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Abstract. Inthe setting of Carnot-Caratbdory spaces we prove some trace
theorems for Sobolev functions. We consider the trace on a non characteristic
surface for Hhrmander vector fields of step > 1 and the trace on the
boundary of a class of domains in the Grushin plane.

1 Introduction

In the last years the theory of the functional spaces related to vector fields
has been deeply developed in several directions. Sobolev-Peityga in-
equalities have been widely studied and applied to the analysis of solutions
of second order Partial Differential Equations. An important tool in the study
of boundary value problems is the estimate of the trace on the boutitary

of a Sobolev function. defined in an open sé?. Only few results concern-

ing this problem are known in the degenerate setting of vector fields. In this
paper we give a contribution to the research in this direction.

In order to introduce our discussion let us recall the following classical
result: if 1 < p < o0 andf? C R™ is a bounded open set with regular
boundaryds2, then there exists a constafit > 0 such that for any: €
WhP($2)

lu(x) —u(y)” e .
/aman WdH H@)dH" (y) < C/Q [Vu(z) [P dz, (1)

wheres = 1 — % is the fractional order of differentiability of the trace
u = u‘ag.

* The authors were supported by GNAFA, Italy and by MURST, Italy. Second author was
also supported by the University of Bologna, funds for selected research topics.
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We are interested in generalizations of (1) of the form
= 1/p
We(02) <03 ([ 1Xut@pas) . @
j=1

for a family of vector fieldsX; = Y, aju(2)0, j = 1,...,m, z € R™.
The left hand side of (2) will be some kind of fractional semi-norm, whose
form will be discussed later.

Let us begin with some considerations about the history of the problem.
In the paper [F] Franchi studies the trace problem for anisotropic Sobolev
spaces related to diagonal vector fiells = \;(x)9;, j = 1,...,n, and
proves optimal trace estimates on corners of cubes using a semi-norm con-
structed by a sum of one dimensional fractional derivatives with suitable
weights. The proof relies on representation formulas modeled on the geom-
etry of the vector fields and does not seem to work in non diagonal situations.

Berhanu and Pesenson [BP] prove a trace and lifting theorem for a fam-
ily of Hormander vector fields of step two. Actually, their result holds only
for the trace on a non characteristic surface with one transversal vector field
and the “projections” of the other ones satisfying thirtdander condition
of step two relatively to the surface. The approach of this paper is not com-
pletely satisfactory since the definition of the semi-norm, which involves
increments along the integral curves of the projected vector fields, does not
apply, for instance, to simple situations when the projected vector fields
vanish on the surface.

Bahouri, Chemin and Xu [BCX] using the Weyldrdmander calculus
prove a lifting theorem and a trace theorem on non characteristic surfaces
for Sobolev spaces associated with a system of vector fields of step 2. The
case of isolated characteristic points in the framework of the Heisenberg
group is also studied.

In the recent remarkable paper [DGN2], which continues the project
started in [DGN1], Danielli, Garofalo and Nhieu prove the following trace
theorem for Fhrmander vector fields: if? is a (¢, §)—domain andu is a
Borel measure supported &2 such thatu(B(z,r)) < C|B(z,r)|/r for
any Carnot-Cara#todory ball centered at € 942 with radius0 < r <
ro, then for anyp > 1 the spacdﬂ/)lgp(fz) is continuously embedded in

B“%’p(a(z, du), where the last Besov space is defined by the semi—norm
(4) lettings = 1—1/p. Conversely, iff? is a bounded open séf(2| = 0 and

u is a Borel measure supportedi such thay(B(z,r)) > C|B(x,r)|/r

for all 2 € 92 and0 < r < g, then, given a functiom € B'~1/PP(912),

there exists a functiofiu < W)l(’p((z) which extends: and such that the
operator€ is continuous between the expected spaces. The trace result is
proved by extending a function € W)lgp((z) to a Sobolev function on
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the the whole space and then by a restriction technique. The facf2that
is an extension domain is guaranteed by the subelliptic version of Jones
extension theorem fdg, 6) domains [GN]. The notion ofz, 4) or uniform
domain inR™ has been introduced by Martio and Sarvas [MS] and Jones
[J]. Several properties d¢t, §) domains are studied byaiala [V].

Finally, although not strictly related to our work, we would like to men-
tion the paper by Hapsz and Martio [HM] where the trace problem on
general subsets @&" is treated in the Euclidean setting from a “metric”
point of view.

Before stating our results we introduce the basic definitions. Given a
family X = (X, ..., X;,,) of vector fields withX(z) = > | a;j(x)0;

(j =1,...,m)anda;; € Lip(R") (j = 1,...,m, i = 1,...,n), we call
subunita Lipschitz continuous curve: [0, 7] — R™ such that

A(t) = ihj(t)Xj(fy(t)), and ih?(t) <1 fora.ete]0,T],
j=1 j=1

with hq, ..., h,, measurable coefficients. Define the Carnot-Cé&adory
(briefly C-C) distance between the pointgy € R”

d(xz,y) = inf{T > 0 : there exists a subunit path: [0,7] — R"
such thaty(0) = z and~(T) = y}.

We defineB(z,r) = {y € R" : d(z,y) < r}, forz € R andr > 0. The
functiond is finite and is a distance in the following two cases, that are the
object of our study:

(1) The family Xy, ..., X,, € C*°(R",R") satisfies the Ermander con-
dition

rankC(X1, ..., Xm)(xz) =n foreveryzr € R",

whereL(X1, ..., X;,) is the Lie algebra generated by the vector fields.
(2) The vector fields are of the form

X; =0, and Xy =|z/?9, inR% (3)

with a > 0.

Let 2 C R™ be an open set with boundady? of classC'. Denotev()
the Euclidean unit normal t8(2 atx € 02 and define

X)) = (30X v(@)?)

j=1
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A point z € 92 is said to be characteristic [KXv(z)| = 0. The natural
surface measure that takes into account characteristic points in the boundary
is

= | Xv/H" Lo,

thatis then—1)—dimensional Hausdorff measure restricted to the boundary
with the weight| X v|. The measurg is the variational surface measure as-
sociated with the vector fieldsy, ..., X,, andu(9£2) equals the Minkowski
content of0(2 in the metric spacéR”, d) (see [MSC]). Define the fractional
semi-norm

. )~
N VW v e Rl "

The fact that the semi—norm (4) gives the correct left hand side in the trace
inequality has been discovered in [DGNZ2]. A “solid” version of (4) has been
studied in [M].

In this note we study the trace inequality (2) using the semi-norm (4).
We shall first consider the case when the boundary is non characteristic
with respect to a family of BErmander vector fields. We develop a technique
inspired by the original paper of Gagliardo [G] which relies upon the possi-
bility of connecting points on the boundawy? by means of sub-unit curves
lying in (2. The construction of such paths is a byproduct of a structure the-
orem for the restriction of C-C balls to non characteristic surfaces, theorem
that seems to be of independent interest (see Sect. 2). When the boundary
contains characteristic points the analysis is more difficult. Nonetheless, our
technique still works in some situations and we focused our attention on the
simple but significant case of the Grushin plane. Our main results can be
summarized in the following way. Lét< p < cocands =1 — =. If

(1) Xi,...,X,, are Hhrmander vector fields ilR™ and 2 C R" is a
bounded open set whose boundary is of cl@8s and does not con-
tain characteristic points, or alternatively

(2) X1, X, are of the form (3) ané® ¢ R? is aC"! bounded open set which
is a-admissible (see Definition 1),

then there exist constants §, > 0 such that

u(z) — u(y)|” dp(z / P
dx (B)
P Ba i) )
N xRN {d(z,y) <o} Q
forallu € CY(2)NC(02).
These trace estimates are optimal. This follows from the extension Theo-
rem 4.1 in [DGN2]whose hypotheses are verified in Corollary 1 and Lemma
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6 below. In case (1) if2 is any smooth bounded set, inequality (5) continues
to hold provided the integration in the left hand side takes place on a fixed
compact seiX' C 942 which does not contain characteristic points.

