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REGULAR DOMAINS IN HOMOGENEOUS GROUPS

ROBERTO MONTI AND DANIELE MORBIDELLI

Abstract. We study John, uniform and non-tangentially accessible domains
in homogeneous groups of steps 2 and 3. We show that C1,1 domains in groups
of step 2 are non-tangentially accessible and we give an explicit condition which
ensures the John property in groups of step 3.

1. Introduction

This paper deals with the study of John, uniform and non-tangentially accessible
domains in homogeneous groups (Carnot groups) of steps 2 and 3 endowed with
the Carnot–Carathéodory distance induced by a system of generators of their Lie
algebra. Such regular domains are strongly related to the global embedding prop-
erties of Sobolev spaces and to the study of the boundary behavior of harmonic
functions with respect to sub-elliptic Laplacians.

John domains have been introduced by John [Joh]. It is known from the clas-
sical theory of Sobolev spaces that if Ω ⊂ Rn is a John domain and ∇u ∈ Lp(Ω),
then u ∈ Lpn/(n−p)(Ω) (see the references [Be] and [Bo]). In the setting of ho-
mogeneous groups it is known that if Ω is a John domain with respect to the
Carnot–Carathéodory distance, the Sobolev-Poincaré inequality

(1.1)
(∫

Ω

|u− uΩ|p∗
dx

)1/p∗

≤ C
( ∫

Ω

|Xu|p dx
)1/p

holds for all u ∈ C1(Rn), where uΩ is the average of u over Ω, Xu = (X1u, ..., Xmu)
is the sub-elliptic gradient of u with respect to the vector fields X1, ..., Xm gener-
ating the Lie algebra of the group, the integer Q is the homogeneous dimension of
the group, 1 ≤ p < Q and p∗ = pQ/(Q−p). Different forms of inequality (1.1) have
been proved in [FLW], [GN1] and [HK] and they are a consequence of the Poincaré
inequality proved by Jerison in [J] and of a chaining argument (relations between
John condition and chaining properties are studied in [BKL], [GN1] and [HK]).

Uniform domains (also known as (ε, δ) domains) are a sub-class of John domains.
The definition of uniform domain is due to Martio and Sarvas [MS] and to Jones
[Jon]. In the latter paper an extension theorem for Sobolev functions in uniform
domains is proved, and the theorem is generalized in [VG] and [GN2] to the setting
of Carnot–Carathéodory spaces.
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A sub-class of uniform domains are non-tangentially accessible domains (briefly
NTA domains) which, in the Euclidean case, were introduced by Jerison and Kenig
[JK] in connection with the study of the boundary behavior of harmonic functions.
The notion of NTA domain can be formulated in terms of the Carnot-Carathéodory
metric associated with a sub-elliptic Laplacian L =

∑
X2

j and used to prove a Fatou
type theorem for non-negative weak solutions u of the equation Lu = 0 (see [CG]
and see also [W]). In connection with harmonic measures for sub-elliptic Laplacians,
a class of “cuspidal Harnack domains” has been recently studied in [FF1] and [FF2].

It is known that inequality (1.1) may fail even for smooth domains in Carnot–
Carathéodory spaces. See [J, Section 6], where a counterexample is given. The
natural problem that arises is to find explicit examples of domains where inequality
(1.1) holds. This problem becomes very intriguing for homogeneous groups of step
larger than 2 (in the step-two case more refined properties will be established; see
the discussion below). In this paper we give a first answer to this problem.

In groups of step 3 we have found a differential condition on the boundary near
characteristic points that seems to control in a sharp way the flatness behavior of
the surface in order to have regularity. Our result gives a sufficient condition for the
John condition and thus for (1.1). Precisely, consider two vector fields X1 and X2

in R4 generating the Lie algebra of a homogeneous group of step 3 with non-trivial
commutators [X1, X2] = X3 and [X1, X3] = [X2, X3] = X4. Here Xj = ∂/∂xj,
j = 1, . . . , 4, at the origin (a complete description of this structure is given in
Section 4). In this setting we prove the following result:

Theorem 1.1. If Ω ⊂ R4 is an admissible domain, then it is a John domain (with
respect to the Carnot–Carathéodory distance generated by X1 and X2).

The definition of admissible domain will be given in a detailed way in Section 4.
We observe here that the key property that an admissible domain Ω should enjoy
is the following “flatness” condition. If Ω = {x ∈ R4 : Φ(x1, x2, x3, x4) > 0}, we
require that for all points in ∂Ω the estimate

(1.2) |X2
1Φ| + |X2

2Φ| + |(X1X2 +X2X1)Φ| ≤ k(|X1Φ|1/2 + |X2Φ|1/2 + |X3Φ|)
holds for a suitable positive constant k (see Lemma 4.3 and Theorem 4.4). This
condition implies that at characteristic points of second type, that is, characteristic
points where also X3Φ vanishes (see Section 4), the second derivatives of Φ along
X1 and X2 must also vanish. In particular, if (1.2) holds and Ω agrees near the
origin with the set {x ∈ R4 : x4 > ϕ(x1, x2, x3)}, ϕ(0) = 0, ∇ϕ(0) = 0, then (see
Lemma 4.3) it should be |ϕ(x1, x2, x3)| ≤ k(|x1| + |x2| + |x3|1/2)3. This flatness
condition is not ensured by Euclidean regularity. In Example 5.2 we also explicitly
construct admissible domains.

On the other hand, we have the following necessary condition, whose proof is
contained in Proposition 5.6:

Theorem 1.2. If a domain Ω locally agrees near the origin with the set {x ∈ R4 :
x4 > ϕ(x1, x2, x3)} and |ϕ(x1, x2, x3)| ≤ k(|x1|+ |x2|+ |x3|1/2)γ for some γ strictly
larger than 3, then the Sobolev-Poincaré inequality (1.1) does not hold in Ω.

This shows two surprising facts: (i) if a domain Ω locally agrees near the origin
with the half-space x4 > 0, then (1.1) cannot hold; (ii) the Sobolev-Poincaré in-
equality is false in the homogeneous ball (x2

1 + x2
2)

6 + x6
3 + x4

4 < 1. The latter fact
disproves a conjecture stated in [CG, p. 429].
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In a forthcoming paper we shall show how conditions similar to (1.2) can be used
to identify regular domains in the different context of diagonal vector fields of the
form Xj = λj(x) ∂

∂xj
, j = 1, . . . , n, where the λj ’s are suitable functions.

In the setting of step 2 groups the situation is different. It has been proved that
Carnot-Carathéodory balls in the Heisenberg group are uniform domains (see [VG])
but not NTA domains (see [CG]); examples of uniform domains in the Heisenberg
group can also be found by means of quasiconformal mappings (see [CT]); half
spaces and cubes centered at the origin in the Heisenberg group are uniform domains
(see [G]). It was conjectured in [GN1], [CG] and [CGN1] that in any group of step
2 a connected, bounded open set with boundary of class C1,1 is an NTA domain.
A partial positive answer to this conjecture has been given in [CG] for sets with
cylindrical symmetry near each characteristic point. An improvement has been
announced to the authors by Luca Capogna and Nicola Garofalo for sets with
“strongly isolated” characteristic set in the Heisenberg group. In the present paper
we prove the full statement:

Theorem 1.3. Any C1,1 domain in a step 2 homogeneous group is NTA.

Theorem 1.3 is sharp in the following sense: in groups of step 2, for any α ∈ (0, 1)
there are open sets of class C1,α for which the Sobolev–Poincaré inequality (1.1)
does not hold (see Example 5.1).

Theorem 1.3 was recently used in cooperation with the results of [DGN] to give a
complete characterization (in C2 domains) of the trace space for Sobolev functions
in step 2 homogeneous groups (see [DGN, Thm. 13.5]).

Since the proofs in the paper are technical we would like to sketch here the key
ideas in the simple situation of the Heisenberg group. We shall briefly discuss only
the John property, requiring a deeper analysis for the uniform condition. Consider
the vector fields X1 = ∂x1 − x2∂x3 and X2 = ∂x2 + x1∂x3 in R3. Here R3 is
equipped with the group law x · y = (x1 + y1, x2 + y2, x3 + y3 + x1y2 − x2y1),
with the homogeneous norm ‖x‖ =

(
(x2

1 +x2
2)

2 + x2
3

)1/4 and with the left invariant
distance d(x, y) = ‖x−1 · y‖. We consider an open set Ω = {x3 > ϕ(x1, x2)}, where
ϕ(0, 0) = 0 and ϕ is a smooth function. Since rotations around the x3-axis are
isometries of the group, there is no loss of generality in requiring ∂x1ϕ(0, 0) = −ν
with ν ≥ 0, and ∂x2ϕ(0, 0) = 0. We shall explain how to construct a John curve, i.e.
a curve satisfying condition (1.3) below, starting from the origin. By left translation,
this will also produce John curves starting from any point of the boundary of Ω.
Moreover, since the map (x1, x2, x3) �→ (x1, x2, x3 +α), α ∈ R, is a left translation,
the natural John curve starting from any point (x1, x2, ϕ(x1, x2) + α), α ≥ 0, can
be consequently obtained.

Our curve γ will be constructed by two pieces:

γ(t) =

{
(t, 0, 0) if 0 < t ≤ σν := t1,

(t1, 0, t− t1) if t ≥ t1.

Here σ > 0 is a parameter depending on the given function ϕ (it must not depend
on ν) and will be fixed during the argument. We note that if ν = 0, i.e. ∇ϕ(0, 0) =
0 (the origin is a characteristic point), then t1 = 0, the first piece of the path
disappears and we simply have γ(t) = (0, 0, t); this curve is not rectifiable.

We show that γ satisfies the following “John property”:

(1.3) dist(γ(t); ∂Ω) ≥ λd(γ(t), 0) for all t > 0
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for some small constant λ > 0 depending on ϕ, but not on ν (in Section 2 (1.3) is
compared with similar conditions involving rectifiable curves). Subtracting from ϕ
its linear part we get ϕ(x) = −νx1 + ψ(x1, x2) where, in view of the smoothness
of ϕ, the remainder ψ satisfies for some uniform constant C0 > 0 the quadratic
growth estimate

|ψ(x1, x2)| ≤ C0(x2
1 + x2

2)
(the constant C0 is essentially the Lipschitz constant of ∇ϕ). Points of the ball
B(γ(t), λd(γ(t), 0)) = γ(t)·B(0, λ‖γ(t)‖) are of the form γ(t)·h, with ‖h‖ < λ‖γ(t)‖.
Thus (1.3) is equivalent to γ(t) · h ∈ Ω, that is,

(γ(t) · h)3 ≥ ϕ(γ(t) · h)(1.4)

for all h ∈ R3, ‖h‖ < λ‖γ(t)‖. By the quadratic estimate for ψ, (1.4) is ensured by

(1.5) (γ(t) · h)3 + ν(γ(t) · h)1 ≥ C0

[
(γ(t) · h)21 + (γ(t) · h)22

]
.

Inequality (1.5) will be first checked for t ≤ t1 = σν. Note that

γ(t) · h = (t, 0, 0) · (h1, h2, h3) = (t+ h1, h2, h3 + th2).

Then (1.5) becomes h3 + th2 + ν(t+ h1) ≥ C0

[
(t+ h1)2 + h2

2

]
, that is,

ν(t+ h1) ≥ −h3 − th2 + C0

[
(t+ h1)2 + h2

2

]
.

Since ‖h‖ ≤ λt, the terms in the right-hand side can be estimated as: −h3 ≤ |h3| ≤
(λt)2, −th2 ≤ |th2| ≤ λt2, and the terms in square brackets can be estimated by
Ct2, with C an absolute constant. Moreover, in the left-hand side we have

ν(t+ h1) ≥ ν(t− ‖h‖) ≥ 1
2
νt,

as soon as λ ≤ 1/2. We ultimately get the inequality

(1.6) νt ≥ C0t
2,

where C0 is an absolute constant possibly larger than the ones written above. This
inequality holds as soon as t ≤ σν, where σ is any positive fixed constant satisfying
σ ≤ 1/C0.

We now check (1.5) for t ≥ t1 = σν. Note that

γ(t) · h = (t1, 0, t− t1) · h = (t1 + h1, h2, t− t1 + h3 + t1h2).

Then (1.5) becomes t− t1 + h3 + t1h2 + ν(t1 + h1) ≥ C0

[
(t1 + h1)2 + h2

2

]
, that is,

t− t1 + ν(t1 + h1) ≥ −h3 − t1h2 + C0

[
(t1 + h1)2 + h2

2

]
.(1.7)

This inequality has to be checked for ‖h‖ ≤ λ‖γ(t)‖ = λ(t41 + (t − t1)2)1/4, or,
letting a = (t− t1)1/2, for ‖h‖ ≤ λ(t41 + a4)1/4. The terms in the right-hand side of
(1.7) can be estimated as follows: −h3 ≤ |h3| ≤ Cλ(t21 + a2) and −t1h2 ≤ |t1h2| ≤
t1‖h‖ ≤ Cλ(t21 + t1a). Moreover,

(t1 + h1)2 ≤ (t1 + λ(t41 + a4)1/4)2 ≤ (Ct1 + Cλa)2,

while h2
2 ≤ ‖h‖2 ≤ λ2(t41 + a4)1/2 ≤ C(t21 + λ2a2). The left-hand side can be

estimated as follows:

ν(t1 + h1) ≥ νt1 − ν‖h‖ ≥ νt1 − νλC(t1 + a) ≥ 1
2
νt1 − λCνa,

as soon as λ ≤ 1
2C .
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Then (1.7) will be proved if the following inequality holds:

a2 +
1
2
νt1 − λCνa ≥ Cλt21 + Cλt1a+ Cλa2 + Ct21 + Cλ2a2.

Choosing λ small enough the terms Cλa2 and Cλ2a2 in the right-hand side can be
absorbed in the left-hand side. Note also that Cλt1a ≤ C

2 λt
2
1 + C

2 λa
2, so that C

2 λa
2

can be absorbed in the left-hand side, also. Then we find the stronger inequality
a2 + νt1 ≥ C(t21 + λνa + λt1a) which is ensured by a2 + νt1 ≥ C(t21 + λνa), and
recalling now that t1 = σν we finally get

(1.8) a2 + σν2 ≥ C1(σ2ν2 + λνa).

We slightly modify the choice of σ requiring C1σ
2 ≤ σ/2. Then, in order to prove

(1.8) it is enough to verify that

a2 +
1
2
σν2 ≥ C1λ

(1
2
ν2 +

1
2
a2

)
.

This inequality is satisfied for any a ≥ 0 provided that C1λ/2 ≤ 1 and C1λ ≤ σ.
Indeed, such a λ can be found and it does not depend on ν, as required.

The described argument proves that smooth domains in the Heisenberg group
enjoy the John property. They also enjoy the uniform property; this can be proved
taking suitable cones having as core the John curves constructed above and showing
that these cones meet appropriately (see Theorem 3.2).

