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Abstract. In a four dimensional sub-Riemannian structure, we study a specific

family of abnormal extremals and we show that they are not length minimizing,

answering in the negative to a question that was recently asked. We extend the

result to a class of 4-dimensional sub-Riemannian manifolds of step 5.

1. Introduction

One of the main open problems in sub-Riemannian geometry is the regularity of

length minimizing curves. Minimizers may be abnormal extremals, in the language of

Geometric Control Theory, and R. Montgomery showed in [5] an example of abnormal

extremal that is length minimizing. Liu and Sussmann proved later that the existence

of length minimizing abnormal extremals is typical of rank 2 distributions [3].

All known examples of length minimizing curves are smooth. On the other hand,

there is no regularity theory of a general character for sub-Riemannian “geodesics”,

apart from the partial results of [2] and [6].

During the meeting Geometric control and sub-Riemannian geometry held in Cor-

tona in May 2012, A. Agrachev and J. P. Gauthier suggested the following situation,

in order to find a nonsmooth length-minimizing curve.

Consider in R4 the vector fields

(1.1) X1 =
∂

∂x1
+ 2x2

∂

∂x3
+ x23

∂

∂x4
, X2 =

∂

∂x2
− 2x1

∂

∂x3
,

and denote by D the distribution of 2-planes in R4 spanned pointwise by X1 and X2:

(1.2) D(x) = span{X1(x), X2(x)}, x ∈ R4.

A Lipschitz curve γ : [0, 1] → R4 is horizontal if γ̇(t) ∈ D(γ(t)) for a.e. t ∈ [0, 1].

Namely, γ is horizontal if there exist two functions h1, h1 ∈ L∞(0, 1) such that

(1.3) γ̇ = h1X1(γ) + h2X2(γ) a.e. on [0, 1].

The length of γ is then defined as

(1.4) L(γ) =

∫ 1

0

gγ(γ̇, γ̇)1/2dt,

where gx is a metric on D(x), x ∈ R4.
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Fix a parameter α > 0 and consider the initial and final points L = (−1, α, 0, 0) ∈
R4 and R = (1, α, 0, 0) ∈ R4. Let γ̄ : [−1, 1]→ R4 be the curve

(1.5) γ̄1(t) = t, γ̄2(t) = α|t|, γ̄3(t) = 0, γ̄4(t) = 0, t ∈ [−1, 1].

The curve γ̄ is horizontal and joins L to R. Moreover, it can be easily checked that

γ̄ is an abnormal extremal in the sense of Geometric Control Theory. The question

is whether the curve γ̄ is length minimizing or not, especially for small α > 0.

The interest of this question arises from the following consideration. Let M be an

n-dimensional smooth manifold with n ≥ 3, and let D be a completely nonintegrable

(i.e., bracket generating) distribution on M . Let D1 = D and Di = [D1,Di−1], i.e.,

Di is the linear span of all commutators [D1,Di−1]. We let L0 = {0} and Li =

D1 + . . . + Di, i ≥ 1. By the nonintegrability condition, for any p ∈ M there exists

r ∈ N such that Lr(p) = TpM , the tangent space of M at p. Assume that D is

equiregular, i.e., assume that for each i = 1, . . . , r

(1.6) dim
(
Li(p)/Li−1(p)

)
is constant for p ∈M .

In [2], Leonardi and the author proved the following theorem.

Theorem 1.1. Let (M,D, g) be a sub-Riemannian manifold, where g is a metric on

D, that satisfies (1.6) and

(1.7) [Li,Lj] ⊂ Li+j−1, i, j ≥ 2, i+ j > 4.

Then any curve in M with a corner is not length minimizing in (M,D, g).

A “curve with a corner” is a D-horizontal curve γ : [0, 1] → M such that at some

point t ∈ (0, 1) the left and right derivatives γ̇L(t) 6= γ̇R(t) exist, are different and

nonzero.

In view of Theorem 1.1, it is natural to look for a nonsmooth length minimizing

curve in a sub-Riemannian manifold violating (1.7). The step r associated with

(M,D) has to be at least 5, because condition (1.7) is automatically satisfied if r ≤ 4.

A first attempt could be to consider the free Carnot group of step 5 and rank 2. This

structure is diffeomorphic to R8 and, by the results in [1], all abnormal extremals are

in principle computable.

If we drop the equiregularity condition (1.6), however, the search for structures

violating (1.7) is easier. The manifold M = R4 with the distribution D spanned by

the vector fields (1.1) is one such example.

For n ∈ N, we define the set of multi-indexes In = {1, 2}n =
{

(β1, . . . , βn) ∈ Nn :

β1, . . . , βn = 1, 2
}

and, for any β ∈ In, we let

(1.8) Xβ = [Xβ1 , [. . . , [Xβn−1 , Xβn ] . . .]].

We define the length of the commutator Xβ as len(Xβ) = n if and only if β ∈ In.
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For any β ∈ I3 ∪ I4, we have Xβ(0) = 0. On the other hand, when β ∈ I5 we have

the following situation:

1

16
Xβ =

∂

∂x4
, when β = (1, 1, 2, 2, 1) or β = (1, 2, 1, 2, 1)

1

32
Xβ = − ∂

∂x4
, when β = (2, 1, 1, 2, 1)

Xβ = 0 otherwise.

(1.9)

In particular, there holds

1

48
[[X2, X1], [[X2, X1], X1]] =

∂

∂x4
,

and thus (1.7) is violated with i = 2 and j = 3.

We show that the curve γ̄ in (1.5) is not length minimizing for any small α, thus

answering in the negative to the question raised by Agrachev and Gauthier. Namely,

we prove the following

Theorem 1.2. For any α > 0 with α 6= 1, the curve γ̄ in (1.5) is not length mini-

mizing in (R4,D, g), for any choice of metric g on D.

