlx : (R",d) — R is 1—Lipschitz, Theorem 2.5 im-
plies that the derivativeX ;dg, j = 1, ..., m, exista.e. antiX dg (z)| < 1
for a.e.z € R™. We shall prove for some C-C metriegsthat the din-
stance functionlx actually verifies an eikonal equation with respect to the
X —gradient

(3.1) | Xdg(2z)| =1, aezcR"\K.

It is well known that Euclidean and Riemannian metrics satisfy (3.1) (see
for instance [6] and [42]). We are able to prove (3.1) in the following three
cases.

Case A. Xi,...,X;, € C*[R";R"), m < n, satisfy the Chow-Brman-
der condition (2.6) and are of the form

(3.2) X;=0;+ Z aij(z)0;, j=1,...,m,
i=m-+1

wherea;; € C*(R").

CaseB. Xi,..., X, € C°(R";R") are of the form
(33) X1 = 81, X2 = pz(:rl)@g, Xn = pn(ZL'l, ...,$n,1)an,

wherep; € C®(RI71), j = 2,...,n, are functions vanishing on a set of
null (j — 1)—dimensional Lebesgue measure.

CaseC. Xi,..,X,, € C*(R™;R")andspad X;(z), ..., X;n(z)} = R”
for everyx € R™.

Vector fields in Case A may be called “of Carnot type”. This expression
is motivated by the analogy with the canonical generating vector fields of
a Carnot group (see (2.10)). For vector fields of Carnot type we are able to
prove a differentiation theorem that generalizes Pansu differentiation The-
orem 2.7. We give two simple examples of vector fields of Carnot type.
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Example Al: Heisenberg group. The most important example of case

A are Carnot groups whose definition was recalled in the previous section.
Here we introduce the most simple group of this class: the Heisenberg group
(see [55] for a general introduction). R *! consider the vector fields

(3.4) Xj = 6xj + 2yj8t and ij = 6y], — 2$j6ta j=1..,n,

where(z,t) = (z,y,t) € C" xR = R" x R" x R. Since[X}, Y| = —40;
the Chow-Hirmander condition (2.6) is satisfied and the C-C dinstahce
satisfies (H1). The group law is

(¢, 1) (2,t) := (C+ 2,7+t +2Im(¢2)).

Dilations are given by, (z,t) := (\z, A%t).

The structuréd™ = (R?"+! . 4,,d) is the Heisenberg group, whose
homogenous dimensiondg = 2n + 2. The Lie algebra ofl" is generated
by the canonical vector fieldX;, Y;. The intrinsic.X —gradient isX =
Vu = (X1,..., X0, Y1,....Y,).

Example A2. Consider inR? the vector fields
X =0, +9%0,, Y =0,

Since[X,Y] = —2y0, and [Y,[X,Y]] = —20, the Chow-Hrmander
condition (2.6) is verified. Thus the C-C metricinduced byX andY
satisfies (H1). The C-C spa¢R?, d) is not a group and it has not a uniform
homogeneous dimension. Still we are in Case A.

Case B, which is inspired by [26], generalizes the Grushin vector fields
X = 9, andY = zd, in R?. Notice that every couple of points & can
be connected by polygonals that are piecewise integral curves of the vector
fields X, ..., X;,. Moreover the C-C dinstance induced by them satisfies
(H1) (see for instance [26]).

We now state the main result of this section.

Theorem 3.1.Let(R"™, d) be a C-C complete space induced¥y, ..., X,,,
and suppose that the vector fields satisfy one of the cases A, B or C. Let
K c R™ be a closed set and ldf, be the dinstance froA’. Then

(3.5) | Xdgc ()] =1
fora.e.xz e R"\ K.

Our task is to prove equation (3.5) but first we need some preliminary
lemmas. We begin by a Rademacher-Pansu type Theorem (recall 2.11).
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Theorem 3.2.Let X1, ..., X,,, € C°(R™;R"™) be as in Case A and let €
Lip(R",d). Then for a.ex € R"

Ge W@ S Xl @) - )
y—z d(:L‘, y)

=0.

Proof. The proof follows an idea of Calden (see [14] and for example [21,
Theorem 6.1]). The derivatives; f(x), j = 1, ..., m, exista.e. by Theorem
2.5. Moreover X f| € LI (R")forallp > 1. Let2 C R™ be a bounded
open set with homogeneous dimensi@nand fixp > . By Lebesgue
differentiation Theorem in spaces of homogeneous type we have for a.e.
x €S

(37) lim X f(2) = X )l dy = 0.

r—0t B(z,r)

Fix € 2 such that X f(x)| < oo and (3.7) holds, define
9v) = fy) = > X; (@) (@5 — yy),
j=1

and notice thatX,g(y) = X;f(y) — X, f(z) (recall (3.2)). By Morrey’s
inequality (2.9) we get

o)~ @l < Cr(f  [Xgla)dz)" forally e B

B(z,r)
and choose = 2d(zx, y) to find

f(y) = f(@) = 2055, X f (@) (25 — y))
d(z,y)

1
<20(F 1X,0() = X f@) dz)”
B(z,2d(z,y))

The last term tends to zero d&r, y) — 0 owing to (3.7). O

Remark 3.3If G = (R",-,d,,d) is a Carnot group, and : G — Ris a
Lipschitz map, then Pansu’s differenti@lf (z) : G — R defined in (2.11)
has the explicit representation

(3.8) Df(x)(§) =) &Xif (@),
j=1

fora.e.x € G and for all§ € G.
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Thus Theorem 3.2 truly generalizes Pansu Theorem 2.7 to vector fields
of Carnot type. We prove (3.8). Consider first the cfise C3°(R"). Let
P(z,y) = =z - y be the group law, and notice thatjit= 1, ..., m then

X, () = (VSa). 5P )

Now recall the characterization of Pansu differential (2.12)

Df(z)(€) = lim f(z-6:(8)) — f(x)

d
= S H @ 88))|

t—0 t t=0
Compute
S P )| = (VP @] )
= y=0 dt t=0
= <VyP(x,y)‘y:0, (€1, ey €m0, ..., 0)).