Before closing this introduction we briefly explain our notation. In the paper we
denote by C (or k) absolute positive constants (they may depend on the surface we
are considering). By a � b we mean a ≤ Cb, and by a 	 b we mean C−1a ≤ b ≤ Ca.
By ε0 and C0 we denote, as well, absolute positive constants which are respectively
smaller and larger than 1. The small parameter λ is used to denote the “aperture”
of cones and in Sections 3 and 4 we shall several times write λ instead of o(1), as
λ → 0. Finally, if x, y ∈ Rn, then 〈x, y〉 =

∑n
i=1 xiyi denotes the usual Euclidean

inner product.

2. John, uniform and NTA domains. Some general facts

In this section we recall the basic definitions and some general known results
concerning John, uniform and NTA domains (see, for example, [MS], [V], [CT],
[CG], [HK]) We consider a metric space (M,d). If γ : [0, 1] → M is a curve,
we denote by length(γ) the length of γ and by γ[a,b] : [0, b − a] → M the curve
γ[a,b](t) = γ(t+ a), 0 ≤ a ≤ b ≤ 1. A curve is rectifiable if length(γ) < +∞.

Definition 2.1. Let (M,d) be a metric space. A bounded open set Ω ⊂ M is a
John domain if there exist x0 ∈ Ω and λ > 0 such that for every x ∈ Ω there exists
a continuous rectifiable curve γ : [0, 1] → Ω, such that γ(0) = x, γ(1) = x0 and

dist(γ(t); ∂Ω) ≥ λ length(γ[0,t])

for all t ∈ [0, 1].

Definition 2.2. Let (M,d) be a metric space. An open set Ω ⊂ M is a uniform
domain if there exists λ > 0 such that for every x, y ∈ Ω there exists a continuous
rectifiable curve γ : [0, 1] → Ω connecting them and such that

(2.1) length(γ) ≤ 1
λ
d(x, y)
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and

(2.2) dist(γ(t); ∂Ω) ≥ λmin{length(γ[0,t]), length(γ[t,1])}
for all t ∈ [0, 1].

Let Ω be an open set in the metric space M and let k ≥ 1. A ball B(x, r) ⊂ Ω
is k-non-tangential if k−1r ≤ dist(B; ∂Ω) ≤ kr. Given x, y ∈ Ω, a Harnack chain
joining x to y is a family B1, ..., Bn of k-non-tangential balls in Ω (for some k ≥ 1)
such that x ∈ B1, y ∈ Bn and Bj ∩ Bj+1 �= ∅. The integer n is the length of the
chain.

Definition 2.3. Let (M,d) be a metric space. A bounded domain Ω ⊂ M is
non-tangentially accessible if there exist r0 > 0 and k ≥ 1 such that:

(i) Corkskrew condition. For all x ∈ ∂Ω and r ∈ (0, r0) there exists y ∈ Ω such
that k−1r ≤ d(x, y) ≤ r and dist(y; ∂Ω) ≥ k−1r.

(ii) The set M \ Ω̄ satisfies the corkscrew condition.
(iii) Harnack chain condition. If ε > 0 and x, y ∈ Ω with dist(x; ∂Ω) > ε,

dist(y; ∂Ω) > ε and d(x, y) < Cε, then there exists a Harnack chain of k-
non-tangential balls joining x to y with length depending on C but not on
ε.

This paper deals with homogeneous groups. Endowed with their Carnot-Ca-
rathéodory distance homogeneous groups are metric spaces with geodesics, and
moreover, if µ denotes their Haar measure (which is Lebesgue measure), then there
are positive constants C and Q ∈ N such that µ(B(x, r)) = CrQ for all x belonging
to the group and for all r > 0 (see [FS]). More generally, a metric space (M,d)
endowed with a Borel measure µ such that 0 < µ(B(x, 2r)) ≤ δµ(B(x, r)) < +∞
for all x ∈M and r > 0 is called a doubling metric space, and δ > 0 is its doubling
constant.

We establish some propositions that will be needed in the next sections.

Proposition 2.4. Let (M,d) be a doubling metric space with geodesics. Let Ω ⊂M
be a bounded open set and for any r > 0 define Ωr = {y ∈ Ω : dist(y; ∂Ω) > r}.
Assume that there exist r > 0 and λ > 0 such that Ωr is arcwise connected and
such that for any x ∈ Ω there exists a continuous curve γx : [0, 1] → Ω such that
γx(0) = x, γx(1) ∈ Ωr and

(2.3) dist(γx(t); ∂Ω) ≥ λd(γx(t), x)

for all t ∈ [0, 1]. Then Ω is a John domain.

Proof. We show that there exist x0 ∈ Ω and C > 0 such that for all x ∈ Ω there
exists a continuous curve γ : [0, 1] → Ω such that γ(0) = x, γ(1) = x0 and (2.3)
holds. In the terminology of [HK] this means that Ω is a weak John domain. Since
(M,d) is a doubling metric space with geodesics from [HK, Proposition 9.6], it
follows that Ω is a John domain.

Fix x0 ∈ Ωr and for any y ∈ Ωr denote by γy,x0 : [0, 1] → Ωr a continuous
path such that γy,x0(0) = y and γy,x0(1) = x0. Then dist(γy,x0(t); ∂Ω) ≥ r and
d(γy,x0(t), x) ≤ diam(Ω) for all t ∈ [0, 1]. If x ∈ Ω, let γx be as in the statement of
the proposition, let ȳ = γx(1) and consider γȳ,x0 . The path γ sum of γx and γȳ,x0

enjoys property (2.3) (possibly with a new λ). �
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Proposition 2.5. Let (M,d) be a doubling metric space with geodesics. Let Ω ⊂M
be a bounded open set. If there exist λ > 0 and r > 0 such that for any z ∈ ∂Ω and
for all x, y ∈ B(z, r) ∩ Ω there exists a continuous curve γ : [0, 1] → Ω such that
γ(0) = x, γ(1) = y,

(2.4) diam(γ) ≤ 1
λ
d(x, y)

and

(2.5) dist(γ(t); ∂Ω) ≥ λmin{diam(γ[0,t]), diam(γ[t,1])}
for all t ∈ [0, 1], then Ω is an uniform domain.

Proof. The proof relies on two facts. First, using the argument in [V, Theorem 4.1],
which holds in any metric space, it can be proved that for all x, y ∈ Ω there is a
continuous curve γ such that (2.4) and (2.5) hold (the constant λ may be different).

Second, curves can be taken rectifiable and satisfying (2.1) and (2.2). We sketch
the proof. Let x, y ∈ Ω and fix a continuous curve γ such that γ(0) = x and γ(1) =
y, and such that (2.4) and (2.5) hold. Let t̄ ∈ (0, 1) be such that diam(γ[0,t̄]) =
diam(γ[t̄,1]). Consider the path γ̃x = γ[0,t̄]. By the choice of t̄ and by (2.5) γ̃x

satisfies dist(γ̃x(t); ∂Ω) ≥ λdiam
(
(γ̃x)[0,t]

)
. By Lemma 2.7 in [MS], which can be

proved in any doubling metric space with geodesics, there exists a rectifiable path
γx such that γx(0) = x, γx(1) = γ(t̄) and dist(γx(t); ∂Ω) ≥ λ′length(γ[0,t]) (here
λ′ depends on λ and on the doubling constant). A rectifiable path γy can be
analogously constructed. The sum of the paths γx and γy gives the required path
and proves that Ω is actually a uniform domain in the sense of Definition 2.2. �

A continuous curve γ : [0, 1] → Ω such that γ(0) = x and dist(γ(t); ∂Ω) ≥
λd(γ(t), x) will be called a John curve starting from x and with constant λ > 0.

All the John curves constructed in Sections 3 and 4 are such that the function
t �→ d(γ(t), γ(0)) is (equivalent to) a monotonic increasing function and satisfies

(2.6) d(γ(0), γ(t)) 	 diam(γ[0,t]).

In Section 3 we shall refer to the following proposition.

Proposition 2.6. Let (M,d) be a doubling metric space with geodesics and let
Ω ⊂ M be a bounded open set. Assume that there exists λ > 0 and r > 0 such
that for any z ∈ ∂Ω and for all x, y ∈ B(z, r) ∩ Ω there exist two John curves
γx, γy : [0, 1] → Ω starting respectively from x and y, with John constant λ, such
that γx(1) = γy(1) and

max{diam(γx), diam(γy)} ≤ 1
λ
d(x, y).

Assume also that γx and γy verify (2.6). Then Ω is a uniform domain.

Proof. Let γ be the curve sum of γx and γy parameterized over [0, 2]. First of all

diam(γ) ≤ diam(γx) + diam(γy) ≤ 2
λ
d(x, y).

Consider now a point γ(t) and assume that γ(t) = γx(t). Then

dist(γ(t); ∂Ω) = dist(γx(t); ∂Ω) ≥ λd(γx(t), x)

	 λdiam
(
(γx)[0,t]

) ≥ λmin
{
diam(γ[0,t]), diam(γ[t,2])

}
.

If γ(t) is in γy, the estimate is the same. The claim follows from Proposition 2.5. �
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It is easy to see that if both Ω andM \Ω satisfy the hypotheses of Proposition 2.6,
then the interior and the exterior corkskrew conditions are satisfied. The following
result contains another useful connection between uniform and NTA domains.

Proposition 2.7. Let (M,d) be a metric space. If Ω ⊂ M is a uniform domain,
then Ω satisfies the Harnack chain condition (iii) in Definition 2.3.

Proof. See [CT, Proposition 4.2] �

3. Uniform and NTA domains in groups of step 2

In this section we study uniform and NTA domains in homogeneous groups of
step 2. We shall work in Rn endowed a left invariant metric induced by a system
of vector fields X = (X1, ..., Xm) which generates a stratified Lie algebra of step 2.
In Rn = Rm × Rq we denote x = (x′, x′′) ∈ Rm × Rq and by abuse of notation we
shall write x′ = (x′, 0) and x′′ = (0, x′′). We say that x′ are the variables of the
first slice and that x′′ are the variables of the second slice.

The vector fields can be assumed to be of the form

Xj = ∂j +
n∑

k=m+1

qjk∂k, j = 1, ...,m,

where qjk = qjk(x′) are homogeneous polynomials of degree 1 in the variables x′

(see [FS]). Introduce the group law

(3.1) x · y = x+ y +Q(x, y) =
(
x1 + y1, . . . , xm + ym, xm+1 + ym+1

+Qm+1(x, y), . . . , xn + yn +Qn(x, y)
)
,

where Q = (Q1, ..., Qn) with Q1 = ... = Qm = 0, and Qj = Qj(x′, y′), j =
m + 1, ..., n, are homogeneous polynomials of degree 2 (the fact that the Qj’s do
not depend on the variables of the second slice will be used several times). Moreover,
they can be assumed to satisfy

(3.2) |Qj(x′, y′)| ≤ C|x′||y′|.
The vector fields X1, . . . , Xm are by assumption left invariant with respect to the
introduced law.

We denote by d the Carnot-Carathéodory distance induced on Rn by X1, ..., Xm

and by B(x, r) the open ball centered at x ∈ Rn with radius r ≥ 0. We also
introduce in Rn the following continuous homogeneous norm

(3.3) ‖x‖ = |x′| + |x′′|1/2.

By a standard argument it can be proved that d(x, y) 	 ‖y−1 · x‖. Thus, letting
Box(x, r) = {x · y ∈ Rn : ‖y‖ ≤ r} there exists c > 1 such that for all x ∈ Rn and
r ≥ 0,

Box(x, c−1r) ⊂ B(x, r) ⊂ Box(x, cr).

Definition 3.1. Let S ⊂ Rn be a hypersurface of class C1 given in a neighborhood
U of x0 ∈ S by the local equation Φ = 0 where Φ ∈ C1(U). The point x0 is
characteristic if X1Φ(x0) = ... = XmΦ(x0) = 0.

We denote by ej the jth coordinate versor and if x =
∑n

i=1 xiei ∈ Rn and
j ∈ {1, . . . , n} we let

x̂j =
∑

1≤i≤n,i�=j

xiei.
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Let Ω ⊂ Rn be an open set, x0 ∈ ∂Ω and let U ⊂ Rn be a neighborhood of x0

such that ∂Ω ∩ U = {x ∈ U : Φ(x) = 0} for some defining function Φ ∈ C1(U). If
x ∈ ∂Ω∩U , then, possibly shrinking U , the translated surface x−1 · (∂Ω∩U) can be
expressed in parametric form by an equation of the type yj = ϕ(ŷj) for ŷj belonging
to a neighborhood of the origin in Rn−1 and ϕ of class C1. If x0 is a characteristic
point we must choose j ∈ {m+ 1, ..., n}, otherwise we can choose j ∈ {1, ...,m}. In
the next theorem we shall assume Φ ∈ C1,1 and so ϕ ∈ C1,1. Actually, in the proof
we shall need the Lipschitz continuity only of the derivatives ∂1ϕ, ..., ∂mϕ.

Theorem 3.2. Any connected, bounded open set Ω ⊂ Rn of class C1,1 is an NTA
domain in the metric space (Rn, d).

Proof. The proof will be split into several numbered small steps.
1. We claim that for all x0 ∈ ∂Ω there exists a neighborhood U of x0 such that

for all x, y ∈ U ∩ Ω there exist continuous curves γx and γy : [0, 1] → Ω satisfying
the hypotheses of Proposition 2.6. The proof will show that conditions (i) and (ii)
in Definition 2.3 are verified, and by Proposition 2.7 Ω will be an NTA domain.

2. Let U be a neighborhood of x0 and let Φ ∈ C1(U) be a defining function such
that ∂Ω ∩ U = {x ∈ U : Φ(x) = 0}. We shall distinguish two cases:

(C1) |X1Φ(x0)| = ... = |XmΦ(x0)| = 0 (x0 is a characteristic point of ∂Ω);
(C2) |X1Φ(x0)| + ...+ |XmΦ(x0)| > 0 (x0 is a non-characteristic point of ∂Ω).

Let xj = ϕ(x̂j) be a local parameterization of ∂Ω ∩ U around x0. We assume
without loss of generality that x0 = 0.

3. Case 1. We consider an open set {y ∈ Rn : yj > ϕ(ŷj)} where j > m and
ϕ ∈ C1(Rn−1) is a function such that ϕ(0) = 0, |∇ϕ| ≤ k and ∂1ϕ, ..., ∂mϕ are
k-Lipschitz continuous functions, where k > 0 is a fixed given constant. Define

νi = −∂iϕ(0), for i = 1, ...,m, and ν = (ν1, ..., νm, 0, ..., 0).

Write also

ϕ(ŷj) = −
m∑

i=1

νiyi + ψ(ŷj)

where ψ can be written by Taylor formula in the form

ψ(ŷj) = ϕ(ŷj) −
m∑

i=1

∂iϕ(0)yj =
∑

i>m,i�=j

∂iϕ(0)yi + O(|ŷj |2),

and satisfies the growth estimate

(3.4) |ψ(ŷj)| � ‖ŷj‖2.