The proof of the theorem is constructive. For α 6= 1, we construct a horizontal

curve joining the left and right end-points L and R that is strictly shorter than γ̄.

When α = 1 the construction does not work and our shorter curves for α 6= 1

converge to the curve γ̄ as α → 1 (see Remark 3.1). The problem of establishing

whether γ̄ for α = 1 is length minimizing or not is open.

In the second part of the paper, we extend Theorem 1.2 to 4-dimensional sub-

Riemannian manifolds having at the corner point of the involved curve the same

infinitesimal structure as (R4,D).

Let M be a 4-dimensional smooth manifold and let D ⊂ TM be a distribution

of 2-planes on M . Locally, we have D = span{Y1, Y2}, where Y1 and Y2 are linearly

independent smooth vector fields on M . We denote by L2 = span{Yi, [Yj, Yk] : i, j, k =

1, 2} the pointwise linear span of D and of the brackets of D.

Fix a point p ∈M . We make the following three assumptions:

(H1) The vector fields

(1.10) Y1, Y2, Y3 =
1

4
[Y2, Y1], and Y4 =

1

16
[Y1, [Y1, [Y2, [Y2, Y1]]]]

are linearly independent at the point p.

(H2) For all β ∈ I3 ∪ I4, we have

(1.11) Yβ(p) = 0 mod L2(p),

where L2(p) = {Y (p) : Y ∈ L2}.
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(H3) For all β ∈ I5 with β = (∗, ∗, ∗, 2, 1), we have

Yβ(p) = 16Y4(p) mod L2(p), for β = (1, 2, 1, 2, 1) or β = (1, 1, 2, 2, 1),

Yβ(p) = −32Y4(p) mod L2(p), for β = (2, 1, 1, 2, 1), and

Yβ(p) = 0 mod L2(p) otherwise.

(1.12)

Finally, let g be a metric on D making the vector fields Y1 and Y2 orthogonal at p,

(1.13) gp(Y1, Y2) = 0.

In Section 5, we prove the following result. Below, we denote by γ̇L(t) and γ̇R(t)

the left and right derivative of a curve γ : [0, 1] → M at the point t ∈ (0, 1). The

curve γ has a corner at the point p = γ(t), if the left and right derivatives at t exist,

do not vanish, and γ̇L(t) 6= γ̇R(t).

Theorem 1.3. Let (M,D, g) be 4-dimensional sub-Riemannian manifold satisfying

(H1)-(H3) and (1.13) at the point p ∈M . Let γ : [0, 1]→M be a horizontal curve in

(M,D) having a corner at the point p = γ(t), t ∈ (0, 1), such that gp(γ̇L(t), γ̇R(t)) 6= 0.

Then γ is not length minimizing.

The proof of Theorem 1.3 relies upon a blow-up argument reducing the situation

to the one of Theorem 1.2. Theorem 1.3 is proved in Section 5 and the preliminary

nilpotent approximation is explained in Section 4. In Section 2, we set up the con-

struction of the shorter curve used to prove Theorem 1.2. In Section 3, we solve a

system of end-point equations, concluding the proof of Theorem 1.2.

We thank D. Vittone for his careful reading of an early version of this paper. We

also thank the referee for suggesting to us possible extensions of Theorem 1.2.

2. Construction of the competing curve

In this section, we construct the competing curve used to prove Theorem 1.2. In

a first step, we cut the corner of γ̄ at t = 0 in the x1x2-plane. Lifting the new

curve in R2 to a horizontal curve in R4 produces an error on the third and fourth

coordinates of the final point. To restore the final point, we use two devices. We

describe the intuition behind the construction. The vector fields X1 and X2 in (1.1)

have a Heisenberg group structure in the x1x2x3 space. Thus, to restore the third

coordinate we have to add an “area” in the x1x2-plane equaling the “area” cut at

the corner. We do this by means of a “rectangle” having basis of fixed length and

variable height ε1, the first parameter.

Restoring the fourth coordinate is more delicate. This is due to the fact that the

coefficient of ∂/∂x4 of X1 in (1.1), the power x21, is always non negative. This means

that the cut produces a positive error, see (2.7). To correct it, the perturbation of

γ̄ must contain arcs where the first coordinate is decreasing. To do this, we add a

square with side length ε2, the second parameter, at the final point R in the x1x2
plane.
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Our goal is to prove that the final end-point can be adjusted via this construction.

Technically, this means that we have to find solutions ε1, ε2 to a system of two equa-

tions depending on the cut parameter. Moreover, we need to check that the cost of

length of “rectangle” and square does not exceed the gain of length of the cut. This

will be done in Section 3.

We begin the construction of the shorter curve.

2.1. Cut. Fix a cut-parameter 0 < η < 1/4, and let

Tη =
{

(x1, x2) ∈ R2 : α|x1| < x2 < αη
}
.

The curve γ̄ is deviated along the cut, i.e., along the side of the triangle Tη parallel

to the x1-axis. In other words, we cut the corner. The cut produces an error on the

final point, namely on the third and fourth coordinates. To correct these errors we

use two devices, a “rectangle” and a square.

2.2. Rectangle. We deviate γ̄ along a “rectangle” put along γ̄. The length of the

basis is fixed. The height is a variable parameter. Namely, for ε1 > 0 we let

Rε1 =
{

(x1, x2) ∈ R2 :
1

4
< x1 <

1

2
, αx1 < x2 < αx1 + ε1

}
.

The curve γ̄ is deviated following clockwise three sides of the rectangle. When ε1 < 0

the construction is analogous, but the rectangle is below the curve and we follow its

boundary counterclockwise.