In fact, the coordinaté%ét(g))i containg®witha > 1if i =m+1,...,n.
Finally we get

>
-
—~
8
N~—
e
~—
I
<
~

(VI(@), 9y P(,9)] _ (€m0, 0))

If f € Lip(G), takep € C5°(R™) and¢ € R™. By the dominated conver-
gence theorem we can write

t— Rn

Infact, if L = Lip(f), since the metrid is left-invariant and homogeneous

‘f(l"ét(f)) - f(fﬂ)‘ < Ld(z-6,(),2) _ , d(3(€),0)
t - t t

= Ld(€,0).

Now recall that Lebesgue measure is left and right invariant and perform a
change of variable to find

fl@-0i(8) = f(=)

R t

oo Gi€) ™) — pla)
t

pe)de = | f(z) z.
R
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Recalling that(5;(¢))~! = 6,(671) andé™! = (=€, ..., —&m, i(€)) we
infer as above that

g P2 GO )
]Z:; ”

t—0 t

and integrating by parts we get

Dﬂ@@W@Mm=—/

n

R

f@)) & X 0(x) da
j=1

:/ cp(:n)ijXjf(x)dea
Rn =

as everyX; is self-adjoint. O

Lemma 3.4.Let (R", d) be a C-C space corresponding to case B. For a.e.
x € R" every geodesic starting fromis of classC'! in a neighborhood of
Z.

Proof. See for example [24]. Lef; = {y € R/™! : p;(y) = 0} if
j = 2,..,nandsetd = (Jj_, Z; x R*/*'. Then|A| = 0. Choose
x € R™\ A andtaker > 0 such thatB(z,r) C R™\ A (Ais closed).
If Xi1,....,X, € C®(R™R") the metricd is actually a Riemannian
metric onR™ \ A. Thus geodesics are locally regular (of clagg in R™\ A.
O

Proof of Theorem 3.1.Case A. Sincelx is the lower envelope of-
Lipschitz functions, thedy is 1—Lipschitz. By Theorem 2.5 the derivatives
Xjdi(z), 5 =1,...,m, exist for a.ex € R" and

(3.9) | Xdg(z)| <1

fora.e.x € R™.

Fix x € R™\ K such that (3.9) holds. Since the function- d(z,¢)
is continuous and coercive, it has minimumAn Thus there exist§ €
K such thatd(z,£) = dk(z) := T > 0. There exists a geodesic €
Lip([0, T]; R™) such thaty(0) = x and~(T) = £. By Proposition 2.4 we
have

di (y(t)) = d(y(t),§) =T —t

forall ¢t € [0,T].

Since the functiorf = d is Lipschitz, by Theorem 3.2 we have for a.e.

r €R"?
fy) = fla) = 3205 X f(2)(y; — ;)

d(z,y) =0

(3.10)  lim
y—x
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Fix z € R™ \ K such that (3.9) and (3.10) hold. As= d(~(t),~(0)),
we can write

(3.11)
f0®) = f(6(0) _ dx(y(®) —dx(7(0) _ (T-)-T _
d(~(t),7(0)) t t ’

and from (3.10) it follows

312 100 . f((0) _ inf(x)yj(t);%(o)
j=1

Lety := (71, ..., 7m). Since
Y1) =Y hi(t)X;(v(t), foraete[0,T]

with b = (h4, ..., h,,) Measurable coefficients such thatt)| < 1 a.e.,
from the special form of the vector fields (3.2) it follows that

30 =500+ [ his)ds,
and thug¥(t) — 5(0)| < tforall t € [0,T]. Thus ift € (0, 7]

i‘%(t)—%(o)r

t

<1

— Y

J=1

and therefore, recalling (3.11) and (3.12)

1= 3%, 2O )] < xf @) +1o0)
j=1

for all t € (0,T). This proves thatX f(z)| > 1. This inequality and the
converse one (3.9) prove tha f(z)| = 1 fora.e.x € R" \ K.

We now consider case B. Singg is 1—Lipschitz, Theorem 2.5 implies,
as above, thatXdx (z)| < 1 a.e., and moreover every;dy (x) exists as
aL (R™\ A) function. But|p;| is locally strictly positive orR™ \ A and

loc

pj = pj(21,...,zj—1). Thusd;dx € LS (R™\ A) existforj =1,...,m. By

loc

Rademacher Theorem it follows thit is differentiable almost everywhere

onR".
Now fix z € R™ \ (K U A) such that Xdg (z)| < 1 anddx is differ-
= dg(x) := T. There
)

~—

entiable atz. Choosez € K such thatd(z, z
exists a geodesig € Lip([0,T]);R™) N CY([T — 6, T);R™) such that
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~v(0) = (z) and~(T) = z for § > 0 small enough. Moreover there ex-
isthi, ..., hpy € C([T — 0, T]; R™) for which

¥ =) h0)X;(v(1), Y ki<
j=1 j=1

forall ¢t € [T — §,T] (see for example [48]). By Proposition 2.4 we have
dx (v(t)) = t, and we can differentiate this identity in= 7" to find

1 = (Vdg(z),%(T)) = (Xdg (z), h) < |Xdg(z)].

Finally we consider case C.ffisthe matrixin (2.1) therank A(z) = n
for everyz € R™. Thus Chow-Hrmander’s condition is satisfied and the
C-C dinstance verifies (H1). Moreover it is well known that the metric space
(R™, d) is a Riemannian manifold and geodesics are (at least locally) regular
curves (see, forinstance, [39]). The functifpis Lipschitz in the Euclidean
sense, and thus differentiable almost everywhere. We can perform the same
computations as in the previous case to show [tNatx ()| = 1 for a.e.
x € R"\ K (see also [42]). O

4. Coarea formula in Carnot-Carathéodory spaces

In this section we slightly improve a coarea formula for vector fields. Let
2 C R" be an open set. If € BVx(f2) thenR > ¢t — |0E|x(£2) is
L' —measurable and

+oo
@) 1) = [ 1Bl (@)
whereFE; := {z € 2 : f(x) > t} are the level sets of the functigf) and
|X f| and|OE¢| x are the measures defined in (2.2) and (2.3). For the proof
see [27, Theorem 2.3.5], [30, Theorem 5.2] and see also [29, Proposition
3.1] and [45].

Remark 4.1Let X1,..., X, € Lip(R";R"), and letE C R" be aX-
Caccioppoli set. It can easily checked tHat|x (R™ \ dF) = 0 and
|0E]x = [0(R™ \ E)|x.