Here we used the homogeneous norm introduced in (3.3) and the Lipschitz conti-
nuity of ∂1ϕ, ..., ∂mϕ.

Our construction will take place in two steps. In the first step we define “canon-
ical” John curves starting from points near the boundary. In the second step we
join points near the boundary by curves satisfying the hypotheses of Proposition
2.6.

4. First step. Define

N1 =
ν1
|ν| , ..., Nm =

νm

|ν| and N = (N1, ..., Nm, 0, ..., 0),
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and if ν = 0, simply set N = 0. For σ > 0 let t1 = σ|ν|. Fix x = xjej with xj ≥ 0
and define the continuous curve γ : [0, 1] → Rn,

(3.5) γ(t) =
{
x · tN = tN + xjej , if 0 ≤ t ≤ t1,
x · ((t1N) + (t− t1)ej

)
= t1N + (t− t1 + xj)ej , if t1 ≤ t ≤ 1.

5. We claim that there exist σ, λ ∈ (0, 1) such that for all t ∈ [0, 1],

(3.6) dist(γ(t); ∂Ω) ≥ λd(γ(t), x).

If 0 ≤ t ≤ t1, then d(γ(t), x) 	 ‖x−1 · γ(t)‖ = ‖tN‖ = t, and (3.6) is equivalent to

(3.7) Box(γ(t), λt) ∩ {yj = ϕ(ŷj)} = ∅,

which is implied by

(3.8) 〈ν, y〉 + yj ≥ |ψ(ŷj)|, for all y ∈ Box(γ(t), λt).

Points in Box(γ(t), λt) are of the form

(3.9) γ(t) · h = (tN + xjej) · h = tN + xjej + h+Q (tN, h)

with ‖h‖ ≤ λt (Q does not depend on the variables on the second slice) and thus
we have to check that

〈ν, tN + h〉 + xj + hj +Qj(tN, h) ≥ ∣∣ψ(
̂(γ(t) · h)j

)∣∣
which is guaranteed by

t|ν| + 〈ν, h〉 + xj ≥ |hj | +
∣∣Qj(tN, h)

∣∣ +
∣∣ψ(

̂(γ(t) · h)j

)∣∣.
Now, since |〈ν, h〉| ≤ λ|ν|t, then t|ν| + 〈ν, h〉 � t|ν| as soon as λ < 1/2. Moreover,
|hj| ≤ t2 and by (3.4)∣∣ψ(

̂(γ(t) · h)j

)∣∣ �
∥∥ ̂(γ(t) · h)j

∥∥2
= ‖tN + ĥj + Q̂j(tN, h)‖2

� t2 + ‖h‖2 + ‖Q(tN, h)‖2 � t2.

Moreover, |Qj(tN, h)| � λt2 � t2. Thus (3.7) is implied by

(3.10) ε0(t|ν| + xj) ≥ t2,

where ε0 is a small but absolute constant. Since xj ≥ 0, (3.10) holds for all t ≤ σ|ν|
as soon as σ ≤ ε0. Our claim is proved if 0 ≤ t ≤ t1.

6. We study the case t ≥ t1. Notice that in this case

(3.11) d(γ(t), x) 	 ‖x−1 · γ(t)‖ 	 t1 + (t− t1)1/2 =: δ(t).

Let a = (t− t1)1/2 so that δ(t) = t1 +a. We shall sometimes write δ instead of δ(t).
We claim that there exists λ ∈ (0, 1) such that the John property Box(γ(t), λδ(t))∩
{yj = ϕ(ŷj)} = ∅ holds for all t ≥ t1.

Points in Box(γ(t), λδ) are of the form

γ(t) · h = (t1N + (t− t1 + xj)ej) · h
= t1N + (t− t1 + xj)ej + h+Q(t1N, h),

(3.12)

with ‖h‖ ≤ λδ. Thus, the John property is ensured by

〈ν, t1N + h〉 + (t− t1) + xj +Qj(t1N, h) ≥ ∣∣ψ(
t1N + ĥj + Q̂j(t1N, h)

)∣∣,
which (let t− t1 = a2) is a consequence of the following stronger inequality:

(3.13) t1|ν| + a2 + xj ≥ |ν|‖h‖ + |Qj(t1N, h)| + |ψ(z)|,
where z denotes the argument of ψ in the previous inequality.
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Now, |ν|‖h‖ � λ|ν|t1 + λ|ν|a and λ|ν|t1 can be absorbed in the left-hand side of
(3.13) as soon as λ ≤ 1

2 . We also note that |Qj(t1N, h)| ≤ t1‖h‖ ≤ t1λδ ≤ t21 +λδ2.
Moreover,

‖z‖ � t1 + ‖h‖ + ‖Q̂j(t1N, h)‖ � t1 + λδ + (t1λδ)1/2 	 t1 + λδ,

and by (3.4)

|ψ(z)| � ‖z‖2 � t21 + λδ2 + λt1δ 	 t21 + λδ2 	 t21 + λa2.

Since the term λa2 can be absorbed in the left-hand side and xj ≥ 0, then (3.13)
will follow if we prove that for all a ≥ 0 it is ε0

(
t1|ν| + a2

) ≥ t21 + λ|ν|a where
ε0 > 0 is a small but absolute constant. Replacing t1 = σ|ν| we get

(3.14) ε0
(
σ|ν|2 + a2

) ≥ σ2|ν|2 + λ|ν|a.
Now, since σ2|ν|2 + λ|ν|a ≤ (σ2 + λ/2)|ν|2 + λa2/2, (3.14) holds for all a ≥ 0
provided σ2 + λ/2 < ε0σ and λ/2 ≤ ε0.

7. Second step. We prove that, given x and y in the open set {zj > ϕ(ẑj)} there
exists a continuous curve connecting them and satisfying (2.4) and (2.5). Without
loss of generality, we can assume that x = xjej with xj ≥ 0 and y = yjej + ŷj with
yj > ϕ(ŷj). In the first step (see (3.5)) the “canonical” John curve starting from
x has been defined. The parameters ν, N and t1 = σ|ν| are defined as in the first
step and are relative to x. The constant σ does not depend on x.

8. Our next task is to define the curve starting from y. We first explain the
“intrinsic” argument which provides the parameters νj ’s relative to x. Letting
Φ(ξ) = ξj − ϕ(ξ̂j), we have for i = 1, ...,m,

XiΦ(ξ) = −∂iϕ(ξ̂j) +
∑
k>m

qik(ξ)∂kΦ(ξ),

and hence

(3.15) νi = −∂iϕ(0) = XiΦ(0).

Now let w = ŷj + ϕ(ŷj)ej . We look for the parameters νi, i = 1, . . . ,m, of the
curve starting from w−1 · y = (yj − ϕ(ŷj))ej relatively to the translated boundary
w−1 · {zj = ϕ(ẑj)}. Denote these parameters by ν̄1, ..., ν̄m. Then we find by left
invariance

ν̄i = (XiΦ)(ŷj + ϕ(ŷj)ej) = −∂iϕ(ŷj) +
∑
k>m

qik(y)
∂

∂ξk

(
ξj − ϕ(ξ̂j)

)∣∣
ξ̂j=ŷj ,ξj=ϕ(ŷj)

= −∂iϕ(ŷj) + qij(y′) −
∑

k>m,k �=j

qik(y)∂kϕ(ŷj).

(3.16)

Define
N̄ =

( ν̄1
|ν̄| , ...,

ν̄m

|ν̄| , 0, ..., 0
)

and t̄1 = σ|ν̄|.
The “canonical” John curve γy starting from y can be defined (by left translation
of (3.5)) in the following way. If 0 ≤ t ≤ t̄1, let

γy(t) =
(
ŷj + ϕ(ŷj)ej

) · (tN̄ + (yj − ϕ(ŷj))ej

)
= ŷj + tN̄ + yjej +Q(y, tN̄),

(3.17)
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and if t ≥ t̄1, let

γy(t) =
(
ŷj + ϕ(ŷj)ej

) · (t̄1N̄ + (t− t̄1 + (yj − ϕ(ŷj))ej

)
= ŷj + t̄1N̄ + (t− t̄1 + yj)ej +Q(y, t̄1N̄).

(3.18)

9. Denote by γx and γy the curves starting from x and y. The curves γx and γy

cannot be expected to meet as Proposition 2.6 requires. Thus we enlarge the curve
γx by constructing a curvilinear cone around it. Define

δ(t) =
{
t if 0 ≤ t ≤ t1,
t1 + (t− t1)1/2 if t ≥ t1,

and recall that δ(t) 	 d(γx(t), x). For λ > 0 let U(λ) = {h ∈ Rn : ‖h‖ ≤ λ}, and if
h = (h′, h′′) ∈ U(λ), define ht = (δ(t)h′, δ(t)2h′′). As h ∈ U(λ), the family of curves

γh
x (t) = γx(t) · ht =

{
tN + xjej + ht +Q(tN, ht) if 0 ≤ t ≤ t1,

t1N + (t− t1 + xj)ej + ht +Q(t1N, ht) if t ≥ t1

forms a curvilinear cone with core γx. By the triangle inequality, if λ is small
enough, then for any h ∈ U(λ), the curve t �→ γh

x (t) is a John curve starting from
x. From now on we assume that λ has been fixed small enough in order to ensure
this property.

10. Two cases must be distinguished:

(A) d(x, y) ≤ η|ν|;
(B) d(x, y) > η|ν|.

The parameter η ∈ (0, 1) will be fixed later. Note that if 0 is a characteristic point,
then Case A is empty. In Case A the curves γh

x and γy will meet in their first
(rectifiable) piece. In Case B they will meet in their second (non-rectifiable) piece.

11. Study of Case A. We claim that there exist η > 0 and M > 1 such that
for all x and y there exists h ∈ U(λ) such that γy(Md(x, y)) = γh

x (Md(x, y)). A
correct choice of η ∈ (0, 1) and M > 1 will show that the two curves meet in their
first tract (see condition (3.27)).

Without loss of generality, we can assume |ν| ≤ |ν̄| (otherwise the roles of x and
y should be interchanged). If t ≤ t1 = σ|ν|, then t ≤ t̄1 = σ|ν̄| and γy(t) = γh

x (t)
reads

(3.19) ŷj + tN̄ + yjej +Q(y, tN̄) = tN + xjej + ht +Q(tN, ht).

We have to show that the solution h = (h′, h′′) of this equation belongs to U(λ) if
t = Md(x, y) and M is large enough.

As t ≤ t1, then δ(t) = t and ht = (th′, t2h′′). Projecting (3.19) along the first m
components we get the equation y′ + tN̄ = tN + h′t, that is,

(3.20) th′ = y′ + t(N̄ −N).

Replacing t = Md(x, y) we find that the solution h′ satisfies

(3.21) |h′| ≤ |y′|
Md(x, y)

+ |N − N̄ |.

First, notice that d(x, y) 	 ‖(−xjej) · (yjej + ŷj)‖ ≥ |y′|, which gives |y′|
Md(x,y) �

1
M . Moreover, using the inequality

∣∣ v
|v| − w

|w|
∣∣ ≤ 2 |v−w|

|v| if v, w ∈ Rn \ {0}, and the
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explicit form (3.15) and (3.16) of ν and ν̄, we get

|N − N̄ | ≤ 2
|ν − ν̄|
|ν|

≤ 2
|ν|

m∑
i=1

∣∣∣∂iϕ(0) − ∂iϕ(ŷj) + qij(y) −
∑

k>m, k �=j

qik(y)∂kϕ(ŷj)
∣∣∣

� 1
|ν|

(|ŷj | + |y′|) � d(x, y)
|ν| .

(3.22)

The last string of estimates follows from the boundedness of ∂iϕ, i = m + 1, ..., n
and i �= j, from the Lipschitz continuity of ∂iϕ, i = 1, ...,m, and from the inequality

d(x, y) 	 ‖(−xjej) · (ŷj + yjej)‖ = ‖ŷj + (yj − xj)ej‖ ≥ ‖ŷj‖ � |ŷj |,(3.23)

which holds because y lies in a bounded set.
Putting (3.22) into (3.21) and using Case A we get

(3.24) |h′| � 1
M

+
d(x, y)
|ν| ≤ 1

M
+ η.

This shows that |h′| ≤ λ as soon as M is large enough and η is small enough.
We project now (3.19) along the components of the second slice obtaining

ŷ′′j + yjej + tQ(y, N̄) = xjej + h′′t + tQ(N, h′t).

Here h′′t = t2h′′ and h′t = th′ where h′ is the vector determined in (3.20) and satisfies
the estimate (3.24). The last equation has a unique solution h′′ which satisfies

|h′′| ≤ |ŷ′′j | + |yj − xj |
t2

+
1
t
|Q(y, N̄)| + |Q(N, h′)|.

Here we have to replace t = Md(x, y) but first we notice that, as in (3.23),

(3.25) d(x, y) 	 ‖ŷj + (yj − xj)ej‖ ≥ |ŷ′′j |1/2 + |yj − xj |1/2.

Moreover, |Q(y, N̄)| � |y′| � d(x, y) and, by (3.24), |Q(N, h′)| � |h′| � 1
M + η.

Putting all these estimates together we find

(3.26) |h′′| � 1
M2

+
1
M

+ η.

Thus |h′′| ≤ λ as soon as M is large enough and η is small enough.
Our claim will be proved if we show that the choice of M and η is compatible

with the condition Md(x, y) ≤ t1 = σ|ν|. As we are in Case A, then d(x, y) ≤ η|ν|
and we find the stronger condition

(3.27) Mη ≤ σ,

which can be satisfied, taking if necessary a smaller η.
12. In view of Proposition 2.6 we have to estimate the diameter of the curves

γh
x and γy. First, by (3.5) we have diam(γx) 	 Md(x, y). Moreover, if 0 ≤ s, t ≤
Md(x, y) and ‖h‖ ≤ 1, then

d(γh
x (s), γh

x (t)) ≤ d(γh
x (s), γx(s)) + d(γx(s), γx(t)) + d(γx(t), γh

x (t))

� ‖hs‖ + diam(γx) + ‖ht‖ � d(x, y),

and thus diam(γh
x) � d(x, y).
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13. Study of Case B. In this case the points x and y satisfy d(x, y) ≥ η|ν| where
η > 0 is from now on a fixed constant. Recall that t1 = σ|ν| and t̄1 = σ|ν̄|, and for
R > 0 let

tx = t1 +R2d(x, y)2 and ty = t̄1 +R2d(x, y)2.

As above let U(λ) = {h ∈ Rn : ‖h‖ ≤ λ} and ht = (δ(t)h′, δ(t)2h′′) where now
δ(t) = t1 + (t− t1)1/2 	 d(γ(t), x) for t ≥ t1.