2.3. Square. Next we use a square with bottom-left vertex at R, the final point.

Namely, for any ε2 ∈ R we let:

Qε2 =
{

(x1, x2) ∈ R2 : 1 < x1 < 1 + |ε2|, α < x2 < α + |ε2|
}
.

When ε2 > 0 we follow the boundary of the square clockwise. When ε2 < 0 we follow

the boundary counterclockwise.

The devices Rε1 and Qε2 produce effects in the coordinates 3 and 4 of γ̄ after the

cut. We call γ : [−1, 1] → R4 the curve obtained after using Tη, Rε1 , and Qε2 . To

construct the coordinate γ3, we use the formula

(2.1) γ3(t) = 2

∫ t

−1
(γ2γ̇1 − γ1γ̇2)ds, t ∈ [0, 1].

To construct γ4, we use the formula

(2.2) γ4(t) =

∫ t

−1
γ̇1γ

2
3 ds, t ∈ [0, 1].

On suitable subintervals, we shall use different parameterizations for γ.

We construct step by step the horizontal lift of γ.
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2.4. Effect of Tη. We parameterize on the interval [−η, η] the piece of γ that is on

the horizontal part of ∂Tη. We have, by (2.1),

γ3(t) =

∫ t

−η
2αηds = 2αη(t+ η), t ∈ [−η, η].

The final value of γ3 is γ3(η) = 4αη2. The final value of γ4 is, by (2.2),

γ4(η) =

∫ η

−η
4α2η2(t+ η)2dt =

32

3
α2η5.

2.5. First segment. Now we have to follow for a time t ∈ [η, 1/4] the piece of

the original curve γ̄ connecting the cut to the rectangle Rε1 . Here γ3 is constant:

γ3 ≡ 4αη2. The final value of γ4 is

γ4(1/4) =
32

3
α2η5 +

∫ 1/4

η

16α2η4 dt = 16α2η4
(1

4
− η

3

)
.

2.6. Rectangle. 1st side. We compute γ3 along the first vertical side {(1/4, α/4 +

t) ∈ R2 : t ∈ [0, ε1]
}

of Rε1 :

γ3(t) = 4αη2 − t

2
, t ∈ [0, ε1].

The final value is γ3(ε1) = 4αη2 − ε1
2

. This value is correct also when ε1 < 0. Along

this piece of curve, γ4 stays constant because γ̇1 = 0.

2nd side. Along the second side of the rectangle we have

γ1(t) =
1

4
+ t, γ2(t) =

α

4
+ ε1 + αt, t ∈ [0, 1/4].

Then the third coordinate is

γ3(t) = 4αη2 − ε1
2

+ 2ε1t, t ∈ [0, 1/4],

γ3(1/4) = 4αη2.

The final value of γ4 at the end of this side is

γ4(1/4) = 16α2η4
(1

4
− η

3

)
+

∫ 1/4

0

(
4αη2 − ε1

2
+ 2ε1t

)2
dt

= 16α2η4
(1

4
− η

3

)
+ 4α2η4 − 1

2
αη2ε1 +

1

48
ε21

= %.

(2.3)

This is the final value of γ4 after the rectangle Rε1 . The number % is defined via the

last identity in (2.3).

3rd side. We compute γ3 along the second vertical side {(1/2, α/2 + t) ∈ R2 : t ∈
[0, ε1]

}
of the rectangle Rε1 . We have to follow −X2 and we get

γ3(t) = 4αη2 + t, t ∈ [0, ε1],

γ3(ε1) = 4αη2 + ε1.
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Here, γ4 is constant because γ̇1 = 0 on this side of the rectangle.

2.7. Second diagonal segment. Now we have to follow for a time t ∈ [1/2, 1] the

piece of the original curve γ̄ connecting Rε1 to the final point R. Here γ3 is constant:

γ3 ≡ 4αη2 + ε1. We call ∆0(ε1; η) the final value of γ4 before the square Qε2 , and

namely (recall the definition of % in (2.3)),

∆0(ε1; η) = %+
1

2
(4αη2 + ε1)

2

= 16α2η4
(

1− η

3

)
+

7

2
αη2ε1 +

25

48
ε21.

(2.4)

2.8. Square. Case ε2 > 0. We compute the effect on the third and fourth coordi-

nates of the square Qε2 . Here, we do the computations for the case ε2 > 0. In this

case, we follow the boundary ∂Qε2 clockwise.

1st vertical side. We follow the segment {(1, α + t) ∈ R2 : t ∈ [0, ε2]
}

. The

coordinate γ3 is

γ3(t) = 4αη2 + ε1 − 2t, t ∈ [0, ε2],

γ3(ε2) = 4αη2 + ε1 − 2ε2.

The coordinate γ4 stays constant along this side, γ4 ≡ ∆0(ε1; η).

2nd (horizontal) side. We follow the line segment
{

(1 + t, α + ε2) ∈ R2 : t ∈
[0, ε2]

}
. The coordinate γ3 is

γ3(t) = 4αη2 + ε1 − 2ε2 + 2(α + ε2)t, t ∈ [0, ε2]

γ3(ε2) = 4αη2 + ε1 − 2ε2 + 2(α + ε2)ε2.

Here, there is an important contribution to the fourth coordinate:

γ4(ε2) = ∆0(ε1; η) +

∫ ε2

0

(
4αη2 + ε1 − 2ε2 + 2(α + ε2)t

)2
dt

= ∆0(ε1; η) + (4αη2 + ε1 − 2ε2)
2ε2

+ 2(4αη2 + ε1 − 2ε2)(α + ε2)ε
2
2 +

4

3
(α + ε2)

2ε32

= ∆1(ε2, ε2; η).