Theorem 4.2.Suppose that the vector field§,, ..., X,, € Lip(R";R™)
satisfy (H1). Letf € Lip(R™,d) and letu : R™ — [0, 4o00] be L"-
measurable. Then

(4.2) /R )| X F ) = / o ( /{ f:t}ud,ut> dt,

o0

whereu, = |OE;| x is the perimeter measure of the level ggtof f.
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Proof. We shall divide the proof in two steps.

Step 1Let(? C R" be anopenset. Lgtc BVx ,.(2) andletB C 2bea
Borel set, or alternatively let € H)l(’1 (£2)andletB C 2 beLl"—measur-

Jloc

able. In either cases the functi®n> ¢ — |0F;|x(B) is £L!—measurable
and

+oo
4.3) IXF|(B) = / 0B x (B)dt.

—O00

Itis not restrictive to assumg e BVx (£2) and, moreover, because of (4.1)

we can assume thi® F;| x is a Radon measure i for £! —a.e.t € R, or,

for the sake of semplicity, for everye R. Letus denote by, ((?2) the class

of the | E;| x —measurable se® C 2 such thaR > t — |0E;|x(B) is
L'—measurable, and lg¢t = (),cx M (£2). We show thag\ contains the
o—algebraB({2) of the Borel sets of?, thus proving the first statement. By

a classical result of measure theory on monotone classes (see for instance
[3, Remark 1.9]) it is sufficient to prove that

(i) M contains the open sets &

(ii) if (Br)nen C M is an increasing sequence tHgfi” | By, € M;
(i) if B e Mthen2\ B € M;

(iv) if B,C, BUC € MthenBNC € M.

It is easy to see that conditions (i)-(iv) follows from the properties of mea-
surable functions and of the Radon meas|éds; | x .
The set function : B({2) — [0 + oo] defined by

—+00

v(B) = / 0B x(B) dt

—0o0

is a (Radon) measure on the-algebraB((2) andv(A) = | X f|(A) for
every open setl C (2. The coincidence criterion for measures in [3, Propo-
sition 1.8] implies thav(B) = | X f|(B) for all B € B(f2). This proves
(4.3).

If f e Hy),, andB C 2 is aL"—measurable set, thdiX f| < L"
and there exist two Borel sefs, A c (2 such thatF ¢ B Cc A and
| X fI|(A\ F) = 0. By (4.3) it follows that| 0F; | x (A\ F) = 0 for L1 —-a.e.
t € R, and thusR > t — |0F;|x(B) = |0E:|x(A) is L!—measurable
and (4.3) holds for ang”—measurable s&t C (2.

Step 2Sincef € Lip(R", d), by Theorem 2.5 the gradieitf (x) is defined
almost everywhere, an& f(z)| < Lip(f). In particularf € Hy' (R™).
Sinceu is measurable we can writ€z) = > 77, 1/kxa, (z) with Aj, C
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R™ measurable with finite measure (see [21, Theorem 1.1.7]). By the mono-
tone convergence theorem and Step 1

00 1 00 1 +o0
/ (@) X f@)lde =S X fl(A) =3 = / OB |x (Ay)dt
" k=1 k k=1 k) oo
+o0o
_ / ( / u(x)dE ) .
—00 R’Il

Sincef € Lip(R", d) and sincelis continuous with respectto the Euclidean
topology, thenf is continuous. It follows thad{z € R" : f(z) > t} C
{z € R" : f(z) = t}. Thus Remark 4.1 implies that the support of the
measurg:; = |0E| x is contained infz € R™ : f(x) = t}. 0

Remark 4.3Let us observe that if the vector fieldg, ..., X,,, satisfy con-
dition (H1) then

(4.4)
0B(xg,r) = {z € R" : d(xo,7) =1} = 0{x € R" : d(xo,r) > r}

for everyzy € R™, r > 0. Indeed,(4.4) follows from the continuity of
the metricd and the geodesic segment property(Bf*, d). Then, taking
U = XB(zo,r) @Nd f(z) = d(z, ) for fixedzop € R" andR > 0, we
get from Theorem 4.2 tha8(z, ) has finiteX —perimeter inR”™ for a.e.
r > 0. In particular (see Lemma 4.5) X1, ..., X,,, induce a structure of
Carnot group ofiR™, thenB(zy, r) has finiteX —perimeter inR"™ for every
r > 0.

Corollary 4.4. Let X4, ..., X, be one of Cases A, B or C, and t&be the
C-C metric induced by them.4f € L'(R") then

(4.5) / u(e)do = /0 = ( /8 o u(:v)d,uT)dr,

wheredB(0,r) = {x € R" : d(x,0) = r} andu, = |[0B(0,7)| x.
Proof. By Theorem 3.1 we havegXd(z,0)| = 1 a.e.x € R", by Remark
4.1 and by (4.4) we can apply formula (4.2). O

Lemma 4.5.LetG = (R", -, 0\, d) be a Carnot group with canonical gener-
ating vector fieldsXy, ..., X, € C°°(R™;R™) and homogeneous dimension
Q. LetE C G be measurable. Then

|06x(E)|x (5x(A)) = A1 OE| x (A),

for A > 0 and for every Borel setl C R".
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Proof. We prove first that, if) € C*(R"™), then

(4.6) Xj(¢odr)(z) = AX;¥) (0 (2)),
forj =1,...,mand\ > 0. Recall thav, (z) = (\“'xq, ..., \*"x,,) where
a1 = ... = oy = 1 anday, 11, ..., ap are integers greater or equal than

The vector fields are of the ford¥;(z) = 0; + Y7, ai;j(x)0;, where
aij(é,\(x)) = )\ai_laij(l'). Thus

n

Xj(thoby)(x) = 9j(hobn) (@) + Y aij(x)di(1h 0 6y)(x)

i=m-+1
= ﬂZJ 5)\ Z )\al az] 11/)(5/\(95))
i=m-+1
= AX;)(0r(2))
Without loss of generality we can assusiepen. Takey € F(0,(A); R™).
Since the determinant of the jacobiandgf{z) is A¢ and X7 = —X;, we
can write
/ div () () dz = \@ / divx () (0 (2)) dz =
Sx(E)NGx(A) ENA
= AQ/ > (X)) (6x(@)) dz = AQ_l/ Y Xjlpjod)(x)de
ENA BNA T

Sincey o §) € F(A;R™) itimmediately follows that
[967(E)x (0x(A)) < X271 OE|x (A).
The converse inequality can be proved in the same way. O

Corollary 4.6. Let G = (R",-,d,,d) be a Carnot group with canonical
generating vector filedX, ..., X,,, € C*°(R";R™) and homogeneous di-
mensiony. If u € L'(R") then

4.7) / u(e)de = /O o ( /a o 1)u(5r(gg))rQ1du)dr,

wherep = |0B(0,1)| x.