14. We claim that there exists R > 0 such that for all x, y there exists h ∈ U(λ)
(λ is the parameter fixed at the end of 9) such that γy(ty) = γh

x (tx) (the times tx
and ty depend on R).

This equation gives

ŷj + t̄1N̄ + (ty − t̄1 + yj)ej +Q(y, t̄1N̄) = t1N + (tx − t1 + xj)ej

+ htx +Q(t1N, htx).

Replacing t̄1 = σ|ν̄|, t1 = σ|ν|, ty − t̄1 = R2d(x, y)2 and tx − t1 = R2d(x, y)2 we
find

ŷj + σν̄ + (R2d(x, y)2 + yj)ej + σ|ν̄|Q(y, N̄)

= σν + (R2d(x, y)2 + xj)ej + htx + σ|ν|Q(N, htx).
(3.28)

Projecting this equation along the coordinates of the first slice we get

(3.29) y′ + σν̄ = σν + h′tx
,

and the solution h′tx
satisfies

|h′tx
| ≤ |y′| + σ|ν| + σ|ν̄|.

We use |y′| ≤ d(x, y) and σ|ν| ≤ σd(x, y)/η (this is Case B). By (3.16)

|ν̄i| ≤ |∂iϕ(ŷj)| + |qij(y)| +
∑

k>m,k �=j

|qik(y)∂kϕ(ŷj)|

� |∂iϕ(0)| + |∂iϕ(0) − ∂iϕ(ŷj)| + |y′|

� |ν| + d(x, y) � d(x, y)
η

,

(3.30)

because ∂kϕ, k > m and k �= j, are bounded functions, ∂iϕ, i = 1, ...,m, are
Lipschitz continuous, and |∂iϕ(ŷj)− ∂iϕ(0)| � |ŷj | � d(x, y) by (3.23). Ultimately,
we obtain for some large but absolute constant C0,

(3.31) |h′tx
| ≤ C0

d(x, y)
η

= C0d(x, y)

(the parameter η has been fixed in 11 and can be considered from now on an
absolute constant).

Projecting (3.28) along the coordinates of the second slice we have

ŷ′′j + yjej + σ|ν̄|Q(y, N̄) = xjej + h′′tx
+ σ|ν|Q(N, htx).

Thus
h′′tx

= ŷ′′j + (yj − xj)ej + σ|ν̄|Q(y, N̄) − σ|ν|Q(N, h′tx
),

where h′tx
satisfies (3.31). Notice that by (3.25) |ŷ′′j | + |yj − xj | � d(x, y)2 and

moreover, taking into account (3.31) and Case B,

σ|ν||Q(N, h′tx
)| � |ν||h′tx

| � d(x, y)2.
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By (3.30) σ|ν̄||Q(y′, N̄)| � |ν̄||y′| � d(x, y)2, and hence |h′′tx
| � d(x, y)2. Finally,

‖h‖ =
‖htx‖
δ(tx)

=
|h′tx

| + |h′′tx
|1/2

δ(tx)
� d(x, y)

δ(tx)
=

d(x, y)
t1 + (tx − t1)1/2

≤ 1
R
,

and ‖h‖ ≤ λ as soon as R ≥ C0/λ where C0 is a large but absolute constant.
15. The estimates for diam(γh

x ) and diam(γy) can be obtained as in 12. Our
claims are proved and the proof of the theorem in the characteristic case is ended.

16. Case 2. We now study the non-characteristic case. Assume without loss of
generality that Ω = {y ∈ Rn : yj > ϕ(ŷj)} where j ∈ {1, ...,m} and ϕ ∈ C1(Rn−1)
is a function such that ϕ(0) = 0, |∇ϕ| ≤ k and ∂iϕ, i = 1, ...,m and i �= j, are
k-Lipschitz continuous functions. Let νi = −∂iϕ(0) if i = 1, ...,m with i �= j, and
νj = 1. Finally, let ν = (ν1, ..., νm, 0, ..., 0).

17. First step. We construct John curves starting from near the boundary. The
function ψ defined by

(3.32) ψ(ŷj) = ϕ(ŷj) +
∑

i=1,...,m,i�=j

νiyi

satisfies

|ψ(ŷj)| =
∣∣∣ϕ(ŷj) −

∑
i=1,...,m,i�=j

∂iϕ(0)yi

∣∣∣
=

∣∣∣ ∑
i>m

∂iϕ(0)yi +O(|ŷj |2)
∣∣∣ � ‖ŷj‖2,

(3.33)

because ∂iϕ, i > m, are bounded and ∂iϕ, i = 1, ...,m and i �= j, are Lipschitz
continuous.

Fix a point x ∈ Ω of the form x = xjej with xj > 0. For t ≥ 0 define the curve
starting from x,

(3.34) γx(t) = x · tν = x ·
(
tej + t

∑
i=1,...m,i�=j

νiei

)
.

Note first that d(γ(t), x) 	 ‖tν‖ = t|ν| 	 t.
18. We claim that there exist t0 > 0 and λ ∈ (0, 1) such that for all t ≤ t0,

(3.35) dist(γ(t); ∂Ω) ≥ λt.

The John condition (3.35) is equivalent to Box(γ(t), λt) ∩ ∂Ω = ∅.
Points in Box(γ(t), λt) are of the form

x · tν · h = xjej · (tν + h+ tQ(ν, h′))

= xjej + tν + h+ tQ(ν, h′) +Q(xjej, tν + h′) =: z,

where h ∈ Rn and ‖h‖ ≤ λt. We have to check that (z is defined in the last
equation)

xj + t+ hj > ϕ(ẑj) = −
∑

i≤m,i�=j

νi(tνi + hi) + ψ(ẑj),

by (3.32). Since |hk| < λt, k = 1, . . . ,m, if λ > 0 is small enough, the last inequality
is ensured by

xj + (1 − λ)t+ t
∑

i≤m,i�=j

(ν2
i − λ|νi|) ≥ |ψ(ẑj)|,



2990 ROBERTO MONTI AND DANIELE MORBIDELLI

which is implied by

(3.36) ε0(xj + t) ≥ |ψ(ẑj)|.
The right-hand side of (3.36) can be estimated by (3.33)

|ψ(ẑj)| � ‖ẑj‖2 =
∥∥tν̂j + ĥj + tQ(ν, h′) +Q(xjej, tν + h′)

∥∥2

� t2 + λt2 + ‖tQ(ν, h′)‖2 + ‖Q(xjej, tν + h′)‖2

� t2 + (t|ν|λt) + (xj |tν + h′|) � t2 + xjt,

where we used |ν| � 1. Then (3.36) is ensured by

ε0(xj + t) ≥ t2 + xjt,

where ε0 > 0 is a small but absolute constant. This inequality is trivially satisfied
as soon as t ≤ ε0.

19. Second step. We prove the uniform condition. Given two points x, y ∈ Ω we
have to connect them by curves γx and γy satisfying the hypotheses of Proposition
2.6. Assume that x = xjej with xj > 0 and let y = ŷj + yjej with yj > ϕ(ŷj).

We first notice that if d(x, y) < dist(x; ∂Ω), then x and y can be connected
simply by a geodesic. Therefore, without loss of generality we can assume that

(3.37) d(x, y) ≥ dist(x; ∂Ω).

20. We claim that there exists a constant C0 > 0 such that

(3.38) xj ≤ C0d(x, y)

for all x = xjej , y ∈ Ω satisfying (3.37) and lying in a bounded set (say the unit
Euclidean ball centered at the origin). Indeed, if ξ = ξ̂j + ϕ(ξ̂j)ej ∈ ∂Ω, then

d(x, ξ) 	 ∥∥(−xjej) ·
(
ξ̂j + ϕ(ξ̂j)ej

)∥∥
	 |ϕ(ξ̂j) − xj | + |ξ̂′j | +

∣∣ξ′′ +Q
( − xjej, ξ̂j + ϕ(ξ̂j)ej

)∣∣1/2

= |ϕ(ξ̂j) − xj | + |ξ̂′j | +
∣∣ξ′′ +Q

( − xjej, ξ̂
′
j

)∣∣1/2
.

We used here the bilinearity of Q and the property 0 = (−ej) · ej = −Q(ej, ej). In
order to prove (3.38) it will be enough to show that

(3.39) xj ≤ C0

(
|ϕ(ξ̂j) − xj | + |ξ̂′j | +

∣∣ξ′′ +Q
( − xjej , ξ̂

′
j

)∣∣1/2
)
.

By the Lipschitz continuity of ϕ we find

xj ≤ |xj − ϕ(ξ̂j)| + |ϕ(ξ̂j)| � |xj − ϕ(ξ̂j)| + |ξ̂j |
	 |xj − ϕ(ξ̂j)| + |ξ̂′j | + |ξ′′|
� |xj − ϕ(ξ̂j)| + |ξ̂′j | + |ξ′′ +Q(−xjej , ξ̂

′
j)| + |Q(−xjej, ξ̂

′
j)|

� |xj − ϕ(ξ̂j)| + |ξ̂′j | + |ξ′′ +Q(−xjej , ξ̂
′
j)|1/2 + xj |ξ̂′j |

� |xj − ϕ(ξ̂j)| + |ξ̂′j | + |ξ′′ +Q(−xjej , ξ̂
′
j)|1/2.

We used here the fact that all the involved vectors lie in a bounded set. Our claim
(3.38) is proved.

21. Our next step is to compute the “canonical” John curve starting from a
generic point y ∈ Ω. The point y and the boundary of Ω will be translated by a
suitable vector η ∈ Rn in such a way that η · y lies in the half axis {αej : α > 0}.
Using the equation of the translated surface the correct vector of parameters ν̄ can
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be computed and the curve starting from y will be defined as γy(t) = η−1 · (η · y) ·
(tν̄) = y · (tν̄) for t ≥ 0.

22. We claim that there exist � > 0 and C0 > 1 such that for all y ∈ Ω∩{|y| ≤ �}
there exists η ∈ Rn such that:

(i) η · ∂Ω contains the origin;
(ii) η · y belongs to {αej : α > 0};
(iii) |η| ≤ C0|ŷj |.
We look for η = (η′, η′′). If η′′ is given, and we define η′ by the equation

(3.40) η′ = −ŷ′j − ϕ(ŷ′j − η′′)ej ,

then (i) is satisfied. Indeed, z := ŷ′j − η′′ + ϕ(ŷ′j − η′′)ej ∈ ∂Ω and

η · z = η′ + η′′ + ŷ′j − η′′ + ϕ(ŷ′j − η′′)ej +Q(η′, ŷ′j + ϕ(ŷ′j − η′′)ej) = 0,

by (3.40).
We shall soon prove that the implicit equation

(3.41) η′′ + y′′ +Q(−ŷ′j − ϕ(ŷ′j − η′′)ej , ŷ
′
j + yjej) = 0,

has a solution η′′. Then, the choice of η′′ solution of (3.41) and of η′ as in (3.40)
ensures that the vector η = (η′, η′′) satisfies (ii). Indeed,

η · y =
( − ŷ′j + η′′ − ϕ(ŷ′j − η′′)ej

) · (ŷ′j + y′′ + yjej

)
= y′′ + η′′ +

(
yj − ϕ(ŷ′j − η′′)

)
ej +Q

( − ŷ′j − ϕ(ŷ′j − η′′)ej , ŷ
′
j + yjej

)
,

which belongs to the jth axis if and only if (3.41) holds.
We prove the existence of a solution η′′. First notice that by the bilinearity of

Q,

Q
( − ŷ′j − ϕ(ŷ′j − η′′)ej , y

′) = Q
( − ŷ′j − yjej +

(
yj − ϕ(ŷ′j − η′′)

)
ej , y

′)
= Q

((
yj − ϕ(ŷ′j − η′′)

)
ej , y

′)
=

(
yj − ϕ(ŷ′j − η′′)

)
Q(ej , y

′).

The map y′ �→ Q(ej, y
′) is linear and does not depend on yj. Thus (3.41) is

equivalent to

(3.42) η′′ + y′′ +
(
yj − ϕ(ŷ′j − η′′)

)
Q(ej , ŷ

′
j) = 0.

We show that there exists � > 0 such that if y ∈ Ω and |y| ≤ �, then (3.42) has a
solution η′′ satisfying

(3.43) |η′′| ≤ 2|ŷj|.
We use a fixed point argument. Letting F (η′′) = −y′′ − (

yj − ϕ(ŷ′j − η′′)
)
Q(ej , ŷ

′
j)

equation (3.42) becomes F (η′′) = η′′. Let D = {η′′ : |η′′| ≤ 2|ŷj |}. If we show
that F (D) ⊂ D, then the continuous map F has a fixed point by Brouwer theorem.
Indeed,

|F (η′′)| ≤ |y′′| + |Q(ej, ŷ
′
j)|

∣∣(yj − ϕ(ŷ′j − η′′)
)|

≤ |ŷj | + C|ŷ′j |
(|yj | + |ŷ′j| + |η′′|)

≤ |ŷj |(1 + 4C|y|) ≤ 2|ŷj|,
as soon as |y| ≤ � = 1/(4C) (here the constant C depends only on the surface).
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Moreover, by (3.40) and by (3.43),

|η′| = |ŷ′j | + |ϕ(ŷ′j − η′′)| � |ŷ′j| + |η′′| � |ŷj |.
This proves claim (iii).

23. We compute ν̄ by a left translation argument. Let Φ(y) = yj − ϕ(ŷj). The
parameters ν at the point y = 0 are given by νi = XiΦ(0), i = 1, ...,m. Then
for any point ξ = ξ̂j + ϕ(ξ̂j)ej belonging to the surface {Φ = 0} the parameters
νi = νi(ξ) are given by

νi(ξ) = (XiΦ)(ξ)

=




(
∂j +

∑
k>m

qjk(ξ′)∂k

)
Φ(ξ) = 1 −

∑
k>m

qjk(ξ′)∂kϕ(ξ̂j) if i = j,(
∂i +

∑
k>m

qik(ξ′)∂k

)
Φ(ξ) = −∂iϕ(ξ̂) −

∑
k>m

qik(ξ′)∂kϕ(ξ̂j) if i �= j.

Let η ∈ Rn be a vector relative to y as in claims (i), (ii) and (iii) of 22. The
correct value of the parameters is given by the evaluation of the previous equation
at the point −η (this is because the point −η is taken to the origin by the left
translation τη). Define ν̄i = νi(−η). Set ν̄ = (ν̄1, ..., ν̄m, 0, ..., 0). We claim that

(3.44) |ν − ν̄| � |ŷj |.
If i �= j, by the Lipschitz continuity of ϕ and by claim (iii),

|ν̄i − νi| =
∣∣∣ − ∂iϕ(−η̂j) −

n∑
k=m+1

qik(−η′)∂kϕ(−η̂j) + ∂iϕ(0)
∣∣∣

� |∂iϕ(0) − ∂iϕ(−η̂j)| +
n∑

k=m+1

∣∣qik(−η′)∣∣∣∣∂kϕ(−η̂j)
∣∣

� |η̂j | + |η′| 	 |η| � |ŷj |.
The estimate of the jth component of ν − ν̄ is easier and we do not prove it.