Above, ∆1(ε2, ε2; η) is defined via the last identity.

3rd (vertical) side. We have to follow the vertical side
{

(1 + ε2, α+ t) ∈ R2 : t ∈
[0, ε2]

}
along the vector field −X2. The final coordinate γ3 is:

γ3(ε2) = 4αη2 + ε1 + 2αε2 + 4ε22.

The coordinate γ4 does not change.
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4th (horizontal) side. We have to follow the horizontal side
{

(1 + t, α) ∈ R2 :

t ∈ [0, ε2]
}

along the vector field −X1. The coordinate γ3 is :

γ3(t) = 4αη2 + ε1 + 2αε2 + 4ε22 − 2αt, t ∈ [0, ε2]

γ3(ε2) = 4αη2 + ε1 + 4ε22.

This is the final value of γ3 after the entire construction, when ε2 > 0. When ε2 < 0

we have to replace ε22 above with sgn(ε2)|ε2|2. There is a change of sign. We call

Γ3(ε1, ε2; η) the final value of γ3 after the entire construction, and namely,

(2.5) Γ3(ε1, ε2; η) = 4αη2 + ε1 + 4sgn(ε2)|ε2|2.

The final value of γ4 is:

γ4(ε2) = ∆1(ε2, ε2; η)−
∫ ε2

0

(
4αη2 + ε1 + 2αε2 + 4ε22 − 2αt

)2
dt

= ∆1(ε2, ε2; η)−
[
(4αη2 + ε1 + 4ε22)

2ε2 + 2(4αη2 + ε1 + 4ε22)αε
2
2 +

4

3
α2ε32

]
= ∆0(ε1; η) + 4ε22(1 + 2ε2)

[
ε2(1− 2ε2)− 4αη2 − ε1

]
+ 2ε32

[
4αη2 + ε1 − 2(α + ε2)− 4αε2

]
+

4

3
ε42(2α + ε2).

Recalling (2.4), we let for ε2 > 0

Γ4(ε1, ε2; η) = 16α2η4
(

1− η

3

)
+

7

2
αη2ε1 +

25

48
ε21

+ 4ε22(1 + 2ε2)
[
ε2(1− 2ε2)− 4αη2 − ε1

]
+ 2ε32

[
4αη2 + ε1 − 2(α + ε2)− 4αε2

]
+

4

3
ε42(2α + ε2).

(2.6)

2.9. Square. Case ε2 < 0. We compute the effect of the square Qε2 on the fourth

coordinate when ε2 < 0. In this case, we follow ∂Qε2 counterclockwise.

1st horizontal side. We follow the segment {(1 + t, α) ∈ R2 : t ∈ [0, |ε2|]
}

. The

coordinate γ3 is

γ3(t) = 4αη2 + ε1 + 2αt, t ∈ [0, |ε2|],
γ3(|ε2|) = 4αη2 + ε1 + 2α|ε2|.

The final value of the coordinate γ4 is

γ4(|ε2|) = ∆0(ε1; η) +

∫ |ε2|
0

(
4αη2 + ε1 + 2αt

)2
dt

= ∆0(ε1; η) + |ε2|(4αη2 + ε1)
2 + 2α|ε2|2(4αη2 + ε1) +

4

3
α2|ε2|3

= ∆1(ε1, ε2; η).

Here, ∆1(ε1, ε2) for ε2 < 0 is defined via the last identity.
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2nd (vertical) side. We follow the line segment
{

(1+|ε2|, α+t) ∈ R2 : t ∈ [0, |ε2|]
}

.

The coordinate γ3 is

γ3(t) = 4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)t, t ∈ [0, |ε2|]
γ3(|ε2|) = 4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)|ε2|.

The fourth coordinate does not change.

3rd (horizontal) side. We have to follow the horizontal side
{

(1 + t, α + |ε2|) ∈
R2 : t ∈ [0, |ε2|]

}
along the vector field −X1. The coordinate γ3 is:

γ3(t) = 4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)|ε2| − 2(α + |ε2|)t,
γ3(|ε2|) = 4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)|ε2| − 2(α + |ε2|)|ε2|,

The final value of the coordinate γ4 is

γ4(|ε2|) = ∆1(ε1, ε2; η)−
∫ |ε2|
0

(
4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)|ε2| − 2(α + |ε2|)t

)2
dt

= ∆1(ε1, ε2; η)− |ε2|
(

4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)|ε2|
)2

+ 2(α + |ε2|)|ε2|2
(

4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)|ε2|
)
− 4

3
(α + |ε2|)2|ε2|3.

This is the final value of γ4 after the entire construction when ε2 < 0. Then for ε2 < 0

we let:

Γ4(ε1, ε2; η) = 16α2η4
(

1− η

3

)
+

7

2
αη2ε1 +

25

48
ε21

+ |ε2|(4αη2 + ε1)
2 + 2α|ε2|2(4αη2 + ε1) +

4

3
α2|ε2|3

− |ε2|
(

4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)|ε2|
)2

+ 2(α + |ε2|)|ε2|2
(

4αη2 + ε1 + 2α|ε2| − 2(1 + |ε2|)|ε2|
)

− 4

3
(α + |ε2|)2|ε2|3.

(2.7)

3. Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. We show that the system of

end-point equations has a solution, and we prove that, for a small η > 0, this solution

provides a curve that is shorter than γ̄.

To correct the coordinates γ3 and γ4, we have to find solutions ε1 and ε2, depending

on the (small) parameter η > 0, to the following system of equations

(3.1)

{
Γ3(ε1, ε2; η) = 0

Γ4(ε1, ε2; η) = 0.

