HEIGHT ESTIMATE AND SLICING FORMULAS
IN THE HEISENBERG GROUP

ROBERTO MONTI AND DAVIDE VITTONE

ABSTRACT. We prove a height-estimate (distance from the tangent hyperplane)
for A-minimizers of the perimeter in the sub-Riemannian Heisenberg group. The
estimate is in terms of a power of the excess (L?-mean oscillation of the normal)
and its proof is based on a new coarea formula for rectifiable sets in the Heisenberg

group.

1. INTRODUCTION

In this article, we continue the research project started in [21] and [18] on the
regularity of H-perimeter minimizing boundaries in the Heisenberg group H". Our
goal is to prove the so-called height-estimate for sets that are A-minimizers and have
small excess inside suitable cylinders, see Theorem 1.3. The proof follows the scheme
of the median choice for the measure of the boundary in certain half-cylinders together
with a lower dimensional isoperimetric inequality on slices. For minimizing currents
in R™, the principal ideas of the argument go back to Almgren’s paper [1] and are
carried over by Federer in his Theorem 5.3.4 in [5]. The argument can be also found
in the Appendix of [22] and, for A-minimizers of perimeter in R", in [13, Section
22.2]. For minimizers of H-perimeter, the decay estimate of excess of Almgren and
De Giorgi is still an open problem, see [19].

Our main technical effort is the proof of a coarea formula (slicing formula) for
intrinsic rectifiable sets, see Theorem 1.5. This formula is established in Section 2
and has a nontrivial character because the domain of integration and its slices need
not be rectifiable in the standard sense. The relative isoperimetric inequalities that
are used in the slices reduce to a single isoperimetric inequality in one slice that is
relative to a family of varying domains with uniform isoperimetric constants. This
uniformity can be established using the results on regular domains in Carnot groups
of step 2 of [20] and the isoperimetric inequality in [9], see Section 3.1.

The 2n + 1-dimensional Heisenberg group is the manifold H* = C* x R, n € N,
endowed with the group product

(z,t)*(g,T):(z+(,t+7+21m<z,c_>), (1.1)
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wheret, 7 € R, 2, € C"and (z,() = 21(1+. . .+2,C,. The Lie algebra of left-invariant
vector fields in H™ is spanned by the vector fields

9, 0 0 0 0
X,=— 42, Y=o —2,— d T=—= 1.2
1w P T gy, T e ™ o (12
with z; = x; +1y; and j = 1,...,n. We denote by H the horizontal sub-bundle of
TH™. Namely, for any p = (z,t) € H" we let

H, = span{X1(p). ... Xu(p). Yi(p). ... Yu(p) }.

A horizontal section ¢ € C}(Q; H), where 2 C H" is an open set, is a vector field of
the form
0= ;X + ntsY,
j=1
where ¢; € CL(Q), i.e., each coordinate p; is a continuously differentiable function
with compact support contained in €.

Let g be the left-invariant Riemannian metric on H" that makes orthonormal the
vector fields X1, ...,Y,,T in (1.2). For tangent vectors V, W € TH" we let

(V.W)g =g(V.W) and |V];=g(V,V)"2
The sup-norm with respect to g of a horizontal section ¢ € C1(Q; H) is
liplly = max fo(p)l,-

The Riemannian divergence of ¢ is
divyp = Y X;0; + Yipns-
j=1

The metric ¢ induces a volume form on H" that is left-invariant. Also the Lebesgue
measure .Z?"*1 on H" is left-invariant, and by the uniqueness of the Haar measure
the volume induced by ¢ is the Lebesgue measure #?"*1. In fact, the proportionality
constant is 1.