It seems reasonable that both non characteristic domainfon&hder
vector fields and our admissible domains in the Grushin plane enjoy the
(e, 9)—property. If this were the case our trace theorems could be obtained
using the results by Danielli, Garofalo and Nhieu [DGN2]. However, the
study of this property probably involves difficulties comparable to those
one has to face attempting a direct proof of the trace theorem.

In Sect. 2 we prove the mentioned structure theorem for C-C balls. Sec-
tion 3 deals with Case (1). Our results are the natural generalization to vector
fields of arbitrary step > 2 of the trace results obtained in [BP] and [BCX]
for vector fields of stef. Section 4 is devoted to Case (2). The condition of
a-admissibility identifies a large class of domains for which the trace theo-
rem holds in relation with the “flatness” of their boundary at characteristic
points. At the end of Sect. 4 this condition will be shown to be necessary.

In the paper we will denote bg' a generic constant which may change
even in a single string of estimates. We write~ v to state that there
exist two positive constanis andcs such thatc;u < v < cou. A vec-
tor field X = Y, _; ax(z)0k will be identified with the vector function

(ar1(x),...,an(x)).

Acknowledgementdlt is now a pleasure to acknowledge with gratitude Ermanno Lanconelli
for his encouragement, Nicola Garofalo for some helpful conversations concerning the paper
[DGNZ2], and Bruno Franchi for having drawn our attention on some references.

2 Structure of balls restricted to non characteristic surfaces

Following the basic ideas contained in the classic paper [NSW] and the
generalization in [M], we shall represent (in Theorem 2) C-C balls restricted
to non characteristic surfaces by means of suitable exponential maps which
are “small perturbations” of the exponential of the commutators of the vector
fields (see Lemma 2). These maps enjoy a “factorization property” (see
Lemma 1) which is crucial in the proof of the trace theorem.

First we recall that a non characteristic surface can be made flat by a
diffeomorphism. A resulting transversal vector field can be orthogonalized
and the other ones can be made lie on the surface.

Lemmal. Letid C R™ be a neighborhood of € R™ and let X <
C*>(U;R™) be a vector field such thaX (0), e,) # 0. Letz,, = g(z1,. ..,
zn—1) = g(2") beafunction of clas§ > such thay(0) = 0andVg(0) = 0.
Possibly shrinkind/, there exists a diffeomorphistne C*°(U/; R™) such
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that dP(z) X (z) = e, for all z € U and @(2’, g(2’)) = (2,0) for all
(2, 9(2")) € U.

The proof of Lemma 1 can be essentially found in [FW, p. 83] where
even less regularity is required.

Remark 1.Let X1, ..., X, € C®(R™R") satisfy the Hrmander condi-
tion and induce the C-C metrit Write (z,t) € R*~! x R and assume the
vector fields are of the form

n—1

Xj = bj((l},t)at + Zaij(x,t)ai, j=1...m-—1, )va = 0.
i=1

The new family of vector fields

n—1

Xj :Zaij(x,t)(‘)i, jzl,...,m—l, szat. (6)

i=1

still satisfies the rmander condition. Moreover, dfis the corresponding
C-C metric andK C R"™ is a compact set, there existandcs such that

ad<d<cyd and ¢|Xu| < |Xu| < coXul

for all w € C'. A proof of the equivalence betwedrandd can be found in
[FW, p.87]. Actually, it can be proved that each of the previous equivalences
implies the other one (see [HK, Theorem 11.11]).

Considerm vector fieldsXy, ..., X,, € C*°(R";R"™) of the form (6)
and satisfying the Brmander condition. We shall writ&,,, = T'. For any
multi-index = (iq,...,1;), 1 <i; <mandk € N, let

X = Xy [Xigs - [Xi_1s Xa] 11,

where [X, Y] denotes the commutator of the vector fieldlsand Y. If
I = (i1,...,ix) we set|I| = k and we say that the commutatat;; has
lengthor degreed (X)) = .

For any commutatoY” # T and for smalls € R we shall define a map
expr(sY) : R*~1 — R"~!. We proceed by induction ai(Y").If d(Y) =
andY = X; with j € {1,...,m — 1} define forz € R"!

exp(—sT)exp(s(X; +T))(z) ifs>0,
expr(sY)(2) = § exp(s(X; + 1)) exp(—sT)(x) (7)
= expr(|s|Y) 7! (2) if s <0.
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The map is well defined providedbelongs to a compact set anis small.
We also setxpr(sT') = exp(sT). Suppose now(Y) = k, Y = Xy with
|J| = k,andJ = (j1, ..., jk). SetJ’ = (ja, ..., jx) and define

k-1 _ 1 _
expp(s ® X)) texpp(stXj,) 7!

expp(sY)(x) = ~expT(s%X[m) eXpT(s%le)(x) if s>0,
expr([s|Y) " (z) if s <O0.
8

Some useful features of the mapg are described in the following
two lemmas. In Lemma 2, which is a generalization of [NSW, Lemma 2.21],
we shall use the Campbell-Hausdorff formula

1[u,v] + S(u,v)),

exp(u) exp(v) = exp (u +v— 5

whereu andv are non commuting indeterminates asids a formal series
of commutators of: andv of length at leass. We refer to the Appendix of
[NSW] for a discussion and for the related references.

Lemma 2. For any commutatoX 5, J = (j1, ..., ji), of lengthk > 1
expp(sX(y) = exp (SX[J] +sgn(s) Y CJ,IlSl‘”/ka), 9)
[I|>k
where thec; r are suitable constants.

The formal equality (9) means that,ifbelongs to a compact sé&f and
p > k is an integer, then

expp(s X)) (z) — exp (SX[J] + sgn(s) Z CJ,ISHWX[[])(:B)’
k<|I|<p
< CgPtV/k.