Here, Γ4(ε1, ε2; η) is defined in (2.6) and (2.7), for ε2 > 0 and ε2 < 0, respectively.

By (2.5), the first equation Γ3(ε1, ε2; η) = 0 is

(3.2) 4αη2 + ε1 + 4sgn(ε2)|ε2|2 = 0.



10 ROBERTO MONTI

We compute ε1 using equation (3.2) and replace this value into the second equation

Γ4(ε1, ε2; η) = 0.

3.1. Case α > 1. In this case, we look for a solution ε2 > 0 and we use formula (2.6)

for Γ4(ε1, ε2; η). Letting ε2 = σ > 0, we obtain the following equation in σ

1

3

(
31α2η4 − 16α2η5 + 8αη2σ2 + 25σ4

)
+

+4σ3
(
1− α + σ(3− 2α) + 2σ2

)
+

4

3
σ4(2α + σ) = 0.

(3.3)

When α > 1 equation (3.3) reads

(3.4) φ(σ) = α2η4(31− 16η) + 8αη2σ2 + 12(1− α)σ3 + o(σ3) = 0,

where o(σ3) contains terms with σ4 and σ5. Notice that the coefficient of σ3 is

negative, because α > 1. The function φ introduced in (3.4) is continuous, and

moreover

φ(0) = α2η4(31− 16η) > 0,

as soon as η < 31/16. In fact, we have η < 1/4. On the other hand, we have

φ
(
C

3

√
α2

α− 1
η4/3

)
= α2η4(31− 12C3) + o(η4) < 0,

provided that we choose a constant C such that 12C3 > 31 and η > 0 is small enough.

By the theorem of zeros for continuous functions, for any η > 0 that is small

enough, equation (3.4) has a solution ε2 = σ > 0 such that

(3.5) ε2 = σ ≤ C
3

√
α2

α− 1
η4/3.

Moreover, by (3.2),

ε1 = −4αη2 − 4sgn(ε2)|ε2|2 = −4αη2 − 4ε22.

In particular, ε1 is asymptotic to −4αη2, for small η > 0, and thus we have

(3.6) |ε1| ≤ 5αη2,

for all η > 0 that are sufficiently small.

3.2. Case 0 < α < 1. In this case, we look for solutions ε1, ε2 to the system (3.1)

such that ε2 < 0. The unknown ε1 is determined by (3.2). We use formula (2.7) for
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Γ4(ε1, ε2; η). Letting σ = |ε2| > 0, equation Γ4(ε1, ε2; η) = 0 reads

16α2η4
(

1− η

3

)
+ 14αη2(σ2 − αη2) +

25

3
(σ2 − αη2)2

+ 16σ5 + 8ασ4 +
4

3
α2σ3

− 4σ3(σ + α− 1)2

+ 4(α + σ)σ3(σ + α− 1)

− 4

3
(α + σ)2σ3 = 0.

(3.7)

We may shorten equation (3.7) in the following way:

(3.8) α2η4(31− 16η)− 8αη2σ2 + 12(α− 1)σ3 + o(σ3) = 0.

Compare equations (3.8) and (3.4). Notice that the coefficient of σ3 in (3.8) is nega-

tive. The same argument used in the case α > 1 proves that there exists a solution

|ε2| = σ to equation (3.8) such that

(3.9) 0 < |ε2| = σ ≤ C
3

√
α2

1− α
η4/3,

where C is the same constant as in the case α > 1. As above, we deduce that

(3.10) |ε1| ≤ 5αη2.

3.3. Gain of length. We compute the difference between the length of the original

curve γ̄ and the curve γ obtained after applying the cut Tη, the “rectangle” Rε1 , and

the square Qε2

Without loss of generality, we can assume that the metric g on D is the one making

X1 and X1 orthonormal. In this case, the length L(γ) of a horizontal curve γ as in

(1.4) is

(3.11) L(γ) =

∫ 1

0

|h(t)|dt, h = (h1, h2).

By (3.11), the gain of length G(η) obtained through the cut Tη is

(3.12) G(η) = 2η(
√

1 + α2 − 1).

By (3.6) and (3.9), the cost of length CR(ε1) of the correction made through the

“rectangle” Rε1 is

CR(ε1) = 2|ε1| ≤ 10αη2.

By (3.5) and (3.9), the cost of length CQ(ε2) of the correction made through the

square Qε2 is

CQ(ε2) = 4|ε2| ≤ 4C
3

√
α2

α− 1
η4/3.

We conclude that

G(η)− CR(ε1)− CQ(ε2) ≥ 2η(
√

1 + α2 − 1)− 10αη2 − 4C
3

√
α2

α− 1
η4/3 > 0,
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for all η > 0 that are sufficiently small.

Thus, the construction provides a horizontal curve γ shorter than γ̄ and joining the

same end-points L and R. This ends the proof of Theorem 1.2.

Remark 3.1. When α → 1, our solutions ε1, ε2 to the system (3.1), along with the

parameter η, converge to 0 and the shorter curve γ converges to γ̄.

We may look for solutions to (3.1) in the case α = 1. However, when α = 1,

equation (3.3) for the case σ = ε2 > 0, reads

η4(31− 16η) + 8η2σ2 + 45σ4 + o(σ4) = 0.

This equation has no small solution σ > 0 for small η.

On the other hand, when α = 1, equation (3.7) for the case σ = |ε2| with ε2 < 0

reads

η4(31− 16η)− 8η2σ2 + 53σ4 + o(σ4) = 0.

And also this equation has for small η > 0 no small solution σ > 0.