The H-perimeter of a .£?"*-measurable set £ C H" in an open set 2 C H" is

) s { [ dgpaz o e e ol <1}

If pp(2) < oo we say that E has finite H-perimeter in Q. If ug(A) < oo for any
open set A CC 2, we say that E has locally finite H-perimeter in §2. In this case,
the open sets mapping A — pug(A) extends to a Radon measure pg on  that is
called H-perimeter measure induced by E. Moreover, there exists a pg-measurable
function vg : 2 — H such that |vg|, = 1 ug-a.e. and the Gauss-Green integration by
parts formula

/(907 VE>gd,uE: —/dngspdg%H—l
% Q

holds for any ¢ € C}(Q2; H). The vector vg is called horizontal inner normal of E in
Q.
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The Koranyi norm of p = (z,t) € H" is ||p||x = (|z|* +*)¥/%. For any r > 0 and
p € H", we define the balls

B, ={qeH":|qllx <r} and B,(p)={pxqeH":qe€ B}
The measure theoretic boundary of a measurable set £ C H" is the set
OE ={peH": " (ENB,(p)) >0 and L*"*(B,(p) \ E) >0 for all r > 0}.

For a set F with locally finite H-perimeter, the H-perimeter measure pg is concen-
trated on OF and, actually, on a subset 0*F of OF, see below. Moreover, up to
modifying £ on a Lebesgue negligible set, one can always assume that JF coincides
with the topological boundary of F, see [23, Proposition 2.5].

Definition 1.1. Let Q@ C H" be an open set, A € [0,00), and r € (0,00]. We
say that a set £ C H" with locally finite H-perimeter in Q is a (A, r)-minimizer of

H-perimeter in Q if, for any measurable set I C H", p € €2, and s < r such that
EAF CC Bs(p) CC €, there holds

15(Bs(p)) < pp(Bs(p)) + AL* T (EAF),

where EAF = E\FUF\ E.
We say that E is locally H-perimeter minimizing in €2 if, for any measurable set
F C H" and any open set U such that EAF CcC U CC €, there holds pug(U) <

pr(U).

We will often use the term A-minimizer, rather than (A, r)-minimizer, when the role
of r is not relevant. In Appendix A, we list without proof some elementary properties
of A-minimizers.

We introduce the notion of cylindrical excess. The height function ij H® - R is
defined by 4(p) = p1, where p; is the first coordinate of p = (p1,...,pont1) € H™
The set W = {p € H" : é(p) = 0} is the vertical hyperplane passing through 0 € H"
and orthogonal to the left-invariant vector field X;. The disk in W of radius » > 0
centered at 0 € W induced by the Koranyi norm is the set D, = {p € W : ||p||x < r}.
The intrinsic cylinder with central section D, and height 2r is the set

C, =D, x (—r,r) C H".

Here and in the sequel, we use the notation D, x (—r,r) = {w * (se;) € H" : w €
D,, s € (—r, r)}, where se; = (s,0,...,0) € H". The cylinder C, is comparable with
the ball B, = {||p||x < r}. Namely, there exists a constant k = k(n) > 1 such that
for any r > 0 we have

Br/k: C C, C By, (1.3)

By a rotation of the system of coordinates, it is enough to consider excess in
cylinders with basis in W and axis Xj.
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Definition 1.2 (Cylindrical excess). Let £ C H" be a set with locally finite H-
perimeter. The cylindrical excess of E at the point 0 € OF, at scale r > 0, and with
respect to the direction v = — X is defined as

1 2
Exc(E,r,v) = m/c lve — v, dpg,
where pp is the H-perimeter measure of £ and vg is its horizontal inner normal.

Theorem 1.3 (Height estimate). Let n > 2. There exist constants €y = £9(n) > 0
and co = co(n) > 0 with the following property. If E C H" is a (A, r)-minimizer of
H -perimeter in the cylinder Cy2,, Ar < 1,0 € OF, and

Exc(E, 4k*r,v) < &0,
then ,
sup {|h(p)| € [0,00) : p € OENC,} < o1 Exc(E, 4k*r, v)2Cnt1) (1.4)
The constant k = k(n) is the one in (1.3).

The estimate (1.4) does not hold when n = 1. In fact, there are sets E C H! such
that Exc(F,r,v) = 0 but OF is not flat in C., for any £ > 0. See the conclusions of
Proposition 3.7 in [18]. Theorem 1.3 is proved in Section 3.