Remark 4.7Formula (4.7) gives an explicit representation of the (unique)
surface measure whose existence for Carnot groups was proved in [23,
Proposition 1.15].
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Remark 4.8It would be interesting to see whether in formula (4.2) the
perimeter measurE; | x could be replaced by the spherical Hausdorff
measun—:é‘(?_1 (constructed according to Federer definition using the C-
C dinstancel) in the case of a Carnot group of homogeneous dimension
Q. However one can not always expect this replacement in a general C-
C space. The reason is that in C-C spaces which are not Carnot groups
the local Hausdorff dimension may change at different points of the space.
Analogously, the boundary of a regular open set needs not have a uniform
Hausdorff dimension.

For instance, consider Ik® the C-C metriel induced by the vector fields

X = 896 + 2y8t, Y = 8y - 21:(%, T = a(t)@t,

wherea € C*(R)isa(t) = e rift> 0anda(t) = 0if ¢t < 0. Thus, inthe

half space{t > 0} X, Y andT are linearly independent and the Hausdorff
dimension is 3, whereas in the half spage< 0} we have exactly the
Heisenberg vector fields of Example Al and thus the Hausdorff dimension
here is 4. Now, let? C R? be an open set witli’™ boundary. The set

02 N {t > 0} has Hausdorff dimension 2, while the &2 N {¢t < 0}

has Hausdorff dimension 3 (see [29, Corollary 7.7]). This shows that the
right dimension for the Hausdorff measure to integrate over regular surfaces
is different at different points of the space. The perimeter measure takes
automatically account of such change of dimension.

5. Minkowski content and perimeter in Carnot-Carathéodory spaces

Let E C R” be a bounded open set, and fix Bft a C-C metricd in-
duced by the vector fieldX, ..., X,, € C*(R™R"). Let dpr(x) =
minyepg d(z, y), and forr > 0 define the tubular neighborhodd(0F) =
{x € R" : dpr(z) < r}. Theupperandlower Minkowski contertf F in
an open sef? C R" are respectively

M+(OE)(2) = lim sup 11OE) 02
r—0+ 2r
- . (OE) N Q2
(OE)(12) = liminf ==

In this section we prove that i’ is regular and? has regular boundary
thenM ™ (0F)(2) = M~ (9E)(£2), and thiscommon value, which we shall
call Minkowski contenodf 0F in 2 and denote by\/(0F)({2), coincides
with the X —perimeter ofF in {2 as defined in (2.3). The proof is based on a
Riemmanian approximation of the C-C spaB#, d). In this section and in
the next ong{"~! stands for thén — 1) —dimensional Euclidean Hausdorff
measure.
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Theorem 5.1.Let {2 C R"™ be an open set with'> boundary or{2 = R",
Let E ¢ R™ be a bounded open set wir° boundary and suppose that
HL(OE N 0N) = 0. ThenM ™+ (0E)(2) = M~ (0E)(£2) and moreover

M(OE)(£2) = |0E|x(£2).

Proof. We prove separately that

(5.1) M~ (0E)(£2) = |0E|x(£2),

(5.2) MT(OE)(£2) < |0E]x(£2).

The former statement follows from the lower semicontinuity of the perime-
ter. The latter one requires the Riemannian approximation.
Define

dop(z) fzeFlE
o(z) = { —ggE(x) if z € R"\ E.

Now, fore > 0 define the function

Since|Xp| <1a.e.

1
@) =5 [ Xo(o)lds
€ Jan{lo(=)|<e}

= Q%Hl” € 0 |olw)| < e} = @EI D2

2¢e

The total variation is lower semicontinuous (Proposition 2.1)anes x g
in L'($2), thus

[0E]x (§2) < lim inf [ X [[(£2) < M™(OE)(£2).

This proves (5.1). We shall now prove (5.2). L&be the matrixa x m of
the coefficients of the vector fields; defined in (2.1) and le®’ = A™. For
e > 0 consider the new family of vector fields. = (X1, ..., X, €01, ...,
€0dy), Which generates a C-C metric. Define analogously the matricds
andC.. One can prove the following statements:

(i) de(z,y) <d(z,y) forall z,y and in factd(x, y) = sup.od:(z,y).
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i) Letd.gpr(x)=min,csr d-(x,y). The function
b y

(@) = deop(x) fxekFE
0e\®) = —deop(z) fzeR"\ E

is of classC* in a neighborhood 0HE, and|X.o.(x)| = 1 in this
neighborhood.

A proof of (i) can be found in [38], while statement (ii) relies on classical
results in Riemannian geometry and on Theorem 3.1, case C.
Now define the upper and lower Minkowski content

M;(aE)(_Q) := lim sup Hx € 2 oe(x)| < r}

)
r—0+t 2r

MZ (OE)(2) := liminf LEE L |e@I <7}

r—0+t 2r

By (i) we have thato.| < |o| and thus{z € 2 : |o(z)| < r} C {z € 2
loc(x)] < r}. It follows that

(5.3) MT(IE)(2) < MH(OE)(2).
We shall soon prove that
(5.4) M (9E)(Q) = Mz (0F)(R2) = |0E| x.(12).
Recalling the representation for the perimeter in Proposition 2.2 we find

lim [0F] x. (£2) = lim |Cc(x)v(x)| dH" !
e—

(55) =0 JonoE

[ jcp@lat = 0Bl ().
2NOE
In fact, C.(z) — C(z) pointwise. Thus, using (5.3) and (5.4) we get

M*(QE)(2) < lim M (9E)(2) = [0E]x.(£2) = |0E]x(£2).

lim
e—0t e—0t
This completes the proof of the Theorem if we prove (5.4).