Remark 3.2. The shorter curve γ constructed above has a “curl” at the end-point

R. When α > 1 this curl is oriented clockwise (i.e., ε2 > 0). When 0 < α < 1 it is

oriented counterclockwise (i.e., ε2 < 0). This suggests that the geodesic joining L to

R displays a similar behavior. One may wonder what is the behavior at the point R

of the length minimizing curve joining L to R when α = 1.

Remark 3.3. The proof of Theorem 1.2 shows why the problem of extending Theorem

1.1 to situations where (1.6) fails is technically complicated. The presence of coef-

ficients depending on nonhorizontal coordinates (as the coefficient x23 in the vector

field X1 in (1.1)) makes the construction of horizontal competitors complicated.

4. Nilpotent approximation

Let (M,D) be a 4-dimensional sub-Riemannian manifold satisfying (H1)-(H3) at

the point p ∈M , where D = span{Y1, Y2}, and let Y1, . . . , Y4 be linearly independent

vector fields at the point p, as in (1.10). In this section, we construct the homogeneous

nilpotent approximation of (M,D) at p.

In a neighborhood of p ∈ M , we fix the exponential coordinates of the first type

induced by the frame Y1, . . . , Y4 starting from p. Then we can identify M with R4,

Y1, . . . , Y4 with vector fields on R4, and p with 0 ∈ R4. We have

(4.1) x = exp
( 4∑
i=1

xiYi

)
(0), x = (x1, . . . , x4) ∈ R4.

Here, the exponential mapping is defined by exp(Y )(0) = γ(1) where γ is the solution

of γ̇ = Y (γ) and γ(0) = 0.

We assign to the coordinate x1 the weight w1 = 1, to x2 the weight w2 = 1, to

x3 the weight w3 = 2, and to x4 the weight w4 = 5. In fact, the length of Y3 is
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len(Y3) = 2 and the length of Y4 is len(Y4) = 5. The natural dilations adapted to the

frame Y1, . . . , Y4 are

δλ(x) = (λx1, λx2, λ
2x3, λ

5x4), x ∈ R4, λ > 0.

Let Y = Yβ be a commutator of Y1, . . . , Y4, with the notation (1.8) for iterated

commutators. Then we have

(4.2) Y =
4∑
i=1

ai(x)
∂

∂xi
,

where ai ∈ C∞(R4), i = 1, . . . , 4, are smooth functions that have the structure

described in the following proposition.

Proposition 4.1. Assume that (H1) and (H2) hold. There are polynomials pi :

R4 → R and functions ri : R4 → R, i = 1, . . . , 4, such that:

i) ai(x) = pi(x) + ri(x), x ∈ R4;

ii) pi(δλ(x)) = λwi−len(Y )pi(x), where len(Y ) is the length of Y ;

iii) lim
λ→∞

λwi−len(Y )ri(δ1/λ(x)) = 0, x ∈ R4.

Proposition 4.1 can be proved as in [4] on page 306. We omit the details, here.

Let Y = Yβ be a vector field as in (4.2). For λ > 0, we let

(4.3) Y λ(x) =
4∑
i=1

λwi−len(Y )ai(δ1/λ(x))
∂

∂xi
, x ∈ R4.

The mapping Y 7→ Y λ is bracket-preserving. Namely, for any multi-index β and for

i = 1, 2 we have

(4.4) [Yi, Yβ]λ = [Y λ
i , Y

λ
β ], λ > 0.

The vector fields Y λ
1 , . . . , Y

λ
4 induce on R4 exponential coordinates of the first type

starting from 0:

(4.5) x = exp
( 4∑
i=1

xiY
λ
i

)
(0), x ∈ R4.

The proof of (4.5) relies upon the fact that if a curve γ solves γ̇ =
∑4

i=1 xiYi(γ) then

the curve γλ = δλ(γ) solves γ̇λ =
∑4

i=1 λ
wixiY

λ
i (γλ).

By Proposition 4.1, for any Y = Yβ as in (4.2), we can define the vector field Y ∞

in R4

Y ∞(x) = lim
λ→∞

Y λ(x) =
4∑
i=1

pi(x)
∂

∂xi
, x ∈ R4,

where pi, i = 1, . . . , 4, are polynomials such that pi ◦ δλ = λwi−len(Y )pi. In particular,

if wi < len(Y ) then pi = 0. Passing to the limit as λ→∞ in (4.4), we see that also

the mapping Y 7→ Y ∞ is bracket-preserving

(4.6) [Yi, Yβ]∞ = [Y ∞i , Y ∞β ], λ > 0.
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Moreover, passing to the limit as λ → ∞ in (4.5) we see that Y ∞1 , . . . , Y ∞4 induce

exponential coordinates of the first type:

(4.7) x = exp
( 4∑
i=1

xiY
∞
i

)
(0), x ∈ R4.

Then the vector fields Y ∞1 , . . . , Y ∞4 are

Y ∞1 =
∂

∂x1
+ q1

∂

∂x3
+ p1

∂

∂x4
,

Y ∞2 =
∂

∂x2
+ q2

∂

∂x3
+ p2

∂

∂x4
,

Y ∞3 =
1

4
[Y ∞2 , Y ∞1 ] =

∂

∂x3
+ p3

∂

∂x4
,

Y ∞4 =
1

16
[Y ∞1 , [Y ∞1 , [Y ∞2 , [Y ∞2 , Y ∞1 ]]]] =

∂

∂x4
.

(4.8)

Above, qi and pi are polynomials such that qi ◦ δλ = λqi and pi ◦ δλ = λ4pi for i = 1, 2

and λ > 0. In particular, for i = 1, 2, we have

qi = ai1x1 + ai2x2 and pi = pi1 + x3pi2 + dix
2
3,

where aij, di ∈ R are constants, pi1 are homogeneous polynomials of degree 4 in the

variables x1, x2, and pi2 are homogeneous polynomials of degree 2 in the variables

x1, x2. By the relation Y ∞3 = 1
4
[Y ∞2 , Y ∞2 ], we deduce that the polynomial p3 is

(4.9) p3 =
1

4

{( ∂

∂x2
+ q2

∂

∂x3

)
p1 −

( ∂

∂x1
+ q1

∂

∂x3

)
p2

}
.