Besides local minimizers of H-perimeter, our interest in A-minimizers is also mo-
tivated by possible applications to isoperimetric sets. The height estimate is a first
step in the regularity theory of A-minimizers of classical perimeter; we refer to [13,
Part II1] for a detailed account on the subject.

In order to state the slicing formula in its general form, we need the definition of
a rectifible set in H" of codimension 1. We follow closely [7], where this notion was
first introduced.

The Riemannian and horizontal gradients of a function f € C*(H") are, respec-
tively,

Vuf=(X1f) X1+ -+ (Yaf)Ya

We say that a continuous function f € C'(2), with Q C H" open set, is of class C}(Q)
if the horizontal gradient Vjy f exists in the sense of distributions and is represented by
continuous functions X f,..., Y, f in Q. A set S C H" is an H-regular hypersurface
if for all p € S there exist r > 0 and a function f € C}(B,(p)) such that SN B,(p) =
{q € B.(p): f(gq) =0} and Vi f(p) # 0. Sets with H-regular boundary have locally
finite H-perimeter.

For any p = (2,t) € H", let us define the box-norm ||p||ec = max{|z|,|t|"/?} and
the balls U, = {g € H" : ||q||co <7} and U,.(p) = p * U,., with r > 0. Let E C H" be
a set. For any s > 0 define the measure

S*(F) = sup inf {c(n,s) er B C U U, (pi), i < 5}.

>0 ieN ieN
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Above, ¢(n,s) > 0 is a normalization constant that we do not need to specify here.
By Carathéodory’s construction, E +— *(F) is a Borel measure in H". When
s = 2n + 2, .7?"*2 turns out to be the Lebesgue measure .#?"*!. Thus, the correct
dimension to measure hypersurfaces is s = 2n + 1. In fact, if F is a set with locally
finite H-perimeter in H", then we have

pp =" OE, (1.5)

where L denotes restriction and 0*F is the H-reduced boundary of E, namely the
set of points p € H" such that pp(U,(p)) > 0 for all v > 0, f,  vedup — ve(p) as
r — 0 and |vg(p)|, = 1. The validity of formula (1.5) depends on the geometry of
the balls U,.(p), see [16]. We refer the reader to [7] for more details on the H-reduced
boundary.

Definition 1.4. A set R C H" is .?"*lrectifiable if there exists a sequence of
H-regular hypersurfaces (5;) ey in H" such that

77 (R S)) =0,

jeN

By the results of [7], the H-reduced boundary 90*E is .#?""!-rectifiable. Definition
1.4 is generalized in [17], where the authors study the notion of an s-rectifiable set in
H" for any integer 1 < s < 2n + 1.

An H-regular surface S has a continuous horizontal normal vg that is locally defined
up to the sign. This normal is given by the formula

_ Vuf
|va|g’

where f is a defining function for S. When S = OF is the boundary of a smooth

Vs (1.6)

set, then vg agrees with the horizontal normal vz. Then, for an .?"*!-rectifiable
set R C H" there is a unit horizontal normal vg : R — H that is Borel regular.
This normal is uniquely defined .#*"*l.a.e. on R up the the sign, see Appendix B.
However, formula (1.8) below does not depend on the sign.

In the following theorem, 0 C H" is an open set and u € C*°(2) is a smooth
function. For any s € R, we denote by ¥° = {p € Q:ulp) = s} the level sets of w.

Theorem 1.5. Let R C Q be an ./*""'-rectifiable set. Then, for a.e. s € R there
exists a Radon measure u% on RONY® such that for any Borel function h : 2 — [0, 00)
the function

|VHU|9
s— [ h du; 1.7
/Q [V, f (17)

is L'-measurable, and we have the coarea formula

INAS:

u
|VHU||9 dus ds = /Rh \/]VHu\g — (vR, Viu)2 L2+l (1.8)
g
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Theorem 1.5 is proved in Section 2. When R N ¥ is a regular subset of ¥°, the
measures % are natural horizontal perimeters defined in 3°.