Proof.We proceed by induction. Consider first a commutator of lehgitle.
avector fieldX;, j = 1,..., m. Applying the Campbell-Hausdorff formula
to (7) we get fors > 0

expp(sX;) = exp(—sT) exp(s(X; +T))
1
:eXp(_3T+5(Xj+T)+ 582[T,Xj —I—T] +>

= exp (sz + Z C(j),Isule).
[I|>1
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Fors < 0 note that

expr(sX;) = expr(ls1X;) " = exp (= |s1X; = > cy1s] X ).
[7]>1
We prove now the inductive step. Recall first that an application of the

Campbell-Hausdorff formula asserts thatuifandv are non commuting
indeterminates, then

exp(v) " exp(u) " exp(v) exp(u) = exp([u, v] + R),

whereR = R(u,v) denotes a formal series containing commutators(of
andv) of length at leass. Letk > 1, J = (j1, ..., jk), J' = (j2, ..., jx) @and
s> 0. Letalso

u = Sl/kal + Z C(jl)JS'II/kX[I] and
[7]>1
v = S(k_l)/kX[J/} + Z CJ/JS']‘/kX[[].
[I|>k—1

Note thau, v] = s X + R, whereR is a series containing commutators of
order at leask + 1 of the original fields. Thus, by the inductive hypothesis

k=1 _ 1 —
expr(sX(y)) = expp(s * X[Jl}) 1expT(st]l) L
eXPT(S g X[]'})eXPT( Xj1)

:exp( ) exp( ) eXp( )eXp( )
= exp([u, U] + R))

= exp(sX(y) + R+ R))

= exp (SXM + Z CJ,]Slll/kX[I]>v

[I|>k

for suitable constants; ;. We used the fact that the serigsis actually a
series of commutators of length at le&st 1 of the original fields. Ifs < 0,
formula (9) follows analogously. O

Define forA > 0 and for any vector field

S1(0 X) = exp(A(X — T)) exp(AT),

So(X, X) = exp(—AT) exp(A(X + T)). (10)

Theorem 1 (Factorization).LetY = X5, J = (j1,...,Jx). The map
expr(sY), s € R, can be factorized as the composition of a finite number of
factors ofthefornSl(h|s|%,TXj)andSQ(h|s|%,er),wherer e {-1,1},
j=1,...,mandl < h < k. Moreover, the number of factors depends only
onk.
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Proof.SinceSQ(h\s\%,TXj) = Sl(h]s]%, —7X;)~1, if we prove the claim
for s > 0 it will also follows for s < 0. Without loss of generality we can
supposes = 1. First notice that

Si(h, 7X)exp(T) = exp(h(1X — T)) exp(hT") exp(T")
= exp(T) exp(T) Lexp(—7X + T)S1(h +1,7X)
=exp(T)S2(1,—7X)S1(h+1,7X)
(11)
and
So(h, 7X) exp(T) = exp(hT) L exp(h(1X + T)) exp(T)
=exp(T)S2(h+1,7X) exp(—7X — T) exp(T)
=exp(T)Sa(h + 1,7X)S1 (1, —7X).
(12)
The proof is by induction ot = d(Y). If k£ = 1 the claim follows directly
from definition (7) withh = 1. Letk = d(Y') > 1 and letY = X|; with
J = (j1,..., k). If j1 # m the claim follows directly from (8) and the
inductive hypothesis oX |, J' = (ja, ..., jr). Supposg1 = m and by
the inductive hypothesis write

expr(X(y1) 1_[5'(7 (hi, i X

witho; € {1,2}, 7, € {-1,1},pe N Iess than a constant dependingion
andl < h; < k — 1. Write

expp(X(y) = expp(Xpn) " exp(T) ™! eXpT(X ) exp(T)

= expp (X))~ Vexp(T)™? H So; (hi, 7:.X;,) exp(T).

By (11) and (12pxp(7T') can be shiftegh times from right to left cancelling
exp(T)~! and the claim follows. O

From now on fix a bounded open s8§ € R™ and let{Y1, ..., Y,} be
a fixed enumeration of the commutators of lengthk, wherek is large
enough to ensure that sgaXi; (=, ?) : |I| < k} has dimensiom at each
point (x,t) € 2. Assume also that, = 7.

Introduce the family of multi-indice€ = {I = (i1,...,ip—1) : 1 <
i; < g—1}.Givenamulti-indeX € Z, setd(I) = d(Y;,) +---+d(Y;,_,)
and forh = (h, hy) € R"™! x R “small enough” define

Qsl,cc(h) = expr(hn-1Yi, 1) - expp(hYi,)(,0),
Dy 5(h) = exp(hnT) expp(hn-1Ys, )+ expp(ha Yy ) (2,0)  (13)
= (@rx(h), hy).
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The form of the fields (6) guarantees tidat, (h) € {(z,t) € R" : t = 0}
for h € R*~L. Let also

Ihly = _max_ [lu]"/*0%) " and
Ar(z) = det(Y;, (2,0),...,Y;, ,(z,0)),

where the vector¥;, are thought of as vectors " 1.

If I € Z definel = (I,q) and setd(I) =d(I)+ 1.1f h = (h, h,) and
(z,t) € £ define

|7 = max{|A| 1, |hn]} and
M@, t) = det(Yiy (1), ..., Vi, (@, ), Ya(2, 1))

whereY,, = T and the vectors are thought of as vectorRin

Let d be the C-C metric induced by the vector fields (6) ®Rf and
consider the ball&3((z,0),r) = {(y,t) € R" : d((z,0), (y,t)) < r} and
B(z,r) = {y € R" ! :d((z,0), (y,0)) < r} . We now state and prove the
structure theorem for the restricted bafls

Theorem 2. Let {2y € R™ be a bounded open set. There exist> 0 and
0 < a < b < 1such thatforanyz,0) € {2, I € Zand0 < r < rg such
that the inequality

M @lrD > ©max X () D (a4)
S

is satisfied, we have

0) @) < [Jn®ra(h)] = [F®r2(h)| < 4Ar(x)| for every|h|; <
br, whereJ,®; . (h) = det 2 &1 ,(h).

(i) B((x,0),ar) C Pra({[hl7 <br}) € B((z,0),r).

(i) B(x,ar) C &r.({|h|r < br}) C B(z,r).

(iv) The map@; ¢ Isone toone or{HhH[ < br}.

Remark 2.Inclusions (iii) for the restricted balls are immediate conse-
guence of (ii) and of the structure (13) of the mapindeed, starting from
(i) we get

B(x,ar) C r.({Ihly < br}) N {t =0} = Bra({Ihl; < br}).
The opposite inclusion is analogous.
Proof of Theorem 2Since\;(x) = X;(x,o), if (14) is verified for some

(n — 1)—tupleI € Z then then—tuplef: (I,q) satisfies

1 ~
\)\ (2,0)|r4D > = 5 1}12){])\ (z,0)|rd7 (15)
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In [NSW, Theorem 7] it is proved that i¥},,...,Y;, are commutators
of degreesds, ..., d, which satisfy (15), then the magp; . defined by
5}@(%) =exp(hYj, +---+ h,Yj;,)(x,0) satisfies (i), (i) and (iv). More-
over in [M, Lemmas 3.2-3.6] the following is proved. Assume that the ex-

ponential of any commutatdr; can be approximated by a médg{sY;) in
the sense that

E(st):eXp<st+SQr(s Z key,1ls |1/d(Y; XU])
[1|>d(Y;)

where thek ;) ; are constants and assume also that fettaple of commu-
tatorsYj,, ..., Y, (15) holds at a pointz, 0) and for a radiug. Then the
map

b1 4(h) = E(haYj,) -+ E(l1Y;,)(x,0)

satisfies (i), (ii) and (iv). In view of Lemma 2 this assertion can be applied
to the mapE = expy and the Theorem is proved. We also note that the
estimate

p(B((w,0),7)) = Y |Ar()[r"D) (16)
IeT
holds. O
Corollary 1. Letf2 C R™ be an open set wit’>° boundary. Let’ C 942
be a compact set of non characteristic points with respect to the vector

fields X1, ..., X,,, € C*°(R",R") satisfying the ldrmander condition. If
= H""1L 012, then there existy > 0,0 < m; < mo such that

PN < ) <y P

(17)
forall x € K andforall0 < r < rg.