24. Let γx be the curve starting from x = xjej defined in (3.34) and let γy be
the curve starting from y ∈ Ω defined for t ≥ 0 by

γy(t) = y · (tν̄) = ŷ′j + tν̄ + yjej + y′′ +Q(y′, tν̄),

where ν̄ is the vector of parameters discussed above. We now construct a cone
with core γx. For λ > 0 let U(λ) = {h ∈ Rn : ‖h‖ ≤ λ} and for t ≥ 0 define
ht = (th′, t2h′′). Note that ‖ht‖ = t‖h‖ 	 d(γx(t), γx(0))‖h‖. Finally, let

γh
x (t) = xjej · (tν) · ht = xjej · (tν + ht +Q(tν, h′t))

= xjej + tν + ht + tQ(ν, h′t) +Q(xjej , tν + h′t).

25. We claim that there exist M > 0 and � > 0 such that for all x = xjej ∈ Ω
and for all y ∈ Ω such that |ŷj| ≤ � there exists h ∈ U(λ) such that γh

x (Md(x, y)) =
γy(Md(x, y)). Here λ is a parameter small enough to ensure that for all h ∈ U(λ),
γh

x is a John curve with constant λ.
Equality γy(t) = γh

x (t) reads

ŷ′j+tν̄ + yjej + y′′ + tQ(y′, ν̄) = xjej + tν + ht + tQ(ν, h′t) + xjQ(ej , tν + h′t).
(3.45)
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Projecting this equation along the coordinates of the first slice we get

(3.46) ŷ′j + tν̄ + yjej = xjej + tν + th′

and the solution h′ satisfies |h′| ≤ 1
t {|ŷ′j| + |yj − xj | + t|ν − ν̄|}. Replacing t =

Md(x, y) we find

|h′| ≤ |ŷ′j | + |yj − xj |
Md(x, y)

+ |ν − ν̄|.
By the equivalence

(3.47) d(x, y) 	 ‖(−x) · y‖ 	 |yj − xj | + |ŷ′j | +
∣∣y′′ +Q(−xjej, ŷ

′
j)

∣∣1/2
,

and by (3.44) we obtain for some absolute constant C0,

(3.48) |h′| ≤ C0

( 1
M

+ �
)

as soon as |ŷj | ≤ �.
We project now (3.45) along the coordinates of the second slice obtaining

y′′ + tQ(y′, ν̄) = h′′t + tQ(ν, h′t) + xjQ(ej, tν + h′t),

where h′t = th′ and h′ satisfies (3.48). We deduce that

|h′′t | ≤ |y′′| + t|Q(y′, ν̄)| + t|Q(ν, h′t)| + xj |Q(ej , tν + h′t)|.
We estimate separately each term in the right-hand side. By (3.47) and (3.38)

|y′′| ≤ |y′′ +Q(−xjej, ŷ
′
j)| + |Q(−xjej, ŷ

′
j)| � d(x, y)2 + xj |ŷ′j | � d(x, y)2.

Moreover, |Q(y′, ν̄)| � |y′| � d(x, y) and by (3.48) |Q(ν, h′t)| � |h′t| � t
(

1
M +�

)
. The

vectors ν and ν̄ are bounded. Finally, again by (3.38), xj |Q(ej , tν+h′t)| � td(x, y).
Then

|h′′t | � d(x, y)2 + td(x, y) + t2
( 1
M

+ �
)
,

and replacing t = Md(x, y) we finally get

|h′′| � 1
M2

+
1
M

+ �,

which shows that ‖h‖ ≤ λ if M is large and � is small enough. �

4. John domains in a group of step 3

In this section we study John domains in groups of step 3. In order to make
explicit computations we shall study the simplest Carnot group of step 3 whose Lie
algebra has the lowest dimension, which is 4.

Consider in R4 the vector fields

X1 = ∂1 − 1
2
x2∂3 −

{ 1
12

(x1x2 + αx2
2) +

1
2
x3

}
∂4,

X2 = ∂2 +
1
2
x1∂3 +

{ 1
12

(x2
1 + αx1x2) − α

2
x3

}
∂4,

X3 = ∂3 +
1
2
(x1 + αx2)∂4

X4 = ∂4,

where α ∈ R is a real parameter. The commutation relations are

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = αX4,
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and all other commutators vanish. Thus, for any α ∈ R the vector fields X1, X2

are generators of a Lie algebra of differential operators in R4 of step 3. It can be
checked that the following group law on R4 makesX1, X2, X3 and X4 left invariant:

x · y =
(
x1 + y1, x2 + y2, x3 + y3 +

1
2
(x1y2 − x2y1),

x4 + y4 +
1
12

{
(y1 + αy2)(x2y1 − x1y2) + (x1 + αx2)(x1y2 − x2y1)

}
+

1
2
{
(x1y3 − x3y1) + α(x2y3 − y2x3)

})
.

(4.1)

Notice that x−1 = −x. Introduce the abbreviations

q1(x1, x2, x3) = −
{ 1

12
(x1x2 + αx2

2) +
1
2
x3

}
,

q2(x1, x2, x3) =
{ 1

12
(x2

1 + αx1x2) − α

2
x3

}
,

q3(x1, x2) =
1
2
(x1 + αx2),

(4.2)

and

Q3(x1, x2, y1, y2) =
1
2
(x1y2 − x2y1)

Q4(x1, x2, x3, y1, y2,y3) =
1
2
{
(x1y3 − x3y1) + α(x2y3 − y2x3)

}
+

1
12

{
(y1 + αy2)(x2y1 − x1y2) + (x1 + αx2)(x1y2 − x2y1)

}
,

(4.3)

in such a way that

x · y = (x1 + y1, x2 + y2, x3 + y3+Q3(x1, x2, y1, y2),

x4 + y4 +Q4(x1, x2, x3, y1, y2, y3)).

We denote by d the Carnot-Carathéodory distance induced on R4 by X1 and X2

and by B(x, r) the open ball centered at x ∈ R4 with radius r ≥ 0. Define also the
following homogeneous norm in R4,

‖x‖ = |x1| + |x2| + |x3|1/2 + |x4|1/3.

By a standard argument it can be proved that d(x, y) 	 ‖y−1 · x‖. Define the Box

(4.4) Box(x, r) = {x · y ∈ R4 : ‖y‖ ≤ r}.
Then it follows that there exists c > 1 such that for all x ∈ Rn and r ≥ 0,

Box(x, c−1r) ⊂ B(x, r) ⊂ Box(x, cr).

Let S ⊂ R4 be a 3-dimensional surface of class C1. If x0 ∈ S, there exists a
neighborhood U of x0 in R4 and there exists Φ ∈ C1(U ; R) such that S ∩U = {x ∈
U : Φ(x) = 0} and ∇Φ �= 0 on S ∩U . A point x ∈ S ∩U is said to be characteristic
if and only if X1Φ(x) = X2Φ(x) = 0. From a geometric point of view this means
that X1 and X2 belong to the tangent spaces to S at x.

Definition 4.1. A characteristic point x ∈ S ∩ U is of first type if X3Φ(x) �= 0. If
X3Φ(x) = 0, then it is of second type.
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If x ∈ S ∩ U is a characteristic point of second type, then X4Φ(x) = ∂4Φ(x) can
not be 0. Otherwise, it would be X1Φ = · · · = X4Φ = 0 at x and this is impossible
because ∇Φ �= 0 and X1, . . . , X4 are independent at each point.

We are interested in expressing S as a graph in a neighborhood of a point x̄ ∈ S
after a translation that takes x̄ to the origin. Notice that x̄ is a characteristic point
(of first, second type) of S if and only if 0 is a characteristic point (of first, second
type) of the translated surface x̄−1 · S. This is an easy consequence of the left
invariance of the Xj ’s.

Now, let S = ∂Ω be the boundary of an open set of class C1 and let x̄ ∈
∂Ω. Assume that x̄ is a characteristic point of first type. Then, for any point x̃
in a neighborhood of x̄, the surface (x̃−1 · ∂Ω) ∩ V , where V ⊂ R4 is a suitable
neighborhood of the origin, can be parameterized by a function x3 = ϕ(x1, x2, x4),
where ϕ ∈ C1(D) and D is a neighborhood of the origin in R3.

If x̄ is a characteristic point of second type, then the variable x4 must be given in
terms of the variables x1, x2, x3. Then, for any x̃ near x̄, the surface (x̃−1 ·∂Ω)∩V ,
can be parameterized by a function x4 = ϕ(x1, x2, x3), where ϕ ∈ C1(D) and D is
a neighborhood of the origin in R3.

Definition 4.2. Let Ω be a C1 bounded connected open set. Denote by Σ2 ⊂ ∂Ω
the characteristic set of second type. We say that Ω is admissible if

(i) there are a neighborhood A in ∂Ω of Σ2, a neighborhood D of the origin in
R3 and constants ε0, k > 0 such that for any z ∈ A,

z−1 · ∂Ω ∩ (D × ]−ε0, ε0[) = {x ∈ R4 : x4 = ϕz(x′), x′ = (x1, x2, x3) ∈ D},
where the function ϕz satisfies

|ϕz(x′) − 〈∇ϕz(0), x′〉|
≤ k

(‖x′‖3 + (|∂1ϕz(0)|1/2 + |∂2ϕz(0)|1/2 + |∂3ϕz(0)|)(x2
1 + x2

2)
)(4.5)

(here ‖x′‖ = |x1| + |x2| + |x3|1/2 and ∇ denotes the Euclidean gradient);
(ii) ∂Ω is of class C1,1 away from Σ2.

The requirement (4.5) near Σ2 is the key point. The natural question now is
how to check it for a given surface. An answer is contained in Lemma 4.3.

Write x = (x1, x2, x3, x4) = (x′, x4) ∈ R3 × R. Thus we can split the group law
(4.1) as follows:

x · y = ((x′ ◦ y′), x4 + y4 +Q4(x′, y′)),

where ◦ denotes the composition law in the Heisenberg group. Denote by � the
control distance in the Heisenberg group.

Lemma 4.3. Let D0 ⊂ R3 be a neighborhood of the origin. Consider a C1 func-
tion ϕ : D0 → R and its graph Γ = {x4 = ϕ(x1, x2, x3) = ϕ(x′)}. Assume that
ϕ(0, 0, 0) = 0 and that there exists k > 0 such that

(i) the second derivatives XiXjϕ(x′), i, j = 1, 2, exist at any point x′ ∈ D and
the functions XiXjϕ, i, j = 1, 2, satisfy

(4.6) |XiXjϕ(x′) −XiXjϕ(y′)| ≤ k�(x′, y′), x′, y′ ∈ D0, i, j = 1, 2;
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(ii) writing Φ(x) = Φ(x1, x2, x3, x4) = ϕ(x1, x2, x3)− x4, for all x = (x′, ϕ(x′))
∈ Γ, the following estimate holds:

|X2
1Φ(x)| + |X2

2Φ(x)| + |(X1X2 +X2X1)Φ(x)|
≤ k(|X1Φ(x)|1/2 + |X2Φ(x)|1/2 + |X3Φ(x)|).(4.7)

Then there is D ⊂ D0 such that, for any fixed point z′ ∈ D, the surface (z′, ϕ(z′))−1·
Γ is the graph of a function ϕz defined on (z′)−1 ◦D0 which satisfies (4.5) for all
x′ ∈ D.

In Example 5.2 we will give an example of admissible set by means of this lemma.

Proof. Fix a neighborhood of the origin D ⊂ D0 such that D ⊂ (z′)−1 ◦D0 for all
z′ ∈ D (i.e. D ◦D ⊂ D0). Take a point z′ ∈ D. It is easy to check that the set
(z′, ϕ(z′))−1 · Γ is defined by

y4 = ϕ(z′ ◦ y′) − ϕ(z′) +Q4(−z′, z′ ◦ y′)
= ϕ(z′ ◦ y′) − ϕ(z′) −Q4(z′, y′) := ϕz(y), y ∈ (z′)−1 ◦D0.

The equality Q4(−z′, z′ ◦ y′) = −Q4(z′, y′) is an immediate consequence of the
associative property (y′, y4) = ((z′, z4)−1 · (z′, z4)) · (y′, y4) = (z′, z4)−1 · ((z′, z4) ·
(y′, y4)), y, z ∈ R4.

By (4.2) and (4.3) the function Q4(z, y) can be written as

Q4(z′, y′) = q1(z′)y1 + q2(z′)y2 + q3(z′)y3

+X1q1(z′)
y2
1

2
+X2q2(z′)

y2
2

2
+

(
X1q2(z′) +X2q1(z′)

)y1y2
2

.
(4.8)

We now claim that the function y′ �→ ϕ(z′ ◦ y′) − ϕ(z′) admits the following
“homogeneous Taylor expansion”:

ϕ(z′ ◦ y′) − ϕ(z′) = X1ϕ(z′)y1 +X2ϕ(z′)y2 +X3ϕ(z′)y3 +
1
2
X2

1ϕ(z′)y2
1

+
1
2
X2

2ϕ(z′)y2
2 +

1
2
(X1X2 +X2X1)ϕ(z′)y1y2 +O(‖y′‖3),

(4.9)

where O(‖y′‖3) ≤ C‖y′‖3 for all y ∈ (z′)−1 ◦ D0 (and thus for all y′ ∈ D). The
constant C does not depend on z′ ∈ D. Now write

ϕz(y′) = ϕz(y1, y2, y3) − ϕz(y1, y2, 0) + ϕz(y1, y2, 0) − ϕz(0, 0, 0).

We examine the first term. By the mean value theorem

ϕz(y1, y2, y3) − ϕz(y1, y2, 0) = ϕ(z′ ◦ (y1, y2, y3)) − ϕ(z′ ◦ (y1, y2, 0))

= (∂3ϕ)(z′ ◦ (y1, y2, ϑy3))y3
= (X3ϕ)(z′ ◦ (y1, y2, ϑy3))y3
= X3ϕ(z′)y3 + {X3ϕ(z′ ◦ (y1, y2, ϑy3)) −X3ϕ(z′)}y3,

where ϑ ∈ ]0, 1[. By the Lipschitz continuity of X3ϕ (recall that X3 = X1X2 −
X2X1) we get |{X3ϕ(z′ ◦ (y1, y2, ϑy3))−X3ϕ(z′)}| ≤ k‖y′‖, which multiplied by y3
can be estimated by ‖y′‖3.

We now look at the second piece. Let

g(t) = ϕ(z′ ◦ (ty1, ty2, 0)) = ϕ(exp(t(y1X1 + y2X2))(z)), t ∈ [0, 1].
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Condition (4.6) ensures that g is of class C2 and that

g′(t) =
2∑

i=1

yiXiϕ(z′ ◦ (ty1, ty2, 0)), and

g′′(t) =
2∑

i,j=1

yiyjXiXjϕ(z′ ◦ (ty1, ty2, 0)).