Let B, = {x € R" : p.(x) > s}. Since|X.o.| = 1 in a neighborhood
of OF using the Coarea Formula (4.2) we can write

[{z € 2:o-(2)] < t}] _1/ dr =
2t 2t J{joc|<tin2

L[ L_qjor.) L [ om ) 2)
S daESXEds:/ Bylx.(2)ds.
2t /t /{Qszs}ﬂfl ‘XEQ€| 2t J 4
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We consider first the cage = R™ andt¢ > 0. By Theorem 2.3

/ diVXa(XsQe)dl':/R <X5Q€>VEt>d”aEtHXe
E n

\E
- | (Xeovi)dloE k..
and by (2.4)
vy = Ceng _ Xeo:
’CsnE‘ ‘ngsl’
wherenp = lvgel is the Euclidean normal to E. We have an analogous

representation formula farg, on 0E;. Thus, sincéd X p-.(x)| = 1 in a
neighborhood o F

/ divx.(Xc0:)dz
EN\E

Xc0¢ / Xe0e
= Xc0e, ——)d|OE:| — X:o, d@EXe
/RSL = |XEQE|> ” t” R< : ‘Xs z—:|> ” H

= [0E:] x.(R") — [OE] x. (R").

Sincedivx.(X.0.) € L! in a neighborhood ofE, the first term tends to
zero whent — 01, and we deduce thd®E;| x. (R™) — |0F|x.(R") as
t — 0T. This concludes the proof i2 = R".

Sincex g, — xg bothinL!(£2)andinL!(R™\ ) we have by the lower
semicontinuity of perimeter

[0E]x.(£2) < liminf [0E:|x. (£2),
(5.6) t—0t
0B x. (R \ ) < lim inf |0E,] x. (R" \ 22).

From
[0E:]x. (£2) < |0E]| x.(2) = [0B:| x. (R") — [0E: | x. (R™ \ £2),

using the second inequality (5.6) and the convergendR"irestablished
above we find

timsup [0 x. () < 10B] . (") ~ lim inf 0B, (R" \ )
t—0+
< 10B]x. (") — 0B ] (R"\ )
< |0E|x.(2) + |0E|x. (092)
< |0E|x.(2) + / CovpldH™!
M
— |0E]x.(%).

Together with the first inequality in (5.6) this proves thaE: | x_(2) —
|OF|x.(£2) ast — 0T. The case¢ — 0~ is quite similar. The theorem is
now completely proved. O
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Remark 5.2The Riemannian type approximation in the proof of Theorem
5.1is“Riemannian” only from the metric point of view. In fact we considered
in R™ the Riemannian metrid. but in place of the Riemannian volume,
which diverges ag — 0, we took the Lebesgue measure. The surface
measurdl0F| x. is not the classical Riemannian area, either, which still
diverges where — 0 (see [10] and see also Theorem 6.4). Namely, the
Riemmanian area in the approximation is equal to the variational perimeter
defined by the family of vector field¥. except for a term which is exactly
the Riemmanian volume element, which makes it diverge.

Let A, be then x (m + n) matrix defined in the proof of Theorem 5.1
and, according to our notation, writg. = AaT. The Riemannian tensor
which induces oRR™ the metricd. is given by the definite positive matrix
ge(z) = (Ce(x)TC.(z))~!. Thus, if E C R™ is a bounded open set with
regular boundary, the Riemannian volumeiHfaind the Riemmanian area
of OF are respectively

1
Volg(E):/E\/detgg(x) d:c:/E Vet (C.)TC,

Area.(0F) = [ (g n(w). ()2 /det g (o) dH" !
oE
_ Cen(a)]
oE \/det(C:(z)TC(x))
wheren(z) is theEuclideannormal to0F atzx.
Considering, for instance, iR? the Heisenberg vector field§ = 0, +

2y0; andY = 0, — 2z0; it can be easily checked thaet(CXC.) =
e2(1 + &%)[4(z% + y?) + 1 + 2] and thus it may happen

xz,

()

n—1
)

lim Vol.(F) = lim Area.(0F) = +oo.
e—0 e—0

Remark 5.3From the proof of Theorem 5.1 we get that (OF)(R") =
|OE|x.(R™) for everye > 0 and that there exists the limit

lim M. (OE)(R") = |0E]x (R")

e—0t
for any family of vector fieldsX = (Xj, ..., X,,) even not satisfying as-
sumption (H1).
6. Variational approximations of the perimeter

In this section we prove that thé— perimeter is the limit of “regular” func-
tionals in the sense df— convergence. More precisely, we shall show that
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the C-C perimeter is both the limit of its elliptic-Riemannian approxima-
tion and of degenerate elliptic functionals. We recall first the definition of
I"—convergence (for a comprehensive introduction see [17]).

Definition 6.1. Let (M, d) be a metric space, and Iét, Fj, : M — [—o0,
+o0], h € N. F'is said to be thd"—limit of the sequencéFy, ),en, and we
shall write FF = I'(M) — limy,_,~, F}, if the following conditions hold

(6.1) if z € M andxp, — = then F(z) < lihm inf Fy(zp,),
— 00

(6.2)
Vo € M J(zp)pen suchthate, — x and F(x) > lim sup Fp(xp).

h—o00

We now state a “Reduction Lemma” whose proof can be found in [47].

Lemma 6.2.Let (M, d) be a metric spaceF, F}, : M — [—oo,+0o0],
h €N, D c M andx € M. Suppose that:

(i) foreveryy € D there exists asequent®,)ren C M suchthat, — y
in M andlimsup Fy(yr) < F(y);

h—o0
(i) there exists(zp)pen C D such thatr, — x andlimsup F(xp) <

h—o0
Then there existgt, ) neny C M such thatim sup F,(z,,) < F(z).

h—o00

We shall need a refinement of the approximation theorem3id¢ func-
tions in order to bypass the following technical difficulty. In the Euclidean
setting one of the main tool for the approximation of a set of finite perimeter
in 2 by means of sets with regular boundaryRft (not only in £2) was
the property of a functiom € BV (£2) N L*°({2) to be extended to a func-
tion w € BV(R™) N L*>®(R™) with |Du|(02) = 0, if £2 has Lipschitz
boundary(see [46, Lemma 1]). It is not known whether such a property
does hold forBVx (£2) functions. Nevertheless we can prove the following
proposition.