Proof.In view of Lemma 1 and Remark X+, ..., X,,, can be assumed to be
of the form (6) andk’ C 92 C {(x,t) e R" ! x R: ¢ = 0}. The Lemma
follows from (ii) and (iii) in Theorem 2. O

3 Trace for Hormander vector fields

Let X1, ..., X,, € C°(R™ R") be a family of vector fields satisfying the
Hormander condition and lg? C R"™ be a bounded open set with? of
classC* and non characteristic. In this section we prove fAaupports a
trace theorem.
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Recall first the Hardy inequality. L&t < r» < 4o00. If 1 < p < o0 and
if f € LP(0,r)then

/ /|f ) dr < ( /|f WPdr.  (18)

Next, we shall need the following formula for integration of “radial func-
tions”.

Lemma 3. Letd : R" — [0,00) be a Lipschitz function such thgfz €
R™ : d(x) < A\}| = o)A@ for someQ > 0, 0 > 0, for all A > 0, and
|Vd(z)| # 0 for a.e.z € R™. Then

[ std)ds=oQ [ pa2tar (19)
{d(z)<r} 0
for all measurable functiong > 0, » > 0.

Proof.Fore > 0 let g.(z) = x{jvq/>¢} (z) and by the coarea formula write

ge(z)p(d dx—/ d?-["fl x)dr.
/{d(x><x} () (d(e)=r) !Vd (=)

SinceH" 1 ({d(z) = r} N {Vd(x) = 0}) = 0 for a.es > 0, by monotone
convergence we get

= " 1 L) dr
/{d(m} ta@) e = [ ot /{dm:?«} gy

for all A > 0. Choosingy = 1 we find

A
1
oA? = {z e R" : d(z) < A :// dH™ () dr,
{ () <A} o Sy V@) (z)

and taking the derivative we obtain for ade> 0

1
oQN?1 = / dH" (z),
(@)=} |Vd(z)] (=)

which gives the proof. O

We now prove the basic trace theorem. Dét, ..., X,,, be a family of
smooth vector fields ofR™ satisfying the Wrmander condition, assume
they are of the form (6) and let be the C-C metric induced by them. We
shall write(z, t) € R"~! x R and for the sake of simplicity we contract the
notation by writingz = (x,0). Lety = H" ! L{t = 0} be the Lebesgue
measure ofiR" 1
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Theorem 3. Letl < p < o0, s = 1 — L and lett/ ¢ R*! be a bounded
open set. I\ > 0 andty > 0 there existC' > 0 andd, > 0, such that

lu(x,0) — u(y, 0)|P dzdy /
<C Xu(z,t)|P dzdt
[ st am) < ule )
UXUN{d(z,y)<do} Uxx(0,t0)

(20)

forall u € Ct (U, x (0,t9)) N CUy x [0,t9)), wherelly = {y € R*~!:
dist(y,U) < ).

Proof. Let i/ C {2, for some bounded open s& C R" and letk € N
be the minimal length of the commutators which ensures thertdnder
condition onf2y. Fix 1o > 0 and0 < a < b by Theorem 2. Define

/ |u(,0) — u(y,0)”
UxUN{d(z,y)<do} d(x, y)pS/‘L(B(xv d(.’E, y)))

Let Z be the set of the multi-indicesdefined in Sect. 2 and write

N(p,do;U) =

dxdy.

o lu(z,0) — u(y,0)P
N(p,do;U) = /d / d(x,y)Psu(B(z,d(x,y)))
U uUn{d(zy)<do}
§ Z - [u(z,0) —u(y, 0)|P dy

I I d(x7 y)pSM(B('r?d(x?y)))
LU UNA(z)N{d(z,y)<do}

=Y [ n@ya
e
(21)

wheref; is defined by the last equality and we introduced the annulus
Arlw) = {y e R : |\ ()| (2d(z, y) /a) D

> 5 max s o)) 2d(z, /)" }.

Fix 69 < arp/2. By Theorem 2 the map = &, ,(h) is one-to-one on
the set{h € R"! : |h|; < (2b/a)d(x,y)} wherey € A;(x) is such
thatd(z,y) = min{dp, max,ca,(,) d(x,y)} (the conditiond(z,y) < do
amountst@d(z, y)/a < ro and ensures that Theorem 2 can be applied), and
moreover®; ,({h € R"1 : |h|; < (2b/a)d(z,9)}) D B(z,2d(z, 7)) D
Aj(x). By the same theorem statement (iii)

B(z,2d(x,y)) C Pra ({h e R" ' ¢ || < (2b/a)d(z,y)})
C B(z,2d(z,y)/a)
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forally € Ar(z) andd(z,y) < do, i.e.2d(x,y)/a < ro. Thus

2b 2b
Set Hy s (x) = @70(U N Ar(z) N {d(z,y) < &}). Thus, by the first
inequality of (22),

u(z,0) = w(Pr.e(h), O) |JnP1a(h)|

f[($) <C S
Hy 5y () |27 1(B(z, Clh|r))

dh. (23)

Note that (16) furnishes the estimatéB(z, C|h|;)) > C|Ar(z)|| [P
Lettingn = 2bdp/a and recalling that/, @7 . (h)| ~ |A\;(z)| from (21) and
(23) we get

— QS P
{l\h||1<77} thp

IeT
:Cz / m Hps+d /]um 0) — u(Pr4(h),0)P d.
T€L4 ) 1 <n}
(24)

If I = (i1,....in—1) @nd |h|; < n setzo(z) = x and definez;(z) =
[T—, expy(h;Y;,)(z) for I = 1,...,n — 1, in such a way that, ;(z) =
®r.(h). Thus, fixed a constant, 0 < A" < A

/M|u(:c, 0) —uw(Pr.(h),0)P dx
n—1
< o;/a (211 (2), 0) — ulz(z), 0)|P da

n—1 -1
< C;/u(u(jll[lexm(hmj)(w)yo) (25)

-1

— u< expr(hYi,) H expy(h;Y;, ) (), 0) ‘p dx
j=1

<CZ | 1u(6,0) —u(expr(¥;,)(€). 0)7 de.

where in each integral we performed the change of variabte z;_; (x)
which has Jacobian greater than a positive constant. Morepwet/): if
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do is small enough. Then, we have to estimate a finite number of integrals
of the form

jg [u(iz, 0) — u(expr (H(R)Y) (x), )P da,

with d(Y) < k and [t(R)[*?Y) < |n|;. By Lemma 1 we can write
expr(tY) = [T Sou (@i[t|V ), 7, X,,) with o; € {1,2}, 7; € {~1,1},

1 < ¢; < k, p less than an absolute constant &d.S; as in (10). With
triangle inequalities and changes of variable quite similar to the ones in (25)
we are led to the estimate of integrals of one of the two types

/\MmMWWWM”HWLM—M%WWx or
oS (26)

y [u(exp(glt(R)[9C) (rX; + T))(x),0) — ulz, 0)["dz,

withj = 1,...,m—1,1 < ¢ < kand|t(h)|*/4Y) < |h|;. fwe consider, for

instance, an integral of the second type with- 1 the computation in (24)
can be concluded in the following way (recall that-d(I) = p—1+d(1)):

dh
/ ”h”ps+d<l>/u lu(exp(qlt(R)[V4)(X; 4+ T)(x,0))) —u(z,0) | dx
{Inlr<ny’ M N

kR 1
dh ,
<C / ”h”szrd(I)/ </ ’Xu(eXp(t(Xj+T))(x,0)\dt> g
O L e S
dh klh|r 1
NP
”h”ps+d(1)< (/\Xu(exp(t(Xj+T))(g;’0)|pd$>pdt>
! 0 Uy

<C

{Inlr<n}

kn )
:CO/C:Z(/(/|Xu(exp(t(Xj+T))(x,0)|pdx)pdt)p

0 Uy
kn
SC// | Xu(exp(t(X; + T))(z,0))[F dz dt.
Uy
0

We used the Minkowski inequality, formula (19) and the Hardy inequality
(18).