If Y1, . . . , Y4 satisfy (1.12), then the vector fields Y ∞1 , . . . , Y ∞4 satisfy, for all β ∈ I5
with β = (∗, ∗, ∗, 2, 1),

Y ∞β (0) = 16Y ∞4 (0) for β = (1, 2, 1, 2, 1) or β = (1, 1, 2, 2, 1),

Y ∞β (0) = −32Y ∞4 (0) for β = (2, 1, 1, 2, 1), and

Y ∞β (0) = 0 otherwise.

(4.10)

We claim that

(4.11) Y ∞1 = X1 and Y ∞2 = X2,

where X1 and X2 are the vector fields (1.1).

For any x ∈ R4, let γ : [0, 1]→ R4 be the curve such that γ̇ = exp
(∑4

i=1 xiY
∞
i (γ)

)
(0)

and γ(0) = 0. Condition (4.7) implies that γ(t) = tx for all t ∈ [0, 1]. Differentiating

this identity at t = 1, we obtain

(4.12)
4∑
i=1

xi
∂

∂xi
=

4∑
i=1

xiY
∞
i (x), x ∈ R4.
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The equation for the coordinate i = 3 in (4.12) is x1q1 + x2q2 = 0, i.e.,

2∑
i,j=1

aijxixj = 0.

This equation along with the relation 1
4
[Y ∞2 , Y ∞1 ](0) = ∂/∂x3 gives

(4.13) q1 = 2x1 and q2 = −2x1.

The equation for the coordinate i = 4 in (4.12) is x1p1 +x2p2 +x3p3 = 0. By (4.13)

and (4.9), this equation reads

x1p1 + x2p2 +
x3
4

(
∂2p1 − 2x1∂3p1 − ∂1p2 − 2x2∂3p2

)
= 0,

or, equivalently,

(4.14) x1p11 +x2p21 +
x3
4

(
2x1p12 + 2x2p22 +∂2p11−∂1p21

)
+
x23
4

(
∂2p12−∂1p22

)
= 0.

Setting to 0 the coefficients of the powers of x3 in (4.14), we obtain the equations:

x1p11 + x2p21 = 0,(4.15)

2x1p12 + 2x2p22 + ∂2p11 − ∂1p21 = 0,(4.16)

∂2p12 − ∂1p22 = 0.(4.17)

Equation (4.15) implies that

(4.18) p11 = x2p and p21 = −x1p,

where

(4.19) p is a homogeneous polynomial of degree 3 in the variables x1, x2.

Now equation (4.16) reads

(4.20) 5p+ 2x1p12 + 2x2p22 = 0.

The vector fields Y ∞1 and Y ∞2 are

Y ∞1 = X1 + w1
∂

∂x4
and Y ∞2 = X2 + w2

∂

∂x4
,

where X1, X2 are the vector fields (1.1), and

w1 = x2p+ x3p12 + (d1 − 1)x23,

w2 = −x1p+ x3p22 + d2x
2
3.

(4.21)

We claim that w1 = w2 = 0. Once this claim is proved, the main claim (4.11) will

follow.

We compute commutators of length 5 of Y ∞1 and Y ∞2 , as functions of X1, X1, w1,

and w2. First of all we have

[Y ∞2 , Y ∞1 ] = [X2, X1] + (X2w1 −X1w2)
∂

∂x4
.
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Then, for any i, j, k = 1, 2 we have

[Y ∞i , [Y ∞j , [Y ∞k ,[Y ∞2 , Y ∞1 ]]]] = [Xi, [Xj, [Xk, [X2, X1]]]]+

+
(
XiXjXkX2w1 −XiXjXkX1w2 − 4XiXj∂3wk

) ∂

∂x4
.

(4.22)

By (1.9) and (4.10), commutators (of length 5) of Y ∞1 and Y ∞2 , and commutators

of X1 and X2 satisfy the same relations at the point x = 0. From (4.22), we deduce

that we have for all i, j, k = 1, 2

(4.23) XiXjXkX2w1 −XiXjXkX1w2 − 4XiXj∂3wk = 0, at x = 0.

Notice that XiXjXkX2w1−XiXjXkX1w2−4XiXj∂3wk is a homogeneous polynomial

of degree 0 for the dilations (x1, x2, x3) 7→ (λx1, λx2, λ
2x3), λ > 0. Thus, equation

(4.23) holds for all x ∈ R4. By integration, we deduce that XjXkX2w1−XjXkX1w2−
4Xj∂3wk is constant in R3. For XjXkX2w1−XjXkX1w2−4Xj∂3wk is a homogeneous

polynomial of degree 1, we deduce that it is identically zero. Repeating the same

argument, we conclude that for k = 1, 2

(4.24) XkX2w1 −XkX1w2 − 4∂3wk = 0 in R3.

In order to analyze equation (4.24), we preliminarily compute

X2w1 = p+ x2∂2p+ x3∂2p12 − 2x1p12 − 4(d1 − 1)x1x3,

X1w2 = −p− x1∂1p+ x3∂1p22 + 2x2p22 + 4d2x2x3.

When k = 1, equation (4.24) reads

3∂1p+ x1∂1∂1p+ x2∂1∂2p− 6p12 − 2x1∂1p12 − 2x2∂1p22 + 2x2(∂2p12 − ∂1p22)+
−8(d1 − 1)x1x2 − 8d2x

2
2 + x3(∂1∂2p12 − ∂1∂1p22 − 12(d1 − 1)) = 0.