Proposition 6.3.Let {2 € R™ be a bounded open set wi@f° boundary,
and letE C (2 be a measurable set such tH&FE | x (£2) < +oco. There
exists a sequendd;, )y Of open sets ifR™ such that

(i) Ej isbounded andFEy} is of classC* for all h € N;
(i) Ep — Ein LY(0);

(ii)) [OERL|x(£2) = |OE] x (£2);

(iv) H*L(OFE, Nof2) =0forall h € N.
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1/2
Proof.Let M = sup,cp (ij:l Z;”Zl |aij(x)|2) where theu;; are the
coefficients of the vector fieldX;, ..., X,,,. The proof will be divided in
three steps.
Step 1Assume that' E is of classC> in R". Fore > 0 fixed we show
that there exists a bounded open Bet R™ with C°>° boundary such that:

(1) [(EAE)N Q| <e;
(2) [10EIx(£2) - [0E|x(2)] <&;
(3) H" L(OENaN) =0.

Define the dinstance function

min |z —y| ifxze R
§(z) =14 v .

’ — min |z —y| fz e R"\ 2

yeaNR
There exists > 0 such that the function — 6(x) is of classC* in the
opensefxz € R™ : |§(x)| < 0} (see for example [46, Lemma 3] or [6]). If
t € (0,0) defines2; = {x € £2: 6(x) > t} and notice thab(2; is of class
C*°. We can fixtp € (0, ¢) such that

(6.3) 12\ 2| <&, H"NOENN\ 24,) <e,

|0E]x (£2\ $2¢) = / C(z)v(z)| dH™!
DEN(2\24)

(6.4)
< MH"™YOEN (2\ 2,)) < Me.
Notice first that
(6.5) H" N0 NOE) =0 fora.e.t < (0,0).

By contradiction assume that" ! (92, N9E) > 0 for ¢ belonging to a set
of positive measure if0, 0). Then

5
0</ H”—l(arzmaE)dt:/ |Vé(z)|dz = |0E N 2\ 02
0 8Em!2\(25
and this is not possible.
Now take a functionp € C*°(R) such thaty(s) = 1if |s| < 1,
0<¢(s) <1if £ <|s| <landyp(s)=0if |s| > 1. Forz € R" consider
the vector field

d(x) :
N {gw(m)wm 150 <t
wise.
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Let~, : R — R" be the maximal solution to the following Cauchy problem

{%(8) = N(72(s))
72(0) = @,

and define the flowp : R x R"™ — R™ by &(t,x) = v, (t). Write &,(x) =
&(t, x) and notice thadb; restricted td2;, is the identity and;(942;) = 012
ift <%

Choose) < ¢ < % such that

(6.6) H" LD NOE) = 0,
(6.7) sup |V&i(z)| < 2.
ze(?

This is possible because of (6.5), and by the fact thia&ifo thend; is the
identity and the dependence bis smooth.

DefineE = &;(E). SinceE N £, = EN 2, we have(EAE) N 02| <
|2\ £2,| <e.Thisis (1). Moreover

H* (002 NIE) = H" 1 (D:(82: N IE)) = 0

sinceH™1(002; N OF) = 0 and®y is a diffeomorphism. This proves (3).
Estimate theX —perimeter

10E| x (£2) — |[0E| x (£2)]
< |Cv(z)|dH™ ™ + / |Cov(x)|dH™ !
OEN\ 24, OEN\ 24,
<e4+ MH" N OEN N\ 2)
<e+ 2" TMH" Y OE N 2\ ()
< (142" M)e,

where we used - in order - Proposition 2.4, (6.4), (6.7) and (6.3).
Step 2Assume thajoE| x (042) = 0. First notice that

[0E|x (R™) = |0E|x(2) + [0E|x (0£2) + [0E|x (R™ \ £2)
= |0E|x(£2) < 4o0.

By Theorem 7.1 there exists a sequer@EQ)heN of open subsets dR™
such that

(1) Ej is bounded andE}, is of classC™ for all h € N;
(2) En,— EinL'(%2);
() [9En|x(R") = |OE|x (R™).

By the same argument as in [32, Proposition 1.13] we can also find
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(@) [0Ey]x(2) = [0E]x(%2).
The claim follows fromStep 1by a diagonal argument.
Step 3.Suppose thato E| x (02) > 0. We are going to reduce ®tep
2.By Theorem 7.1 we can assume tlat_ 2 andoFE N (2 is of classC>.
Let®, : R™ — R™ be the diffeomorphism defined Btep 1 Fixe > 0
and choos® < s < t < tg such tha{2 \ ;| < candH" 1 (OE N 02\
2;,) < e. As before defing?, := {x € 2: 6(x) > s} and set
(6.8) E,:=02,NE and E :=%(E,).
We can also assume that
H (062, NOE) = H" H(02; N OE) = H" 1 (802, N OE) = 0.
Notice thatF; is a set with finitdEuclidearperimeterirR™, i.e.|0E|(R"™) <
+o0. Indeed
||8ESH (Rn) = HaES ”(ﬁs) + ”aEs”(“Q\ﬁs)
= |0E,|(2,) = H" Y OE N 2,) + H" Y (E N o)
< +00.
On the other hand
[0E]x (2) = [0E] x (1) + [0E]x (2 \ 21,)

(6.9) . _
= [0E[x(£2ty) + |0E| x (2\ 24)-

By [32, Lemma 10.1]0E|(R™) < +oo and by [27, Remark 2.1.9]

|0E|x(2\ 24,) < CIOE|(2\ R4y) = C|ODH(Es)|(5($2¢\ 2s,))
< ClOE[($2\ 2¢,) < CH" Y (OE, N 025\ 24y)

< Ce.
Finally
610  10EIx(02) < CIOE|(02) = Clo(E)|(@:(0%2)
< C|OE|(9%) = 0,
and thug 0 E | x (952) = 0. .

LetX = (X, ..., X,,,) be afamily of Lipschitz vector fields iR™ and for
e > 0 define the new familyX. = (X, ..., X;, €01, ...,€0,). Let 2 C R"
be an open set and define the functiomal#. : L' (£2) — [0, 4+o0]

_ JI0E|x(2) if u= xr € BVx(£2)
P(u) = {—i—oo otherwise,
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and

Po(u) = I0E| x.($2) if u= xg € BVx_.(£2)
ST 40 otherwise.

Lete, — 0 and write P, = P, . In the following theorem we prove that
the “elliptic-Riemannian” regularization of the perimetésconverges to
the perimeter.