Thus, by the Taylor formula,

ϕ(z′ ◦ (ty1, ty2, 0)) − ϕ(z′) = g(1) − g(0) = g′(0) +
1
2
g′′(ϑ)

=
2∑

i=1

Xiϕ(z′)yi +
1
2

2∑
i,j=1

XiXjϕ(z′)yiyj

+
1
2

2∑
i,j=1

{XiXjϕ(z′ ◦ (ϑy1, ϑy2, 0)) −XiXjϕ(z′)}yiyj.

In view of the Lipschiz continuity of XiXjϕ the last line can be easily estimated
with ‖y′‖3. Thus we have proved that (4.9) holds.

Subtracting (4.8) from (4.9) we find the Taylor expansion of ϕz:

ϕz(y) =
3∑

j=1

{Xjϕ(z′) − qj(z′)}yj +
1
2

2∑
i,j=1

{XiXjϕ(z′) −Xiqj(z′)}yiyj +O(‖y′‖3).

Then

∂iϕz(0) = Xiϕ(z′) − qi(z′) = XiΦ(z′, ϕ(z′)), i = 1, 2, 3,

∂2
ijϕz(0) =

1
2
(
XiXjϕ(z′) −Xiqj(z′) +XjXiϕ(z′) −Xjqi(z′)

)
=

1
2
(XiXj +XjXi)Φ(z′, ϕ(z′)), i, j = 1, 2.

Thus, assuming (4.7) we immediately see that (4.5) holds. This ends the proof of
the lemma. �

We are now ready to prove our main result.

Theorem 4.4. If Ω ⊂ R4 is an admissible domain, then it is a John domain in
(R4, d).

Proof. We prove the theorem using Proposition 2.4. We shall construct “canonical”
John curves starting from points near the boundary ∂Ω. The proof will be split
into several numbered small steps.

1. For a fixed point x̄ ∈ ∂Ω, let U ⊂ R4 be a neighborhood of x̄ and let
Φ ∈ C1,1(U ; R) be a local equation for ∂Ω ∩ U . We shall distinguish three cases:

(C1) X1Φ(x̄) = X2Φ(x̄) = 0, and X3Φ(x̄) �= 0 (x̄ is a characteristic point of first
type);

(C2) X1Φ(x̄) = X2Φ(x̄) = X3Φ(x̄) = 0 (x̄ is a characteristic point of second
type);

(C3) |X1Φ(x̄)| + |X2Φ(x̄)| > 0 (x̄ is a non-characteristic point of ∂Ω).
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2. Case 1. After a translation 0 ∈ ∂Ω can be assumed to be near x̄. Thus, in
a neighborhood of 0, ∂Ω can be written in the form y3 = ϕ(y1, y2, y4), where the
function ϕ = ϕ(y1, y2, y4) is of class C1,1 and ϕ(0) = 0. Define

ν1 = −∂1ϕ(0), ν2 = −∂2ϕ(0), ν = (ν1, ν2), N1 =
ν1
|ν| , N2 =

ν2
|ν| ,

and if ν = 0, simply set N1 = N2 = 0. Moreover, let ψ(y) = ϕ(y) + ν1y1 + ν2y2.
Since ϕ is C1,1, we have

(4.10) |ψ(y)| = |ϕ(y) + ν1y1 + ν2y2| � y2
1 + y2

2 + |y4|.
Consider now a point x = (0, 0, x3, 0) ∈ Ω with 0 < x3 ≤ 1. We shall de-

fine a continuous path γ : [0, 1] → Ω such that γ(0) = x and the John property
dist(γ(t); ∂Ω) ≥ λd(γ(t), x) holds for all t ∈ [0, 1] and for some λ > 0 depending
only on Ω. The path will be made by two pieces.

3. First piece. Let σ > 0 and define t1 = σ|ν|. For t ∈ [0, t1] we define

γ(t) = (0, 0, x3, 0) · (tN1, tN2, 0, 0).

Notice that d(γ(t), x) 	 t and that the first piece degenerates if ν = 0.
4. We claim that there exist σ, λ ∈ (0, 1) absolute constants such that for all

t ≤ t1,

(4.11) Box(γ(t), λt) ⊂ Ω.

Condition (4.11) is equivalent to the John property for γ in this first piece. Points
in Box(γ(t), λt) are of the form

γ(t) · h = (0, 0, x3, 0) · (tN1, tN2, 0, 0) · (h1, h2, h3, h4)

= (0, 0, x3, 0) · (tN1 + h1, tN2 + h2, h3 +Q3(tN1, tN2, h1, h2),

h4 +Q4(tN1, tN2, 0, h1, h2, h3))

=
(
tN1 + h1, tN2 + h2, x3 + h3 +Q3(tN1, tN2, h1, h2),

h4 +Q4(tN1, tN2, 0, h1, h2, h3)

+Q4

(
0, 0, x3, tN1 + h1, tN2 + h2, h3 +Q3(tN1, tN2, h1, h2)

))
with h = (h1, h2, h3, h4) and ‖h‖ ≤ λt.

Now, γ(t) · h ∈ Ω provided that (recall that ϕ(z) = −ν1z1 − ν2z2 + ψ(z))

x3+h3 +Q3(tN1, tN2, h1, h2) ≥ −ν1(tN1 + h1) − ν2(tN2 + h2)

+ ψ
(
tN1 + h1, tN2 + h2, h4 +Q4(tN1, tN2, 0, h1, h2, h3)

+Q4

(
0, 0, x3, tN1 + h1, tN2 + h2, h3 +Q3(tN1, tN2, h1, h2)

))
.

(4.12)

Since ν1N1 + ν2N2 = |ν|, this inequality is guaranteed by

x3 + |ν|t ≥ |h1||ν1| + |h2||ν2| + |h3| + |Q3(tN1, tN2, h1, h2)| + |ψ(z)|,
where z = (z1, z2, z4) denotes the argument of ψ in (4.12). Note that |h1||ν1| +
|h2||ν2| ≤ λ|ν|t and this term can be absorbed in the left-hand side if λ is small.
Moreover, |h3| ≤ λt2 and |Q3(tN1, tN2, h1, h2)| � λt2. Then, in order to prove
inclusion (4.11) it will be enough to show that

ε0(x3 + |ν|t) ≥ λt2 + |ψ(z)|
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for some ε0 > 0 small but absolute. We estimate z1, z2 and z4. Clearly, |z1| =
|tN1 + h1| � t and |z2| = |tN2 + h2| � t. Moreover,

|z4| =
∣∣h4 +Q4(tN1, tN2, 0, h1, h2, h3)

+Q4

(
0, 0, x3, tN1 + h1, tN2 + h2, h3 +Q3(tN1, tN2, h1, h2)

)∣∣
� λt3 + x3t

because Q4(0, 0, x3, ξ1, ξ2, ξ3) = 1/2{(−x3ξ1) + α(−ξ2x3)}.
Thus by (4.10)

|ψ(z)| � z2
1 + z2

2 + |z4| � t2 + λt3 + x3t 	 t2 + x3t,

because λt3 � t2 (we assume t ≤ 1).
We finally have to prove the inequality

(4.13) ε0(x3 + |ν|t) ≥ t2 + x3t,

which holds if t ≤ σ|ν| with σ > 0 small depending only on Ω.
5. Second piece. From now up to the end of Case 1 t1 = σ|ν| will be fixed. For

t ≥ t1 define
γ(t) = (0, 0, x3, 0) · (t1N1, t1N2, t− t1, 0),

and note that d(γ(t), x) 	 t1 + (t− t1)1/2. Write b = (t− t1)1/2 and δ(t) = t1 + b.
6. We claim that there exists a positive λ < 1 such that for all t1 ≤ t ≤ 1,

(4.14) Box(γ(t), λδ(t)) ⊂ Ω.

Condition (4.14) is equivalent to the John property for γ in its second piece.
Points in Box(γ(t), λδ(t)) have the form

γ(t) · h = (0, 0, x3, 0) · (t1N1, t1N2, b
2, 0) · (h1, h1, h3, h4)

=
(
t1N1, t1N2, x3 + b2, Q4(0, 0, x3, t1N1, t1N2, b

2)
) · (h1, h2, h3, h4)

=
(
t1N1 + h1, t1N2 + h2, x3 + b2 + h3 +Q3(t1N1, t1N2, h1, h2),

Q4(0, 0, x3, t1N1, t1N2, b
2) + h4 +Q4(t1N1, t1N2, x3 + b2, h1, h2, h3)

)
,

with h = (h1, h2, h3, h4) and ‖h‖ ≤ λδ(t). Now, γ(t) · h ∈ Ω provided that

x3+b2 + h3 +Q3(t1N1, t1N2, h1, h2) ≥ −ν1(t1N1 + h1) − ν2(t1N2 + h2)

+ ψ
(
t1N1 + h1, t1N2 + h2, Q4(0, 0, x3, t1N1, t1N2, b

2) + h4

+Q4(t1N1, t1N2, x3 + b2, h1, h2, h3)
)
,

(4.15)

which is implied by

(4.16) t1|ν|+ x3 + b2 ≥ |ν1||h1|+ |ν2||h2|+ |h3|+ |Q3(t1N1, t1N2, h1, h2)|+ |ψ(z)|,
where z = (z1, z2, z4) is the argument of ψ in (4.15). In order to prove (4.16) note
that |ν1||h1|+ |ν2||h2| � λ|ν|δ(t) 	 λ|ν|t1 +λ|ν|b. The term λ|ν|t1 can be put in the
left-hand side. Moreover, |h3| ≤ λδ2(t) � λt21 + λb2 and |Q3(t1N1, t1N2, h1, h2)| ≤
λt1δ(t) � λt21 + λb2. The term λb2 can also be absorbed in the left-hand side.

Claim (4.14) will be proved if we show that for t1 ≤ t ≤ 1,

(4.17) ε0(t1|ν| + x3 + b2) ≥ λ|ν|b + λt21 + |ψ(z)|.
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We estimate z1, z2 and z4. First, |z1| = |t1N1 + h1| � t1 + λδ(t) � t1 + λb and
the same estimate holds for |z2|. Moreover, writing δ instead of δ(t) and recalling
(4.3) we get

|z4| =
∣∣Q4(0, 0, x3, t1N1, t1N2, b

2) + h4 +Q4(t1N1, t1N2, x3 + b2, h1, h2, h3)
∣∣

� x3t1 + λδ3 + λt21δ + λt1δ
2 + λ(x3 + b2)δ

	 x3t1 + λ(t1 + b)3 + λt21(t1 + b) + λt1(t1 + b)2 + λ(x3 + b2)(t1 + b)

	 x3t1 + λt31 + λb3 + λx3t1 + λx3b 	 x3t1 + λt31 + λb3 + λx3b.

Then by (4.10)

|ψ(z)| � |z1|2 + |z2|2 + |z4| ≤ t21 + λb2 + x3t1 + λt31 + λb3 + λx3b.

Thus (4.17) is implied by

ε0(t1|ν| + x3 + b2) ≥ λ|ν|b+ t21 + λb2 + x3t1 + λt31 + λb3 + λx3b

	 λ|ν|b+ t21 + λb2 + x3t1 + λb3 + λx3b.
(4.18)

Inequality (4.18) holds for b = 0. This has been proved in (4.13) with t = t1.
Taking a smaller constant in the left-hand side of (4.13) we can assert that (4.18)

is guaranteed by

(4.19) ε0(t1|ν| + x3 + b2) ≥ λ|ν|b+ λb2 + λb3 + λx3b.

We can estimate the right-hand side using |ν| ≤ 1 and b ≤ 1 getting

λ(|ν|b + b2 + b3 + x3b) ≤ λ(|ν|2 + b2 + x3).

Recalling now that t1 = σ|ν| inequality (4.19) is proved for all b ∈ (0, 1) if λ is small
enough.

7. Case 2. Let x̄ ∈ ∂Ω be a characteristic point of second type. Take a point
near x̄. Translate it to the origin and write locally ∂Ω in the form y4 = ϕ(y1, y2, y3).
Since the domain is admissible, (4.5) holds. Write

ν1 = −∂1ϕ(0), ν2 = −∂2ϕ(0), ν3 = −∂3ϕ(0), ν = (ν1, ν2),

N1 =
ν1
|ν| , N2 =

ν2
|ν| , N3 =

ν3
|ν3| = sgn(ν3).

If ν = 0, simply set N1 = N2 = 0. If ν3 = 0, set N3 = 0. Moreover, let ψ(y) =
ϕ(y) + ν1y1 + ν2y2 + ν3y3. By (4.5) ψ satisfies the following growth condition

(4.20) |ψ(y)| � ‖y‖3 + (|ν|1/2 + |ν3|)(y2
1 + y2

2).

We shall now construct the John curve starting from x = x4e4, x4 ≥ 0. Without
loss of generality (the map z �→ z + µe4, µ ∈ R, is a left translation), assume that
x = 0 ∈ ∂Ω. We have to define a continuous path γ : [0, 1] → Ω such that γ(0) = 0
and dist(γ(t); ∂Ω) ≥ λd(γ(t), 0) for all t ∈ [0, 1] and for some λ > 0 depending only
on Ω. We split the path into three pieces.

8. First piece. For σ > 0 let

(4.21) t1 =

{
σmin

{|ν|1/2, |ν|/|ν3|
}

if ν3 �= 0,
σ|ν|1/2 if ν3 = 0,

and if t ∈ [0, t1], define
γ(t) = (N1t,N2t, 0, 0).

Note that d(γ(t), 0) = t.
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9. We claim that there exist positive constants σ, λ ∈ (0, 1) such that for all
t ∈ [0, t1] the following John property holds:

(4.22) Box(γ(t), λt) ⊂ Ω.