As ∂1p is a homogeneous polynomial of degree 2, we have x1∂1∂1p+ x2∂2∂1p = 2∂1p.

Also using the fact that p12 is a homogeneous polynomial of degree 2, and using

identity (4.17), the previous equation reads

5∂1p− 10p12 − 8(d1 − 1)x1x2 − 8d2x
2
2 − 12(d1 − 1)x3 = 0.

This implies

(4.25) d1 − 1 = 0 and ∂1p− 2p12 −
8

5
d2x

2
2 = 0.

When k = 2, equation (4.24) reads

3∂2p+ x1∂2∂1p+ x2∂2∂2p− 6p22 − 2x1∂2p12 − 2x2∂2p22 + 2x1(∂1p22 − ∂2p12)+
+8(d1 − 1)x21 + 8d2x1x2 + x3(∂2∂2p12 − ∂2∂1p22 − 12d2) = 0.

Using the fact that ∂2p is homogeneous of degree 2, identity (4.17), the fact that p22
is homogeneous of degree 2, and d1 = 1, the previous equation reads

5∂2p− 10p22 + 8d2x1x2 − 12d2x3 = 0.

This implies d2 = 0 and ∂2p − 2p22 = 0. We multiply the latter equation by x2, we

multiply by x1 the second equation in (4.25) (with d2 = 0), we sum the two resulting
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equations and we obtain x1∂1p+ x2∂2p− 2x1p12 − 2x2p22 = 0. Using the fact that p

is homogeneous of degree 3, we finally obtain

(4.26) 3p− 2x1p12 − 2x2p22 = 0.

From (4.26) and (4.20), we deduce that p = 0 and thus p12 = p22 = 0. We conclude

that w1 = w2 = 0 and this proves the main claim (4.11).

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. As in Section 4, we assume that M = R4,

p = 0, D = span{Y1, Y2}, and that the vector fields Y1, . . . , Y4 satisfy (H1)-(H3) and

induce exponential coordinates of the first type in R4, as in (4.1). On D, we fix a

metric g satisfying (1.13).

For λ > 0, let Y λ
1 and Y λ

2 be the vector fields in (4.3) and let Dλ = span{Y λ
1 , Y

λ
2 }.

Let gλ be the metric on Dλ defined by

gλx(Y λ
i , Y

λ
j ) = gδ1/λ(x)(Yi, Yj), x ∈ R4, i, j = 1, 2.

When λ = ∞, we let D∞ = span{Y ∞1 , Y ∞2 }, where, by the discussion of Section 4,

we have Y ∞1 = X1 and Y ∞2 = X2. On D∞, we define the metric g∞

g∞x (Y ∞i , Y ∞j ) = lim
λ→∞

gλx(Y λ
i , Y

λ
j ) = lim

λ→∞
gδ1/λ(x)(Yi, Yj) = g0(Yi, Yj), x ∈ R4.

Remark 5.1. From (1.13), it follows that

g∞x (Y ∞1 , Y ∞2 ) = g0(Y1, Y2) = 0, x ∈ R4.

Without loss of generality, we also assume that g∞x (Y ∞i , Y ∞i ) = 1 for all x ∈ R4 and

i = 1, 2. In other words, the metric g∞ makes the vector fields Y1 and Y2 orthonormal.

It follows that linear mappings T : R4 → R4 of the form

T (x) =
(
U(x1, x2), det(U)x3, x4

)
, x = (x1, . . . , x4) ∈ R4,

where U ∈ O(2) is an orthogonal mapping in R2, are isometries of (R4,D∞, g∞).

Let γ : [−1, 1]→M = R4 be a D-horizontal curve such that γ(0) = 0 and

(5.1) γ̇L(0) 6= γ̇R(0),

where γ̇L(0) 6= 0 and γ̇R(0) 6= 0 are the left and right derivatives of γ at t = 0.

For λ > 0, the curves γλ(t) = δλγ(t/λ), t ∈ [−λ, λ], are Dλ-horizontal. Moreover,

the limit curve γ∞ : (−∞,∞)→ R4

(5.2) γ∞(t) =

{
lim
λ→∞

γλ(t) = γ̇R(0)t t ≥ 0,

lim
λ→∞

γλ(t) = γ̇L(0)t t < 0,

is D∞-horizontal. Here, the vectors γ̇L(0) and γ̇R(0) are identified with vectors of R4,

and have the form (∗, ∗, 0, 0). The curve γ∞ lies therefore in the x1x2-plane.

Proposition 5.2. Assume that the curve γ is length minimizing in (R4,D, g). Then

the curve γ∞ is length minimizing in (R4,D∞, g∞).
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Proposition 5.2 is proved in [2], Proposition 2.4.

We conclude the proof of Theorem 1.3. Assume by contradiction that there exists

a curve γ as in Theorem 1.3 that is length minimizing in (R4,D, g). By Proposition

5.2, the curve γ∞ in (5.2) is length minimizing in (R4,D∞, g∞). By assumption, we

have g0(γ̇L(0), γ̇R(0)) 6= 0. It follows that

(5.3) g∞0 (γ̇∞L (0), γ̇∞R (0)) = lim
λ→∞

gλ0 (γ̇λL(0), γ̇λR(0)) = g0(γ̇L(0), γ̇R(0)) 6= 0.

By Remark 5.1 and (5.1), we can assume that γ∞ has the form (1.5) with α > 0 (up

to re-parameterization), and by (5.3) we have α 6= 1. By Theorem 1.2, the curve γ∞

is not length minimizing. This is a contradiction.
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