Theorem 6.4.1f {2 C R™ is a bounded open set with>™ boundary then

P=r(L'(N) - Jim Py

Proof. We will prove (6.1) and (6.2) with/ = L'(2). Let us begin with
(6.1). Letu € L' (£2) and(up)nen C L(£2) be suchthaty, — win L1(£2).

Possibly extracting a subsequence we can assuméithatf;, .. Py (up)

= limp—y00 Pr(up) < +oo and Pp(up) < +oo for all o € N and thus
up, = Xg, andu = yg for suitable measurable sef§ £, C R". Notice
that by the definition ofX —perimeter (see 2.3) it follows that

[0F|x(£2) < [0F|x.(£2)
for all ¢ > 0 and for all measurable sét C R"™. Thus
|0EL|x (£2) < |0Ew]|x., (£2) = Pu(us),
and by the lower semincontinuity of perimeter we get
P(u) = [0E]x (%) < liminf |0B; |x (42) < liminf Py(u).

This proves (6.1).

Let us prove now (6.2). Take € L'(£2) and assume thaP(u) <
+o0, that is to sayu = xygp € BVx({2) (otherwise there is nothing to
prove). By Proposition 6.3 there exists a sequence of bounded open sets
(En)hen C R™ with C°° boundary such thatg, — g in LY(£2) and
|OEL|x(£2) — |0FE|x(£2). By Lemma 6.2 withF}, = P, F = P and
D = {E,} it suffices to prove that if: = g with 0F of classC* then
there existguy,)nen € L(£2) such that

up — xp in L'(2) and P(u) > limsup Py (us).

h—o0

In fact, choosing:, = x g for all h € N and recalling the representation
formula (2.4) we find

Pa(up) = [0F|x., (12) = / ey o) dH!
oOENN
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and

lim O, ()| AP = / Cu(a)| dH™" = P(u).
h—oo JoEnn dENN

O

We now prove the maid’—convergence theorem. The classical result
in Euclidean space is proved in [47] and [46]. The first example of regular
approximation of the perimeter in the setting of Finsler manifolds is in [10].
Our proof is inspired by some ideas contained in [7], where the equality
between perimeter and Minkowski content turns out to be the main tool for
the approximation (see also [10]).

Fix a bounded open seé? C R". Fore > 0 define the functionals
F,F.: L'(2) = [0, 400

1 .
(6.11) Fou) = /Q(E\XU\Q + gW(u))d$ if ue HL(02)
+o0 otherwise
whereW (u) = u?(1 — u)?, and

20|0E|x(£2) if u= xp € BVx(£2)
400 otherwise,

6.12)  F(u) = {

1
wherea = / VW (s)ds. Lete, — 0 and writeF), := F,.
0
Theorem 6.5.Suppose thak, ..., X,,, € C*°(R";R") satisfy hypotheses
(H1) and (H2). Iff2 c R™ is a bounded open set with> boundary then
(6.13) F=TI(LY(N)) - lim Fp.
h—o0

Proof. We will prove (6.1) and (6.2) with/ = L!(£2). Let us begin

with (6.1). Letwu, — w in L'(£2). It is not restrictive to assume that

lihm inf Fj,(up) < oo, and - possibly extracting a subsequence - we can also
—00

assume thaty, (r) — u(z) for a.e.x € 2. By Fatou Lemma
/ W(u(z))de < hmlnf/ W (up(x)) de < hmlnfehFh(uh) = 0.

We deduce thai(z) € {0,1} fora.e.x € 2. We shall writeu = x g where
E:={x e 2:ux)=1}.

Define the increasing functiop € C!(R) by (¢ / VW (s)ds,
and put
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Observe that by [31, Lemma 3.16}, € H%(£2). By the coarea formula
(4.1)

+oo
| Xw|x(£2) = /_ |0{z € 2: p(u(x)) >t} x(£2)dt
1
_ /0 100z € 2 uz) > s} x ()4 (5) ds
1
:H8EWX(Q)[;\/Mfﬁ)dSZJJQFQQ.

Replacinguy, with @y, (z) = max{0, min{uy(z), 1}} and observing that
Fp(up) < Fy(up), we can assume that< u;(z) < 1. Thus, from

]/ () — w(z)| dz < sup r@’@>\]/|uh<x>——u<x>rdx
(] (]

t€[0,1]

we deduce thaty, — w in L'(§2). Using the lower semicontinuty of the
total variation we find

F(u) =2|Xw|(£2) < 2liminf/ | X wp(z)| dz
h—oo Jo

< QIiminf/ | Xup(x)||¢ (up(x))| dx
h—oo J

< liminf/g(eh|th(ﬂs)]2 + ;W(uh(x))) dx

h—o0
< lim inf Fj, (up),
h—o0

and then (6.1) follows. We shall now prove (6.2). By Proposition 6.3 we can
assume: = yp, F C R” bounded open set with>° boundary and such
thatH"~1(002NOE) = 0. Letdyp(z) = infycop d(z, y), d being the C-C
metric induced by the vector fields. Defipe 2 — [0, +00)

dop(z) fxe 2NE
oz) = {—daaEE(x) ifze 2\ E.

Now defineyy : R — R by

1ift>0
XO(t):{Oiftgo.

If x € £2we canwriteu(z) = xo(o(x)). Consider now the one dimensional
functional (see [10], [1])

K00 = [ EWP+ W00
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Fix e = 1 and determing as a solution of the minimum problem

(6.14)
M = min{Ji(x) : x € He(R;[0,1]), lim x(t) =1, lim x(t) = 0}.

t——o0

t

eiet’ unique solution of the Cauchy problem

One can prove thag(t) = T

©19 Yo YW

1
actually is a solution to problem (6.14) wiff = 2/ VW (s)ds (see [1,
0

Proposition 2]). Let us follow now the proof contained in [10]. Eix> 0
and writet. = 3clog % Define the functioml, : R — R in the following
way
x(t) fo<t<k
) pe(t) if le <t < 2e
AW =141 it > 2
1—A(—t)if t <O.
wherep, : R — R is the uniquely determined polinomial of degree 3 for
which A, € CH(R)NC>®(R\ {+%, £2<}) (see [11] for the construction

€

of p). Now definex.(t) = A-(%) fort € R. Then,x. verifies the equations

1
(6.16) Xt = “W(xe(®),  xe(—t) =1 = xe(t)
fort € [—t., t.].