Finally, writeexp(t(X; + T'))(x,0) = ©(«,t) and perform the change
of variable(¢, 7) = O(z,t). Since@(z,0) = (x,0) then

00 (z,t) ‘ L1 Xj(z,0)
0xdt li=0 0 1
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and thus® is a change of variable on the rectangle x (0, 09), where
0o Is suitably small. Choosing, small we obtairkn < gp andO(x,t) €
Uy x (0,tp) forall (x,t) € Uy x (0,kn). Then

/ | Xu(O(z,t))|P dedt < C | Xu(g, )P dedr.
Uys % (0,kn) U x (0,t0)

Integrals of the first type in (26) can be treated in the same way and the
proof of the Theorem is concluded. a

Corollary 2. Let X}, ..., X,, € C*°(R"™;R") satisfy the thrmander con-
dition and letf2 ¢ R™ be a bounded open set with? of classC*> and
non characteristic. Let < p < ccands =1 — %. There exist constants
C, 6o > 0 such that

[u(@) — u(y) P dp(z)du(y) .
d(z, y)Psp(B(z, d(z,y))) SC/XU(SC)! d
0N x02N{d(z,y)<do} 2

forall u € C1(2) N C(N2), wherep = H* 1L 00,

Proof. The proof follows from Theorem 3 using a standard covering argu-
ment, Lemma 1 and Remark 1. O

Example 1 (Trace on subgroups Bf*). Consider the Heisenberg group
H" = C™ xR, n > 1, whose elements afe, ¢) € H" with z = z + iy €

C", z,y € R", andt € R, and whose group law i&,7) - (z,t) = (¢ +
z,7+t+2Im((z)). The Lie algebra of the group is generated by the vector
fields

X] = (93;]. + 2yj(9t and Y} = 8@/]‘ — 2.’Ej8t, 7=1,..,n,

which satisfy the rmander condition. The homogeneous ndim )|

.= (|z|* 4 t2)/* is equivalent to the C-C metrit; i.e.c1d((z,t), (¢, 7)) <

1¢, 7)1 (2,8)] < e2d((2,),(¢, 7)) for all (z,t),(¢,7) € H" and for

somel < ¢; < co. The integel)) = 2n + 2 is the “dimension” ofH" and

|B((2,t),7)| = cr? for somec > 0 and for all(z,t) € H* andr > 0.
Consider the half spac® = {(z,y,t) € H" : z; > 0} for some

Jj = 1,...,n with boundaryo(? = {(z,y,t) € H" : z; = 0}. Actually, the

hyperplane&)(? is a subgroup off” and all its points are non characteristic.

If u = H>" L 0N thenu(B((2,t),7)) = mr@~! forsomem > 0 and forall

(z,t) € 012. Using the technique developed in this section it can be proved

that there exists a constafit> 0 such that{ < p < co ands = 1 — 1

p
u(z,t) — u(C,7)|P dp(z, t)du(C, T
[(C, )~ (2, t)petot

) S C/‘VH'rLU(Z?t”pdzdt
092%00 9
forallu € C1(2) N C(N2), whereVyn = (X1, ..., Xp, Y71, ..., Yy,).
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4 Trace theorem in the Grushin plane
4.1 Trace theorem

In this section we begin the study of the trace theorem when the bound-
ary contains characteristic points. We focus our attention on the Grushin
plane where we prove that the trace estimate holds for domains which are
sufficiently “flat” at characteristic points.

Let d be the C-C metric induced dk? by the vector fields

X1=0, and X,;= |x|a8y, a > 0.

If (z,y) € R* andr > 0 let B((z,y),r) = {(&n) € R? : d((x,y), (§,7))
< r}. Moreover, define the “box”

Box((z,y),7) =[x —r,x+r] x [y = r(lz| + )%y + r(lz] +7)7].

Such boxes are equivalent to C-C balls and the mdtdan be evaluated
rather explicitly. This is stated in the following Lemmas, whose proof is a
consequence of the results in [FL].

Lemma 4. There exist constants< ¢; < cp such that for all(z, y) € R?
andr >0

BOX((.T, y)v 017“) C B((l’,y),?“) C BOX((ZL’,y)7 CQT)' (27)
Lemma5. Let\ > 0. For all (z,y), (¢, ) € R? with |z| > [¢]

(e y) Em) = o — e+ i aett s Ay gl (28)

[

I o
d((z,y), (&m)) = |z =&+ |y —nl= i |2[*F <Ay —n,  (29)
where the equivalence constants depend.on

Definition 1. Let 2 ¢ R? be an open set witls2 of classC'. A point
(0,y0) € 012 is said to bex—admissibleq > 0, if one of the following two
conditions holds:

(i) (Non characteristic case). There exést- 0 andy) € C*(yg— 6, yo+0)
such that)(yo) = 0 and

9920 (=6,6) x (yo — 0,50+ 6) = {(¥(¥),9) : ly — wol, [ (y)| < 6}
(il) (Characteristic case). There exi§t> 0 andc > 0 such that
9020 (=6,8) x (yo — 6,50 +8) = {(z,p()) € R? : |z| < 5},
wherep € C1(—4,6) and|¢'(z)| < c|z|* for all z € (-4, ).
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Finally, 2 is said to bex—admissible if all the points ai{2 N {x = 0} are
a—admissible.

Let 2 C R? be an open set of clags' and letv(x, y) be the unit normal
to 012 at(z,y) € 92. Consider the modulus of the “projected” normal

X, y)| = ((Xi(e,9), v, ) + (Xa(z.y), v(w,9)?)

1

= (n(@.p)? +lal*va(w,y)?) ",

and define the measure= | Xv|H'L 912. The measurg is the one that
appears in the left hand side of the trace estimates.
In the sequel we shall use the equivalence

[ 1etede =111 maxiel (30)

for any intervall C R, where the equivalence constants depend only on
a > 0.

Lemma 6. Let {2 ¢ R? be a bounded open set with? of classC' and
suppose it isx—admissible Then there exist < m; < mo andrg > 0
such that

|B((2,y),7)|

i PN < (B, y),7) < g P20

(31)

forall (z,y) € 022 and forall0 < r < r,

Proof.Since away from the s¢tz = 0} we are essentially in a Euclidean sit-
uation it suffices to prove (31) far, y) € 92 belonging to a neighborhood
of ana—admissible point.