Points in Box(γ(t), λt) are of the form

γ(t) · h = (N1t,N2t, 0, 0) · (h1, h2, h3, h4)

=
(
N1t+ h1, N2t+ h2, h3 +Q3(N1t,N2t, h1, h2),

h4 +Q4(N1t,N2t, 0, h1, h2, h3)
)
,

with h = (h1, h2, h3, h4) and ‖h‖ ≤ λt. Now, γ(t) · h ∈ Ω if

h4 +Q4(N1t,N2t, 0, h1, h2, h3) >− ν1(N1t+ h1) − ν2(N2t+ h2)

− ν3(h3 +Q3(N1t,N2t, h1, h2))

+ψ
(
N1t+ h1, N2t+ h2, h3 +Q3(N1t,N2t, h1, h2)

)
,

which is implied by
|ν|t ≥ |ν1||h1| + |ν2||h2| + |ν3||h3| + |ν3||Q3(N1t,N2t, h1, h2)|

+
∣∣ψ(

N1t+ h1, N2t+ h2, h3 +Q3(N1t,N2t, h1, h2)
)∣∣

+ |h4| + |Q4(N1t,N2t, 0, h1, h2, h3)|.
(4.23)

Recall that |ν1||h1| + |ν2||h2| ≤ λ|ν|t, |h3| ≤ λt2, |Q3(N1t,N2t, h1, h2)| ≤ λt2,
|h4| ≤ λt3 and |Q4(N1t,N2t, 0, h1, h2, h3)| ≤ λt3. If z = (z1, z2, z3) is the argument
of ψ in (4.23), then we get

‖z‖ = ‖(N1t+ h1, N2t+ h2, h3 +Q3(N1t,N2t, h1, h2))‖ � t+ λt 	 t,

and by (4.20)

|ψ(z)| � ‖z‖3 + (|ν|1/2 + |ν3|)(z2
1 + z2

2) ≤ t3 + (|ν|1/2 + |ν3|)t2.
We finally get the following inequality which is stronger than (4.23)

ε0|ν|t ≥ λ|ν|t+ λ|ν3|t2 + t3 + (|ν|1/2 + |ν3|)t2,
where ε0 < 1 is an absolute constant. Dividing by t we have to show that

ε0|ν| ≥ t2 + (|ν|1/2 + |ν3|)t.(4.24)

(λ|ν| has been absorbed in the left-hand side). It will be enough to determine all t
that solve the following two inequalities:

t2 < ε0|ν| and t(|ν|1/2 + |ν3|) < ε0|ν|.
The first one gives t ≤ ε0|ν|1/2 and the second one is consequently solved by t|ν3| ≤
ε0|ν|. Claim (4.22) is proved if t1 is as in (4.21) for a small absolute constant σ > 0.

10. Second piece. From now on t1 is fixed as in (4.21). For η > 0 let

(4.25) t2 =

{
ηmax{|ν|, |ν3|2} if ν3 �= 0,
0 if ν3 = 0,

and if t ∈ [t1, t1 + t2] define

γ(t) = (t1N1, t1N2, (t− t1)N3, 0).

Notice that
δ(t) := t1 + (t− t1)1/2 	 d(γ(t), 0).
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In the sequel we shall sometimes write δ instead of δ(t). Moreover, let b = (t−t1)1/2.
11. We claim that there exist positive constants η, λ < 1 such that for all

t ∈ [t1, t1 + t2] the following John property for γ holds:

(4.26) Box(γ(t), λδ(t)) ⊂ Ω.

Points in Box(γ(t), λδ) are of the form

γ(t) · h = (t1N1, t1N2, (t− t1)N3, 0) · (h1, h2, h3, h4)

= (t1N1 + h1, t1N2 + h2, (t− t1)N3 + h3 +Q3(t1N1, t1N2, h1, h2),

h4 +Q4(t1N1, t1N2, (t− t1)N3, h1, h2, h3)),

with h = (h1, h2, h3, h4) and ‖h‖ ≤ λδ. Now, γ(t) · h ∈ Ω if

h4 +Q4(t1N1,t1N2, b
2N3, h1, h2, h3) > −ν1(t1N1 + h1) − ν2(t1N2 + h2)

− ν3
(
b2N3 + h3 +Q3(t1N1, t1N2, h1, h2)

)
+ ψ(t1N1 + h1, t1N2 + h2, b

2N3 + h3 +Q3(t1N1, t1N2, h1, h2)),

which is implied by

|ν|t1 + |ν3|b2 > |h4| + |Q4(t1N1, t1N2, b
2N3, h1, h2, h3)|

+ |ν1||h1| + |ν2||h2| + |ν3||h3| + |ν3|
∣∣Q3(t1N1, t1N2, h1, h2)

∣∣
+

∣∣ψ(
t1N1 + h1, t1N2 + h2, b

2N3 + h3 +Q3(t1N1, t1N2, h1, h2)
)∣∣.

(4.27)

We estimate the right-hand side: |h4| ≤ λδ3, |Q4(t1N1, t1N2, b
2, h1, h2, h3)| ≤

λδ3 + b2λδ 	 λδ3, |Q3(t1N1, t1N2, h1, h2)| ≤ λt1δ ≤ λδ2 and finally |ν1||h1| +
|ν2||h2| ≤ λ|ν|δ, |h3| ≤ λδ2.

Let z = (z1, z2, z3) be the argument of ψ in (4.27). Then |z1| = |t1N1 + h1| �
t1 + λδ and analogously |z2| � t1 + λδ. Moreover, as b ≤ δ and t1 ≤ δ,

‖(z1, z2, z3)‖ = ‖(t1N1 + h1, t1N2 + h2, b
2N3 + h3 +Q3(t1N1, t1N2, h1, h2)‖

	 t1 + λδ + b + λδ + (t1λδ)1/2 � δ.

By (4.20) this furnishes

|ψ(z)| � δ3 + (|ν|1/2 + |ν3|)(t1 + λδ)2

� δ3 + |ν|1/2t21 + λ|ν|1/2δ2 + |ν3|t21 + λ|ν3|δ2,
and (4.27) is guaranteed by

|ν|t1 + |ν3|b2 ≥ λδ3 + λ|ν|δ + λ|ν3|δ2 + δ3 + |ν|1/2t21 + λ|ν|1/2δ2 + |ν3|t21 + λ|ν3|δ2.
(4.28)

Replacing δ = t1 + b we get

ε0(|ν|t1 + |ν3|b2) ≥ (t1 + b)3 + λ|ν|(t1 + b) + λ|ν3|(t1 + b)2 + |ν|1/2t21

+ λ|ν|1/2(t1 + b)2 + |ν3|t21,
where ε0 is a small but absolute constant. Possibly changing ε0 it will be enough
to show that

ε0(|ν|t1 + |ν3|b2) ≥ t31 + b3 + λ|ν|t1 + λ|ν|b+ λ|ν3|t21 + λ|ν3|b2
+ |ν|1/2t21 + λ|ν|1/2t21 + λ|ν|1/2b2 + |ν3|t21.
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Now, λ|ν|t1 and λ|ν3|b2 can be absorbed in the left-hand side, and λ|ν3|t21 + |ν3|t21 	
|ν3|t21. Then

(4.29) ε0(|ν|t1 + |ν3|b2) ≥ t31 + b3 + λ|ν|b + |ν3|t21 + |ν|1/2t21 + λ|ν|1/2b2.

Inequality (4.29) holds with b = 0 by (4.24) with t = t1. It will be enough to
show that

(4.30) ε0(|ν|t1 + |ν3|b2) ≥ b3 + λ|ν|b + λ|ν|1/2b2.

12. In order to prove (4.30) the following two cases must be distinguished:

(2A) |ν3| ≤ |ν|1/2;
(2B) |ν3| > |ν|1/2.

13. Case 2A. In this case t1 = σ|ν|1/2 and (4.30) becomes (with a smaller ε0)

ε0(|ν|3/2 + |ν3|b2) ≥ b3 + λ|ν|b + λ|ν|1/2b2.

By the trivial estimate |ν3|b2 ≥ 0 and letting λ = 1 in the right-hand side we get
the stronger inequality ε0|ν|3/2 ≥ b3 + |ν|b + |ν|1/2b2. Setting b = |ν|1/2a (this can
be done because in Case 2A it should be ν �= 0) we find ε0 ≥ a3 +a2+a which holds
for all 0 ≤ a < a0. Then (4.30) holds for all 0 ≤ b ≤ a0|ν|1/2 and consequently our
claim (4.26) holds for all t ≤ t1 + a2

0|ν|.
14. Case 2B. Here t1 = σ|ν|/|ν3|. The term λ|ν|1/2b2 in the right-hand side of

(4.30) is less than ε0|ν3|b2 and can be absorbed in the left-hand side. Then we get
the inequality (with a possibly smaller ε0)

ε0

( |ν|2
|ν3| + |ν3|b2

)
≥ b3 + λ|ν|b,

that is,
ε0(|ν|2 + |ν3|2b2) ≥ b3|ν3| + λ|ν||ν3|b.

Now, λ|ν||ν3|b ≤ λ
2 |ν|2 + λ

2 |ν3|2b2 and both these terms can be absorbed in the
left-hand side if λ is suitable. Thus it suffices to solve

ε0(|ν|2 + |ν3|2b2) ≥ b3|ν3|.
Setting |ν| = 0 we find b ≤ ε0|ν3| which gives the correct choice t2 = ε20|ν3|2, as
declared in (4.25). Claim (4.26) is proved in Case 2B also.

15. Third piece. From now on t2 is fixed as in (4.25). If t ≥ t1 + t2, define

γ(t) = (t1N1, t1N2, t2N3, t− (t1 + t2)),

and notice that

δ(t) := t1 + t
1/2
2 + (t− (t1 + t2))1/3 	 d(γ(t), 0).

As before we shall sometimes write δ instead of δ(t). Moreover, let

a = (t− (t1 + t2))1/3.

16. We claim that there exists λ < 1 such that the following John property for
γ holds for all t1 + t2 ≤ t ≤ 1:

(4.31) Box(γ(t), λδ(t)) ⊂ Ω.
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Points in Box(γ(t), λδ(t)) are of the form

γ(t) · h = (t1N1, t1N2, t2N3, a
3) · (h1, h2, h3, h4)

=
(
t1N1 + h1, t1N2 + h2, t2N3 + h3 +Q3(t1N1, t1N2, h1, h2),

a3 + h4 +Q4(t1N1, t1N2, t2N3, h1, h2, h3)
)
,

where h = (h1, h2, h3, h4) and ‖h‖ ≤ λδ. Now, γ(t) · h ∈ Ω if

a3 + h4 +Q4(t1N1, t1N2, t2N3, h1, h2, h3) ≥ −ν1(t1N1 + h1) − ν2(t1N2 + h2)

− ν3
(
t2N3 + h3 +Q3(t1N1, t1N2, h1, h2)

)
+

∣∣ψ(
t1N1 + h1, t1N2 + h2, t2N3 + h3 +Q3(t1N1, t1N2, h1, h2)

)∣∣.
As usual, we find the stronger inequality

|ν|t1 + |ν3|t2 + a3 ≥ |h4| + |Q4(t1N1, t1N2, t2N3, h1, h2, h3)|
+ |ν1||h1| + |ν2||h2| + |ν3||h3| + |ν3|

∣∣Q3(t1N1, t1N2, h1, h2)
∣∣

+
∣∣ψ(t1N1 + h1, t1N2 + h2, t2N3 + h3 +Q3(t1N1, t1N2, h1, h2))

∣∣.
In the right-hand side we can estimate |h4|, |Q4| � λδ3, |ν1||h1| + |ν2||h2| ≤ λ|ν|δ,
|h3| ≤ λδ2 and |Q3(t1N1, t1N2, h1, h2)| � λt1δ � λδ2.

Let z = (z1, z2, z3) be the argument of ψ. Then |z1| = |t1N1 + h1| ≤ t1 +λδ and
|z2| ≤ t1 + λδ. Moreover,

‖z‖ = ‖(t1N1 + h1, t2N2 + h2, t2N3 + h3 +Q3(t1N1, t1N2, h1, h2))‖
� t1 + λδ + t

1/2
2 + λδ + (t1λδ)1/2 	 t1 + λδ + t

1/2
2 .

By (4.20)

|ψ(z)| ≤ ‖z‖3 + (|ν|1/2 + |ν3|)(z2
1 + z2

2)

≤ (t1 + λδ + t
1/2
2 )3 + (|ν|1/2 + |ν3|)(t1 + λδ)2

	 t31 + t
3/2
2 + λδ3 + t21|ν|1/2 + t21|ν3| + λ|ν|1/2δ2 + λ|ν3|δ2.

Ultimately, we have to show that

ε0(t1|ν| + t2|ν3| + a3) ≥ λδ3 + λ|ν|δ + λ|ν3|δ2 + t31 + t
3/2
2

+ t21|ν|1/2 + t21|ν3| + λ|ν|1/2δ2.

Notice that |ν|1/2δ2 ≤ 1
2 (|ν|δ + δ3) and thus the term λ|ν|1/2δ2 in the right-hand

side can be deleted. Now, writing δ = t1 + t
1/2
2 + a we get

ε0(t1|ν| + t2|ν3| + a3) ≥ λt31 + λt
3/2
2 + λa3 + λ|ν|t1 + λ|ν|t1/2

2 + λ|ν|a+ λ|ν3|t21
+ λ|ν3|t2 + λ|ν3|a2 + t31 + t

3/2
2 + t21|ν|1/2 + t21|ν3|,

and letting λ|ν|t1, λ|ν3|t2 and λa3 be absorbed by the left-hand side we find the
stronger inequality

ε0(t1|ν| + t2|ν3| + a3) ≥ t31 + t
3/2
2 + λ|ν|t1/2

2 + λ|ν|a
+ λ|ν3|a2 + t21|ν|1/2 + t21|ν3|.
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Such inequality holds if a = 0 (let b2 = t2 in (4.29)). Thus, it will be enough to
prove that for a small but absolute constant ε0,

(4.32) ε0(t1|ν| + t2|ν3| + a3) ≥ λ|ν|a+ λ|ν3|a2,

for all a ≥ 0.
We distinguish Case 2A and Case 2B.
17. Case 2A. In this case |ν3| ≤ |ν|1/2, t1 = σ|ν|1/2 and t2 = η|ν|. Using

t2|ν3| ≥ 0 in the left-hand side of (4.32), replacing t1 = σ|ν|1/2 and using also
|ν3| ≤ |ν|1/2 in the right-hand side we get the stronger inequality

ε0(|ν|3/2 + a3) ≥ λ(|ν|a + |ν|1/2a2)

which holds for all a ≥ 0 if λ is small enough (3 and 3/2 are Hölder conjugate
exponents).

18. Case 2B. Here |ν3| > |ν|1/2, t1 = σ|ν|/|ν3| and t2 = η|ν3|2. In the left-hand
side of (4.32) we use t1|ν| ≥ 0 and put t2 = η|ν3|2. In the right-hand side we
estimate |ν| ≤ |ν3|2. Thus we find the stronger inequality

ε0(|ν3|3 + a3) ≥ λ|ν3|2a+ λ|ν3|a2,

which holds for all a ≥ 0 if λ is small enough.
19. Case 3. This is the non-characteristic case and can be analyzed as in

Theorem 3.2. �

5. Examples

Example 5.1. In the setting of the Heisenberg group we give an example of domain
of class C1,α with α ∈ (0, 1) which is not a John domain. To this aim we construct
a counterexample to the Sobolev-Poincaré inequality (1.1).

We consider (x, y, t) = (z, t) ∈ R2 × R = H1 and the vector fields X1 = ∂x + y∂t

and X2 = ∂y − x∂t, (x, y, t) = (z, t) ∈ R3. We shall write X = (X1, X2). It is
well known that these vector fields are associated with a homogeneous group with
dimension Q = 4.