Now putu.(z) := x:(o(x)) for x € £2. By [31, Lemma 3.16] we have
Ue € H)lgoo(fz) and we can write write for a.e. € {2 the chain rule

(6.17) Xue(z) = x(o(x)) X o).
We first prove that
(6.18) 213[13/(3 |ue(z) — u(z)|dx = 0.

We havelu.(z) — u(z)| = |xe(o(z)) — xo(o(z))| < 2 fora.e.x € 2 and

1ift>0
lim x.(t) =4 3ift=0
=0 0if t <0.
Thus, if o(z) # 0 thenlim._,o |xz(o(x)) — xo(e(x))| = 0. Since the set

{x € 2 : o(z) = 0} has zero Lebesgue measure, iHé(2) convergence
(6.18) follows by the dominated convergence theorem.
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We now prove that

(6.19) F(u) = lim F,(u.).

e—0
Consider the sets
Ac:={zx e 2:|o(x)| <t} and
B, :={x € 2:t. <|o(x)| <2t}

Recalling the definition ofi., (6.17) and thatX o(x)| = 1 a.e. inf2 \ OF,
we find

F.(u.) = /A (6|Xu5|2 + %W(us))dac +/B (€|Xu5|2 + éW(uQ)dm

€

— [ (xtte@)? + TWxteta)) )do

€

+A%@@(mgHY+éﬁmm<mf”>ym:g+na

In order to show that Ll — 0 it suffices to notice thdim._, | B:| = 0 and
that there exists a constafit>> 0 not depending on such that, ifr € B,

then 9
ep. (M:)') +wip. (M> <C.

9 S

In fact (see [11, Sect. 6]) it is not restrictive to assyme— 1||Lw(t7572£) =
O(”) and|[pL] poo 2z 2t ) = O(e°). If we show that

(6.20) lim 1. = F(u),

e—0

the Theorem is proved. Using the coarea formula (4.2) we can write

te
o= [ (X0 + WOl 0B x (@)ds,
whereEs; = {z € {2 : p(x) > s}. Notice that by (6.16) we have for all
s € [—te, tc]

Fuls) = x5 + TW (xe(s) = ext(=5)2 + T (xe(9)) = )
and thus

(6.21)

o= [ (2P + TW ) (DELx () + 0B x(@))ds,
0
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LetV(t) := [{z € £2:|o(x)| < t}|fort > 0. Then fort > 0 we have
(6.22)
t
V(t) = / |0E:|x(2)ds and  V'(t) = |0E]x (£2) + |0E_¢|x(£2)
—t

fora.e.t > 0. From (6.21) and from (6.22) it follows

(6.23) <= /0 E (EXQ(S)Q + éW(Xa(S))>VI(s) ds

le

= | Js)V!(s) ds = V(1) felte) - Osf;(s)V(s)ds.

By Theorem 5.1 we have

lim Vz(f) = L= |0B]x (%),

t—0t

and thus there exists a functién [0, c0) — R such that

V(t) =2Lt+4(t)t and lim sup |(¢)| =0.

e=0% ¢[0,t)

We can write (6.23) in the following way

te le
L= V(e — [ b)) ds 2L [ spi(s)ds
0, 0 .
=V (t:)fe(te) — / s0(s) fL(s) ds — 2Lt f-(t.) + 2L fe(s)ds
. 0 0
=o.+L fe(s)ds.
te

In order to prove (6.20) it suffices to show that

(6.24) lim 0. =0,

e—0t

t

. 1
t fe(s)ds = 2/0 VW (s)ds = 2a.

We begin with (6.25). Using (6.16) we find

t

s = [ (2 + W) ds

—te

te E(ts)
= 2/ Xa(8) VW (xe(s)) ds = Q/X VW (s)ds.
Xe(—te)

—te

6.25 li
( ) 5—1>r(l)l+
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Sincey.(—t-) — 0 andy.(t-) — 1, one gets (6.25). We now prove (6.24).
Notice that

(V(te) — 2Lt.) f(te) = O0(te)te <5X/5<t€)2 + éW(Xa(ta») =

W(XE (ts)) le

= 25(t8)t€f < 2t ; (1 - X(;)) =
1
_ 20(to)te € _ 2¢log ~0(t) o
e 1+e¢ 1+e¢

Furthermore
te

|J/ s6(s) fL(s)ds| < sup |8(s \J/ S|(s)]ds.

s€[0,t.]

Our thesis will be proved if we show that the integral is bounded. Now

7205) = (X090 + W 0xe(s))) = 2 (x25)?) = dexs)nl (o)
and thus

te te
/s%@%zk/sw@%@mz
0 0

3log% 00
—4 [ NN lds <4 [ s (s)lds < o
0 0
This concludes the proof of Theorem 6.5. a

Remark 6.61f (R",d) is a C-C space induced by the vector fieids, ...,
X, which satisfy one of the cases A, B or C of Sect. 3, ahd R" is a
bounded open set with*° boundary then (6.13) holds.

Consider, for instance, the Heisenberg grdlip = (R?,-, 5y, d) (see
Sect. 3, Example Al). Le? C R3 be abounded open set wift® boundary
and letF, F. : L'(2) — [0 + oo] be the functionals given in (6.11) and
(6.12) withX = Vg = (X1, Y1). F. can be written as

F.(u) = | (e(BDu,Du) + 1W(u)) dxdydt
N 9

if u € C1(12), with

1 0 2y
B(z,y,t) =1 0 1 —2z .
2y —2z 4a? + 49?

The matrixB is degenerate at every pointf, namelydet(B(z,y,t)) = 0
for all (z,y,t) € R3.
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7. Appendix

Theorem 7.1.Let 2 C R™ be an open set and Iéf C (2 be a measurable
set such thatE| + |OE | x (£2) < 4oo. There exists a sequentk}, )pen Of
open sets contained if2 such that

(i) OFERN 2isofclassC> forall h € N;
(i) xm, = xgin LY(92);
(ii)) [0En|x(£2) = [0E]|x(£2).

Proof. The proof is the same as in the Euclidean setting (see for example
[3]) and we give only a sketch of it. By [27, Theorem 2.2.2] the function
X can be approximated ly>°((2) functions. Using Sard Lemma and the
coarea formula (4.1) one can choose suitable level sets of these functions
with total variation converging to that gf. O
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