Suppose first thgD, 0) € 12 is ana—admissible point of type (i) (non
characteristic). In a neighborhood of the origif? is the graph of a function
Y € C1(—46,6)inthe variabley. If § > 0 andr > 0 are small, then the graph
of ¢ meetsoBox((¢(y),y),r) on its horizontal edges. This is ensured by
lv(y) —(y —r(|v(y)|+7)*)| < r, which holds true providegl andr are
small enough. Now

/
y)|+r)*

= W( )|+T)

and (4) gives the proof of the required estimate.
Suppose now thdb, 0) € 012 is ana—admissible point of type (ii). Let
¢ € CY(=6,9) be the function whose graph represeiif and such that

| 2

(Box( (i

IBOX((@ZJ(y), Yy),7)|
2r ’




Trace theorems for vector fields 765

| (z)| < ¢|z|™ for all |z| < § and for some: > 0. Then, ify = ¢(z) and
lz| <§/2

(@), N/ R oL
() = o and [Xu(e)] = ¥ T =

By Lemma4u(Box((x,y), c17r)) <p(B((z,y),7)) <p(Box((z,y), car)),
and, supposing for instan@e< z < §/2 and0 < r < 6/(2¢2)

x+car
/ Xt < [ Jelede
Box((z,y),c2r)NOS2 T—Ccar
[Box((z,y) ear)|
T

M(BOX((:E7 y)a 627)) =

< 2Ccor(z + cor)® ~

The estimate from above in (31) follows by Lemma 4. In order to prove
the opposite inequality assume without loss of generality that the constant
c relative toy is greater than and thatr > 0. Introduce the new box

Box((x,y),c1r) :== |z — gr, x+ “a,
c c

Xy —cr(z+ar)®y+ar(c+car)?]
C Box((x,y),c1r).

Since [p(xz + &r) — ¢(z)] < cr(x + i), the graph ofy meets
OBox((z,y), c1r) on its left and right vertical edges. Thus

u(B((z,y)), 7)) > pBox((z,y), c1r) = | Xv|dH!

o /Box((x,y),qr)r‘laﬂ
T+
> c/ €[ de ~ C Lz + Ly
o Cly c c

~ |BOX(('T’ y)7 617’)’
r

)

which is the required estimate. We also used (30). a

Theorem 4. Let X; = 0, and Xy = [2]|*0y, a > 0. Let]l < p < oo
ands = 1 — L. If 2 c R?is a bounded open set of claé8 which is
a—admissible, then there exigt > 0 anddy > 0 such that

/ lu(z) — uw(Q)|P du(z)dp(C) < C’/ | Xu(z,y)|P dedy
2

d(z, Q)P*u(B(z,d(,¢)))

0N2x002n{d(z,()<do}

forall u € C1(2) N C(N).
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Proof. Since away from the s¢tz = 0} we are essentially in the Euclidean
case, it suffices to prove the estimate in a neighborhood afadmissible
point which may assumed to be the origin. Denotédihe intersection of
012 with a small fixed neighborhood ¢, 0). Recalling that, by Lemma 6,
d(z, Q)P u(B(z,d(2,())) = d(z,C)* "} B(z,d(z.))|, we have to prove
that

o lu(z) —u(C)[P
Not) = [ e i)
< C/Q [ Xu(z,y)|” dzdy.

dyu(z)dp(C)

The a—admissible point can be of type (i) or of type (ii).

Type(i). We may assume that = {(¢¥(y),y) : |y| < 0} for some
§ > 0 andy € C*(-6,8) with 1»(0) = 0, and thatf? lies in the region
{z > Y(y)}. Write z = (¢(y),y) and{ = (¢(n),n), and notice that,
by the doubling property of the Lebesgue measure, which follows from
Lemma 4,|B(z,d(z,())| ~ |B(¢,d(z,¢))|. Thus the kernel is essentially
symmetric and the integration can be performed without loss of generality

on the sef{ | (n)| < [¢¥(y)|}

o u(z) —u(Q)P
Nptl) = /{|y<6 nl<6, [ <)y Az, OPFHB(z, d(z, C))’dydn

:/ |u(2) — u(C)[Pdydn +/ lu(2) — u(¢) |Pdydn
A d(za C)p8—1|B(27 d(Z’ ())‘ B d(Z, C)ps_lfB(Z, d(Z, C))|
i=1Ia+Ip,

where we let

A={(y,n) : lyl <6, Inl <6, [vm)| <@ vw)|* > |y —nl},
B={(y.n): [yl <& In| <6, [vm)| < [, [v@)|*T < |y —nl}.

We begin with the estimate df;. If (y,n) € A then

N B ly — |
d(z,¢) =~ [1(y) —¥(n)| + ()|

ly—nl o) =M\ _ ly—mnl
= e (L @I ) = i

and

|B(z,d(2,¢))| ~ d(z,)* (|(y)| + d(2,¢))" = d(z,¢)?[(y)|*.
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Without loss of generality assume> 7. Letn = y — h and write (recall
thatl + ps = p)

Ju(y (¥ (n),m” pa—a
Ty~ / ,y e ()P dyd

ﬁf; / u(b(y), ) — ulwoly — b,y — BPI () Pedy.

0 Alp)ott>nl, lyl<o}

We shall connect the point® (y),y) and(¢(y — h),y — h) by the curves
71(t) == exp(t(X1 — bX2)) (¥ (y), y)
t
= (4w +tu=b [ ) +717ar) = ),
whereb = min{1,1/L}, L := supy, s [¢'(y)|, and
Y2(t) : = exp(tX1)((y — h),y — h)
=Wy —h)+ty—h):=W(ty—h).
In order to reach the height— h, the curvey; needs a time; such that

t1
[t riear = B, (32)

By (30) the left hand side is greater thafit;|¢(y)|® and then
t1 < Clh|/|¥(y)|*. The timety such thatys(t2) = ~1(¢1) can also be
estimated byh| /| (y)|¢. Indeed

|l
[yl

The choice of the parametgguarantees tha; (¢) € (2 for all |y| < 0
and0 < ¢ < t;. In fact this happens if and only if

ta=[(y) +t1 — Yy —h)| < LIh|+t1 <C

w(y - b/ot [v(y) + T!adT) <P(y) +t. (33)

This last inequality is a consequence of the following

(=1 [ W)+ rivar) v < 20 [ ot +rivar <t

Since? (t1,y) = Ya(te,y — h) thenlu(y(y), y) —u((y —h),y — h)|
is less than

[u(@ (), y) = ul@i ()| + [u(ly = ),y = 1) = u(Pa(tz,y = h))]
<o [ xume i+ [ Xy - )
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and we find

26 t1
mecl[an [ wwree( [ xaneia)a

0 (=8,0)N{lp(y) [T >[R[} 0

26

/ [ e / Xutta(toy — 1)lar) d
0 —6,0)N{ [P (y)|*+1 >[R[}
o+ 1)

We shall estimatéﬁll) andlf) by the same technique and we begin with

IS). Letting in the inner integrat = |y (y)|“t, recalling thatty < C|h|/
| (y)|* and using the Minkowski inequality we find

26 " Clh|
p
W< o [ ot / X (/1 ()| v))ldr
0 (- 55)ﬁ{|¢(y)|°‘“>|h|}
26 C1h|

i XUl (r/ [0 )1 )Py 3,y
SO/W/( / S )

0 (=6)n{lb@)|*t'=|hl}

Since{|y(y)|*Tt > |h|} € {Clp(y)|*Ftt > 7} thelastintegralis estimated
by anintegral oftheforr]fo% <ﬁ foc‘h‘ \f(T)\dT)pdhwithfnotdepending
on h. So we can apply the Hardy inequality to get