Let Ω = {(z, t) ∈ H1 : |z|α+1 < t < 1} where α ≥ 0 is a real parameter. The
domain ∂Ω is not smooth when |z| = t = 1 but this does not matter as we are
interested in the characteristic point 0 ∈ ∂Ω. If α ≥ 1, then Ω is of class C2 in a
neighborhood of 0 ∈ ∂Ω and it belongs to the regular class studied in Section 3.

We consider the case 0 ≤ α < 1. We let u(z, t) = t−γ and look for an exponent
γ > 0 such that

(5.1)
∫

Ω

|Xu|p dzdt < +∞ but
∫

Ω

|u|q dzdt = +∞,

where 1 ≤ p < Q = 4, for some q ≥ 1 which should be less than p∗ = 4p/(4 − p).
We have∫

Ω

|Xu|p dzdt 	
∫ 1

0

t−p(γ+1)

∫
|z|<t1/(α+1)

|z|p dz dt

	
∫ 1

0

t−p(γ+1)+(2+p)/(α+1) dt < +∞ ⇔ γ <
3 + α− pα

p(α+ 1)
.

On the other hand,∫
Ω

|u|q dzdt 	
∫ 1

0

t−qγ+4/(α+1) dt = +∞ ⇔ γ ≥ 3 + α

q(α+ 1)
.
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An exponent γ ensuring (5.1) can be found if the following condition holds:

(5.2)
3 + α

q(α+ 1)
<

3 + α− pα

p(α+ 1)
⇔ q >

p(3 + α)
3 + α− pα

.

If α = 1 (5.2) becomes q > p∗ which is exactly what one should expect. If α < 1,
we can find q < p∗ such that (5.2) holds (the function α �→ (3 + α)p/(3 + α− pα)
is increasing near α = 1). Thus if α < 1, the Sobolev–Poincaré inequality does not
hold and Ω is not a John domain.

Example 5.2. Using Theorem 4.4 we construct an example of John domain Ω ⊂ R4

with respect to the metric structure of the group of step 3 considered in Section 4.
Let g ∈ C2(0, 1) ∩ C([0, 1]) be a function such that

g(t) =

{
1 − t1/4 if 0 ≤ t ≤ 1/4,
(1 − t)1/4 if 3/4 ≤ t ≤ 1.

Such a function can be chosen with the additional property g′(t) < 0 for all t ∈
(0, 1).

Let

(5.3) N(x1, x2, x3) = (x2
1 + x2

2)
6 + x6

3,

and define the open set

(5.4) Ω = {x ∈ R4 : |x4| < g(N(x1, x2, x3))}.
Notice that if N(x1, x2, x3) ≥ 3/4, then ∂Ω has local equation (x2

1+x2
2)

6+x6
3+x4

4 =
1. If N(x1, x2, x3) ≤ 1/4, then ∂Ω has equation |x4| + [(x2

1 + x2
2)

6 + x6
3]

1/4 = 1.
We first show that the points (0, 0, 0,±1) ∈ ∂Ω are the unique characteristic

points of second type of ∂Ω. Indeed, let Φ(x1, x2, x3, x4) = g(N(x)) − x4 and
compute

X1Φ(x) = g′(N(x))X1N(x) − q1(x),

X2Φ(x) = g′(N(x))X2N(x) − q2(x),

X3Φ(x) = g′(N(x))X3N(x) − q3(x),

where q1, q2 and q3 are defined in (4.2). Note that x1q1(x) + x2q2(x) = −x3q3(x).
Moreover,

X1N(x) = 12x1(x2
1 + x2

2)
5 − 3x2x

5
3,

X2N(x) = 12x2(x2
1 + x2

2)
5 + 3x1x

5
3,

and thus x1X1N(x) + x2X2N(x) = 12(x2
1 + x2

2)6. Then

x1X1Φ + x2X2Φ = g′(N(x))12(x2
1 + x2

2)
6 + x3q3 = 0,

if x is characteristic. Moreover, if x is of second type, we have

x3X3Φ = g′(N(x))6x6
3 − x3q3(x) = 0.

Summing up the last two equations we finally get

g′(N(x))
(
12(x2

1 + x2
2)

6 + 6x6
3

)
= 0,

which implies x1 = x2 = x3 = 0, as g′(N(x)) �= 0.
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We now check that hypotheses of Lemma 4.3 are satisfied. We start with (i).
Consider the graph x4 = ϕ(x1, x2, x3) = N(x)1/4, x ∈ D0 = {(x1, x2, x3) : N(x) <
1}. We need to show that the derivatives XiXjϕ, i, j = 1, 2, are Lipschitz continu-
ous on D0 (with respect to the distance � in the Heisenberg group). This is equiv-
alent to showing that the derivatives XiXjXkϕ (i, j, k = 1, 2) are bounded. This is
trivially true because these functions are smooth away from the origin and homo-
geneous of degree zero with respect to the dilations (x1, x2, x3) �→ (λx1, λx2, λ

2x3)
(we are taking derivatives of order 3 of the function ϕ = N1/4 which is homogeneous
of degree 3).

In order to check hypothesis (ii) of Lemma 4.3 we have to prove that, letting
Φ(x) = N(x)1/4 − x4, there exists a constant k > 0 such that

|X2
1Φ| + |X2

2Φ| + |(X1X2 +X2X1)Φ| ≤ k(|X1Φ|1/2 + |X2Φ|1/2 + |X3Φ|)

for all x ∈ ∂Ω such that 0 < N(x) ≤ 1/4. We note that away from the origin
the function Φ(x) = N(x)1/4 − x4 is smooth, and moreover, it is homogeneous
of degree 3 with respect to the dilations (x1, x2, x3, x4) → (λx1, λx2, λ

2x3, λ
3x4).

Then the derivatives X1Φ and X2Φ are homogeneous of degree 2 and their square
roots |X1Φ|1/2 and |X2Φ|1/2 are homogeneous of degree 1. Analogously, X2

1Φ,
X2

2Φ, X3Φ and (X1X2 +X2X1)Φ, being derivatives of degree 2, are homogeneous
of degree 1. Then the function H = H(x1, x2, x3) defined by

H =
|X2

1Φ| + |X2
2Φ| + |(X1X2 +X2X1)Φ|

|X1Φ|1/2 + |X2Φ|1/2 + |X3Φ|

is homogeneous of degree 0. We showed above that |X1Φ(x)|1/2 + |X2Φ(x)|1/2 +
|X3Φ(x)| > 0 for all N(x) > 0, and thus by 0-homogeneity

sup
0<N(x)≤1/4

H(x) = max
N(x)=1/4

H(x) = k < +∞.

Thus Lemma 4.3 can be applied and the set Ω is admissible.

In the following examples we show that in groups of step 3 there are domains of
class C∞ which are not John domains and for which the Sobolev-Poincaré inequality
(1.1) does not hold.

We begin with a well-known lemma. Here X = (X1, ..., Xm) is a system of
generators of a homogeneous group on Rn with homogeneous dimension Q. Let d
be the left invariant metric induced by these vector fields.

Lemma 5.3. If Ω ⊂ Rn is a bounded open set such that the Sobolev-Poincaré
inequality (1.1) holds, then there exist r0 > 0 and C > 0 such that

|Ω ∩B(x, r)| ≥ CrQ

for all x ∈ Ω and 0 ≤ r ≤ r0.

Proof. If p = 1, (1.1) reads

(5.5)
(∫

Ω

|u− uΩ|Q/(Q−1) dx
)(Q−1)/Q

≤ C

∫
Ω

|Xu| dx.
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Fix x̄ ∈ Ω and 0 < r < R. The function

u(x) =




1 if d(x, x̄) < r,

1 − d(x,x̄)−r
R−r if r ≤ d(x, x̄) ≤ R,

0 if d(x, x̄) > R

can be used in (5.5). Moreover, taking R small enough to ensure |Ω\B(x̄, R)| ≥ 1
2 |Ω|

we can let uΩ = 0 to find (for a possibly different constant)( ∫
Ω

|u|Q/(Q−1) dx
)(Q−1)/Q

≤ C

∫
Ω

|Xu| dx.

Define g(r) = |B(x̄, r) ∩ Ω|. First of all(∫
Ω

|u|Q/(Q−1) dx
)(Q−1)/Q

≥ g(r)(Q−1)/Q,

and on the other hand, since |Xd(x, x̄)| = 1 for almost every x,∫
Ω

|Xu| dx =
1

R − r
|(B(x̄, R) \B(x̄, r)) ∩ Ω| =

g(R) − g(r)
R− r

.

Thus we find

(5.6) g(r)(Q−1)/Q ≤ C
g(R) − g(r)
R− r

, 0 < r < R ≤ r0.

The function g is differentiable almost everywhere, being monotonic, and letting
R → r in (5.6) we get g(r)(Q−1)/Q ≤ Cg′(r) at every point of differentiability, or
equivalently

d

dr
g(r)1/Q ≥ 1

C
.

Thus

g(r)1/Q ≥
∫ r

0

d

ds
g(s)1/Q ds ≥ 1

C
r,

and the claim is proved. �

Example 5.4. Consider now R4 with the homogeneous group structure introduced
in Section 4 (we choose α = 0). The homogeneous dimension of the group is
Q = 7. Let Ω ⊂ R4 be a bounded open set of class C∞ such that for some open
neighborhood U of the origin Ω ∩ U = {x ∈ R4 : x4 > 0} ∩ U . We show that the
Sobolev−Poincaré inequality (1.1) fails in Ω.

We localize our analysis in a neighborhood of 0. Take a point x̄ = (0,−b, 0, 0) ∈
∂Ω, b �= 0, and translate it to the origin. The translated boundary is

{x̄−1 · (y1, y2, y3, 0)} = {(y1, y2 + b, y3 +Q3(0, b, y1, y2), Q4(0, b, 0, y1, y2, y3))}

=
{(
y1, y2 + b, y3 − 1

2
by1,

b

12
y2
1

)}
=

{
y4 =

b

12
y2
1

}
.

(5.7)

We write Ω0 = x̄−1 · Ω and assume that b = 12 (any b > 0 gives the same
result). It will be enough to show that Ω0 does not support the Sobolev−Poincaré
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inequality. We can use the boxes (4.4) instead of balls to estimate for 0 < r < 1,

|Box(0, r) ∩ Ω0| =
∫
‖y‖<r, y4>y2

1

dy

=
∫
|y1|<r

dy1

∫
|y2|<r

dy2

∫
|y3|<r2

dy3

∫
|y4|<r3, y2

1<y4

dy4

= 4r3
∫
|y1|<r, |y4|<r3, y2

1<y4

dy1dy4.

On the integration domain we have |y1| ≤ |y4|1/2 ≤ r3/2. Therefore,

|Box(0, r) ∩ Ω0| ≤ 4r3
∫ r3/2

−r3/2
dy1

∫ r3

y2
1

dy4 = 8r3
∫ r3/2

0

(r3 − y2
1)dy1 =

16
3
r15/2.

If the Sobolev-Poincaré inequality holds, the estimate |Box(0, r)∩Ω0| ≥ Cr7 should
be true, but this is not possible.

We note that 0 ∈ ∂Ω is a characteristic point of second type which is “flat”,
but near 0 there are characteristic points of the same type x̄ = (0,−b, 0, 0), b �= 0,
which are not “flat”: by (5.7) the parametric equation for the translated boundary
x̄−1 · ∂Ω is y4 = b

12y
2
1 and the flatness condition |y4| ≤ C‖(y1, y2, y3)‖3 does not

hold. This makes Ω a bad domain.

The following example is a refined version of the previous one.

Example 5.5. In this example we disprove Conjecture 1 stated in [CG, p. 429].
We consider again the group of step 3 studied in Section 4 (with α = 0). We prove
that in the “gauge ball”

Ω = {x ∈ R4 : (x2
1 + x2

2)
6 + x6

3 + x4
4 < 1}

the Sobolev-Poincaré inequality does not hold. We actually show the following
stronger fact.

Proposition 5.6. Assume that Ω ∩ U = {x4 > ϕ(x1, x2, x3)} ∩ U for some neigh-
borhood U of the point (0, 0, 0, ϕ(0, 0, 0)). Assume also that for some γ > 3,

(5.8) |ϕ(x1, x2, x3) − ϕ(0, 0, 0)| ≤ C‖x‖γ ,

for all x near the origin. Then the Sobolev-Poincaré inequality does not hold in Ω.

We note that in the particular case of the homogeneous ball Ω = {(x2
1 + x2

2)
6 +

x6
3 + x4

4 < 1} the function ϕ is ϕ(x1, x2, x3) = −{
1 − [(x2

1 + x2
2)

6 + x6
3]

}1/4. Thus
(5.8) is satisfied.

Proof. As in Example 5.4 we show that the estimate of Lemma 5.3 is violated,
but here the choice of the center and of the radius of the balls which give the
counterexample is more delicate.

Fix α ∈ ]
1, γ

3

[
(this open interval is non-empty as soon as γ > 3). We claim that

there exist ε ∈ (0, 1) and C > 0 such that

(5.9)
∣∣Box

(
(0,−b, 0, ϕ(0,−b, 0)), bα

) ∩ Ω
∣∣ ≤ Cb7α+(α−1)/2 for all b ∈ (0, ε).

Since α is strictly larger than 1, this is not compatible as b→ 0+ with the estimate∣∣Box
(
(0,−b, 0, ϕ(0,−b, 0)), bα

) ∩ Ω
∣∣ � b7α,
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which by Lemma 5.3 should be satisfied if the Sobolev-Poincaré inequality would
hold.

If x̄ = (0,−b, 0, ϕ(0,−b, 0)), b > 0, let Ωb = x̄−1 · Ω. It is easy to check that the
surface ∂Ωb := x̄−1 · ∂Ω contains the origin and can be locally parameterized by

x4 = ϕ
(
x1, x2 − b, x3 +

1
2
bx1

)
− ϕ(0,−b, 0) +

1
12
bx2

1 := ϕb(x1, x2, x3).

If x belongs to Box(0, bα), then |x1|, |x2| ≤ bα and |x3| < b2α. Thus we have the
estimate∣∣∣ϕ(

x1, x2 − b, x3 +
1
2
bx1

)∣∣∣ � |x1|γ + |x2 − b|γ +
∣∣∣x3 +

1
2
bx1

∣∣∣γ/2

� bγ ,

because α > 1. Moreover, |ϕ(0,−b, 0)| ≤ bγ .
This implies that if x ∈ Box(0, bα) ∩ Ωb, then x4 > ϕb(x1, x2, x3) and

1
12
bx2

1 ≤ |x4| +
∣∣∣ϕ(. . . ) − ϕ(. . . )

∣∣∣
� b3α + bγ 	 b3α,

because 3α < γ. As a consequence |x1| � b(3α−1)/2 and

Box(0, bα) ∩ Ωb ⊂ {|x1| < C0b
(3α−1)/2, |x2| < bα, |x3| < b2α, |x4| < b3α}

for some C0 which stays bounded as b approaches 0. This proves (5.9). �
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