26 Ie% p
% SC/ / \XU(%(T/W(?! 9) dy dr
0 J(=6.8)n{Cluy)et1>r} [U(y)l

4 Co
<c [ [ xui)ed
-6 J0

We let7/[¢(y)|* = t and we used /|y (y)|* < Cly(y)| < Cly| < C4.
The Jacobian matrix aoF; is
oW (y,1) _ ( 1 v'(y) )
dyot =ble(y) + ¢ 1= b(|v(y) + % = [L(y) )¢ (y) )
By the same argument used in the proof of (33) we can see that-if0

is small, then?; ((0, C8) x (—6,6)) C £2. Moreover|J¥y(t,y)| = |1 +
V' (y) [ (y)[*] ~ 1. Then

1) < ¢ [ [Xu(.y)Pdsdy
(%
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We estimate novslf). Note first that ifé > 0 is small and(y,n) € A,
we have

[ (y)| < 2[¢(n)]- (34)

IndeedL|y(y)|**! > Lly —nl > [v(y) — ()] > [ (y)| - [¥(n)l. and
thus|y(n)| > [¢(y)| — LIy (y)|**" > 1/2[¢(y)| if & > 0is small. Taking

(34) into account withy = y — h, recalling thatty < C|h|/|(y)|* <
C|h|/|¢(y — h)|* and lettingr = |¢(y — k)|t in the inner integral we find

thatlf) is smaller than
26

an iy
|h|P [V (y — h)|«
0 (Caa)n{Clu(a—h)e 1 (k)
clhl
/)Xu ') o )|a,y h))‘dr)
26 Clhl -
- / (@ / ( / ’X“(%W(y—hnaayh))lpdy>1/pd7>p
B |h| [Y(y — h)|®
0 0 (“aON{CRb -+ Al
7 oan 7 Xu((r/ )" ) \Y
u(Wa (/1Y (y)|*,y P
< — d dr) .
JGifC ] V) ) )’
0 0 (“359)N{Clb()lat1 > h))

Since{Cy(y)|* > |h|} € {Cl(y)|*Tt > 7}, we can apply the Hardy
inequality to get

20 o P
@ SC'/ / [ Xu(@(r/[¢¥(y)]* y)l dy dr
0 JsaniCz) [yl
C

gc[%A Xu(@(t, y)) Pt dy.

Since|J¥;(t,y)| = 1 the estimate foff) follows.
We now turn to the estimate dfz. Writing againz = (¢ (y),y) and

¢ = (¢(n),n), if (y,n) € Bthen

d(z,¢) =~ |Y(y) — ()| + |y — n|1/(a+1) ~ |y — 77‘1/(cv+1)

because) € C! and|y — n| < 26. Moreover starting from the inequality
lv(y)| < |y — 0|+ which definesB, we find

|B(2,d(z, Q)| = d(z, O)* (| (y)| +d(z, )

~ |y — 0D ()| + Jy — n|/ @Dy
~ |y _ n‘(a+2)/(a+1).
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Assumen < y, Ietn =y — h and write

lu(yp u(y(n),n)[?
Ip ~ 7 dydn
/ Iy n\”

dh
<c / T [ o)) = u(wty — by - wlPdy.
{p)leri<|hl, ly|<d}

The points(¢(y),y) and (¥ (y — h),y — h) can be connected by the

curvesy; (t) = exp(t(X1 — bX2))(¥(y),y) = Wi(t,y) andya(t) =
exp(tX1)(¥(y — h),y — h) = ¥a(t,y — h). In order to reach the height
y — h, the curvey; needs a time; such that (32) holds. By (30)

t1 J tl
+ 7% ~ ¢t max >t .
/0 @)+ et T 2 ( 2)

This yieldst; < C|h|"/(@+1), The timet, such thaty(t2) = 1 (¢1) can
also be estimated by.|'/(“+1). By the triangle inequality we get

26 0 t
dh ! P
1 <C/ — / Xu(Wi(t,y))|dt) d

26 dh ) to p
_a Xu(Wy(t,y + h))|dt) d
-/ W%/_d(/o Xu(@at.y + )it dy]

=iy + 1),
Now, by the Minkowski inequality

20 C|h|/ (et D) 5 Y
o [T _dh NENVIRY:
< ) i (] ([ xumeopar) )

25 Vet 4 Cr ) 1/p \p
<c / SO (] xuwpray) )
0 -

[Xu(¥ (t,y)) Pdtdy.
(0,(20)1/ (1)) x (~6,5)

We useds = 1 — 1/p, the change of variable = h'/(®+1) and the Hardy
inequality.

The estimate ofg) is analogous to the one ﬁf). This ends the trace
estimates forv—admissible points of type (i).

Type (ii). Write U = {(x,p(z)) € 002 : |z| < 0} for somep €
C1(-4,6) suchthaty'(z)| < c|z|* for somec > 0 and for allx € (-4, 9).
Write z = (z, ¢(z)), ¢ = (y, ¢(y)), and observe that

o [u(z) — QP lzy[*
Nip:d) = /|w<6,|y<6 d(z, ()P~ B(z,d(2, ()| trd
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Since the integrand is symmetric up to equivalence constants, the integration
may take place on the séfx| < |y| < d}. Since|¢’(y)| < c|ly|* we have

lo(y) — ()] < cly — 2| ly|* < 2¢|ly|*TL. Then on the mentioned set the
C-C metric behaves as

lp(y) — ()]

d(z,¢) = |y — x| +
|y|«

~ |y — x|.
By Lemma 4
|B(z,d(z, )| = |y = a* (2] + |y — ) = |y — = [y|*,

and, sincews — 1 = p — 2, we get

o [u(z, p(x)) = uly, e)I" [2|*
NpU) = /{|z<|y|<§} ly — x[P ey

By symmetry it suffices to consider the integration.én := {0 < =z <
y<dtandAy :={z >0, -0 <y < —=z}. Seth =y — x and write

— p «
b= e p(w) =y eGP el
O<z<y<6} |y - x|p

u(x ) —u(x + h,p(x + h))]P|z|* de.
< [0 [ o) e+t 4 )P
We shall connect the points, ¢(x)) and(z + h, p(z) + h) by the paths

71(t) := exp(t(bXy +X2))( ()
= <g; + bt, p(x / |z + bT\adT> = & (z, 1),

for0 < ¢t < t; := |h|/b (hereb € (0,1) is a fixed number such that
20t1lch < 1), and

Y2(t) : = exp(t(X2))(z + h, o(z + h))
= (z+ h,o(x+ h) + (x + h)*t) := Po(x + h,t).

If t = t1,~, reaches the height(z) f'hl/b x+b7)dTr. Thus the curvey,

needs the timé, = (Hh =lo(x) —p(x+h) +f|h|/b (z 4+ br)*dr| to reach

the same height. The hypothesispand (30) give the estimate < C/|h|.
The choice ofb ensures that; (t) € (2 for all t € (0,¢]. In fact this
amounts to

oz +bt) < p(z /|a:+b7'|o‘d7'
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In view of |p(z + bt) — (x)| < cbt(z + bt)* and [ (z + br)*dr

ft/Q({L’—i-bT)adT > t/2(x+bt/2)“ the inequality is implied byb(z+bt)*
1/2(x + bt/2)* which holds true i2*1ch < 1.
By the triangle inequality

Clhl
I <C /0 |h|p/ / Xu(@ (2. 0)] i) Jaf e +

/0 ‘h‘p/ /Ch | Xu(Po(x + h, t))\dt> !x\adx}

=c) +17)).

>
<

Now, by Minkowski and Hardy

I}j}_/ (ﬁl' /Ch(/05\Xu(gzsl(x,t))\pyxadx)l/pdt)pdh

<C | Xu(P1(x,t))|P|z|*dxdt < C'/ | Xu(z,y)P dedy.
(0,6)%(0,6) 0

The last inequality follows from the fact thatdf > 0 is small then®; is
one-to-one®,((0,0) x (0,d)) C 2 and

01 (z,t) ! ’
T otor (w’(x) + H(z 4+ bt) — 2°] (z + bt)a) '

Thus[J®: (z,t)| = [2% = by/(x)| = [x|* —blg'(x)] = (1 = be)lz|* >
(1 — 2~ (@+1)|z|*, and the estimate fdrj(élll) follows.
Analogously, recalling that, < C|h| and|z| < |z + h|

)

2 g/od (% /CW / Xu(@s(a -+ b, 1))Plo+ bl de) v "at)" an
g/; (’; /Ocm (/0 [ Xu(@s (e, t) || dz) /pdt>pdh

<C | Xu(Pa(x,t))|P|z|*dzdt.
(0,26)%(0,0)
Since|J®y(x,t)| = |z|*, the change of variablg, 7) = $2(x, t) ends the
estimate forl @ )

The mtegral onthe sefy = {0 <z < 4,—6 <y < —z} canbe treated
in the same way of 4,, lettingy = = + h and using the curves

71(t) = exp(t(—bX1 + X)) (z, p(2)),
Yo(t) = exp(tX2)(x + h, p(z + h)).
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4.2 Analysis of a counterexample

The hypothesis ofv—admissibility for the domain? in Theorem 4 is
necessary. More precisely, there exist domains of ofasghat are not
a—admissible for which the trace estimate (4) fails.

Leta > 0, fix 5 € (0, + 1) and consider the domain

Q={(z,y) eR?: |z|’ <y < 1}.

Except that at the point&t1, 1) the boundangs? is of classC'. These
points are not important, problems stem from the boundary point)
which is nota—admissible.

We shall consider the cage= 2. As usual writez = (x,y) and{ =

(& n).

Proposition 1. Leta > 0 andg € (0, « + 1). There existy > 0 such that
the functionu(z, y) = y~7 satisfies

I ::/ | Xu|? dedy < 400
7

and

|u(z) — u(Q)]?
a0xa0 Az, Qu(B(z,d(2,()))
Proof. We compute firsf. Indeed

N = dp(z)dp(C) = +oo.

1 yl/p8
I :72/ y_2”’_2(/ || 2 daj)dy
0 —yl//8

1
_ 2 / 22204 1)/8 g
20[ + ]. 0 ’

and
20+ 1—
I<+400 & —2y—2+2a+1)/8> -1 & 7<W. (35)

Now we shall estimateN but first some remarks od(z,¢) and
w(B(z,d(z,¢))) are in order. Let: = (z,2%) € 02 with 0 < =z < 1
and letr > 0. Assume that

r> 2B/ (e+1) (36)

From (36) it follows thatr® < r®*! < r(z 4 r)* and thuse® — r(x +
r)®* < 0. This means that

Box(z,r) N{y < 0} # 0, (37)
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i.e. the boxBox(z, r) meets the lower half plane.
Analogously, since? < a + 1 we findz < zf/(et1) < 4 and thus
z — r < 0. This means that

Box(z,7) N {z <0} #0, (38)

i.e. the boxBox(z, r) meets the left half plane.

We now claim that, for- andz sufficiently small the right parf(z, t°) :
0 < t < 1} of the boundary of? meetsoBox(z, r) at its upper horizontal
edge. This is equivalent to show that + r)® > 27 + r(x 4 r)®, which
holds because

(z+7)P =P >Cr(x+r) 1 >r(@4r)

for z,r < o9, Wwhereoy is a suitable constant (we have used o + 1).
We also note that the-coordinate of the intersection poifitt, t%) : 0 <
t <1} NdBox(z,r)is (z? + r(x 4+ r)*)"/#. Then from (37) and (38)

p(Box(z, 7)) = p(Box(z,r) N {(§,n) : £ > 0})
/(zﬁ—f—r(x—i-r)"‘)l/ﬁ

~

€171 dg ~ 2P (2 + )%
0

Sincer < x +r < 2r thenz +r ~ r andu(Box(z, 7)) ~ 28 +ro+1, But
rotlt < gf 4 patl < 2patl and this proves that if (36) holds then

p(Box(z, 7)) ~ rotL, (39)

We shall now briefly discus#(z, ¢) wherez = (z,2°%) and¢ = (¢, £9).
Assume that < = < £ and that

et <ef ol (40)
From (29)
d(z,¢) ~ (€ — x) + (&7 — 2PV (oD,
and using the equivalen¢é — 2 ~ (¢ — z)¢°~! we get

d(z,() ~ (£ — x)l/(a+1)((5 _ $)a/(a+1) i 5(5-1)/(%1))

~ (& — g)Y/ e+ g(B-D)/(at1) (“41)

In the last equivalence we used aggir. o + 1.
Recalling (36) and (40) we define

D={(20€dNxdN:0<z<E<ag, T <ef 4P,
oo > d(va) > lﬁ/(a-f-l)}_
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Then, by (39) and Lemma 4

( |2 Iu
N > / Al ddu / a+2 ddu—

By (41) there is a positive constahit> 0 such that

_ B—1 1/(a+1)
e (2

and thus{(z,¢) € 02 x 902 : 0 < x < £ < g, £2TL < &8 — 28 (€ -
2)€P~1 > k2P ¢ D. Then, letting

E={(z,6):0<z <&<ag, &7 <e? —aP, (¢ —2)e1 > kaP).

we have

=By _ B2 B-1
— z)1/( a+1)§(ﬁ71)/(a+1))a+

(€87 — B2
~ / 5 dzdg,
g 20r=FH1ge(eB) (¢ — g)(at2)/(at])

wherep(a, 3,7) =28y — B+ 1+ (a+2)(8—1)/(a+1).

In order to separate the integration variables we perform in the last in-
tegral the change of variable = £t. The integration domai changes
in the following way. The relatioh < z < £ < gy gives0 < ¢t < 1, the
relation (¢ — )&%~ > kx” gives(1 — t) > kt”, and finally the relation
gatl < ¢ — 2P givest? < 1 4 ¢*=F+1 which is implied by the first
one. This shows that in the new integral we may integrate on the square
{(t,€) : 0 < t,& < d} whered > 0 is a small but positive constant. Thus
we find

M > d< ’ (1= ¢7) dt
= Jo €e@Bm—Btr2)/(at]) [ 2By=B+1(1 — ¢)(@t2)/(ar])

If (v, B,7) == (e, B,7)—B+(a+2)/(a+1) > 1thenM = +o0, which
implies N = +o00. Now, ¥ (v, 8,7) = 208y — 26+ B(a+2)/(a+1) + 1,
and hence)(a, 8,v) > 1ifand only if y > «/(2a + 2). Finally

(0}

> > N = +oo. 42
T %ar1) oo (42)

Notice that if 3 € (0,« + 1) then

« <2a—|—1—ﬁ
2(a+1) 26
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and we can therefore choose

7 [2(051 1)’ = J;;_ﬁ>‘

The interval becomes empty wh@n= a+1, i.e. exactly when the domain
becomes—admissible. With such a choide< +oo by (35) andV = 400

by (42). O
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