Coarea formulae in the Heisenberg group are known only for slicing of sets with
positive Lebesgue measure, see [14, 15]. Theorem 1.5 is, to our knowledge, the first
example of slicing of lower-dimensional sets in a sub-Riemannian framework. Also,
Theorem 1.5 is a nontrivial extension of the Riemannian coarea formula, because the
set R and the slices RN X* need not be rectifiable in the standard sense, see [12]. We
need the coarea formula (1.8) in the proof of Theorem 1.3, see Section 3.3.

We conclude the introduction by stating a different but equivalent formulation of
the coarea formula (1.8) that is closer to standard coarea formulae. This alternative
formulation holds only when n > 2: when n = 1, the right hand side in (1.9) might
not be well defined, see Remark 2.11.

Theorem 1.6. Let Q C H", n > 2, be an open set, w € C*°(2) be a smooth function,
and R C Q be an #*" M rectifiable set. Then, for any Borel function h : 2 — [0, 00)

there holds
2
u//h@ym:/hwwwﬁ—@m%ﬁ»dy%ﬂ (1.9)
RJQ R )

where % are the measures given by Theorem 1.5.

2. PROOF OF THE COAREA FORMULA

2.1. Horizontal perimeter on submanifolds. Let > C H" be a C'*° hypersurface.
We define the horizontal tangent bundle HY letting, for any p € X,

H,Y = H,NT,%.

In general, the rank of HY is not constant. This depends on the presence of char-
acteristic points on X, i.e., points such that H, = T,>. For points p € X such that
H, # 1,3, we have dim(H,X) = 2n — 1.

We denote by oy, the surface measure on ¥ induced by the Riemannian metric ¢
restricted to the tangent bundle T'X.

Definition 2.1. Let F' C X be a Borel set and let {2 C ¥ be an open set. We define
the H-perimeter of F' in )

b =sw{ [ g dos g CHOHD el <1} 20)
F

We say that the set F' C ¥ has locally finite H-perimeter in  if u%(A) < oo for any
open set A CC €.

By Riesz’ theorem, if F' C ¥ has locally finite H-perimeter in €2, then the open sets
mapping A — pu%(A) extends to a Radon measure on 2, called H-perimeter measure
of F.
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Remark 2.2. If F' C ¥ is an open set with smooth boundary, then by the divergence
theorem we have, for any ¢ € C}(Q; HY),

/divggadcrg:/ (Nor, ©)g dor, (2.11)
F oF

where Nyr is the Riemannian outer unit normal to OF and d\gr is the Riemannian
(2n — 1)-dimensional volume form on OF induced by g.

From the sup-definition (2.10) and from (2.11), we deduce that the H-perimeter
measure of F' has the following representation

e lg

UF_‘NB Nor

where N/ € HY is the g-orthogonal projection of Ny € TS onto HY.

This formula can be generalized as follows. We denote by 7,*"~! the (2n — 1)-
dimensional Hausdorff measure in H" induced by the metric g.

Lemma 2.3. Let F,Q2 C X be open sets and assume that there exists a compact set
N C OF such that ;" (N) = 0 and (OF \ N) N is a smooth (2n — 1)-dimensional
surface. Then, we have

ppl Q= |NJZ |, Aap v L€ (2.12)

Proof. For any € > 0 there exist points p; € H" and radii r; € (0,1), ¢ = 1,..., M,
such that

M M
N C UBg(pi,ri) and er“‘l <,

i=1

where B,(p,r) denotes the ball in H" with center p and radius r with respect to
the metric g. By a partition-of-the-unity argument, there exist functions f¢,¢; €

C>*(Q;[0,1]), i =1,..., M, such that

D P+t oy =Xe;
ii) f* =0 on UL, By(piri/2);
iii) spt g C B,(pi, ;) for each i;
iv) |[Vgil, < Cr;! for a constant C' > 0 independent of e.

Hence, for any horizontal section ¢ € C1(Q; HY) we have

M

/divggodag :/ divg(fegp)dag—FZ/ div, (g5 p)dos
F F —

FNBg(pi;ri)
(2.13)

_/ (f°0, Nor)gdAor\n +Z/ divy (g5 ¢)dos:,
OF\N

FﬁBq Di,Ti)
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where, by iv),

M

> / divy (g p)dos,
FNBg(pi,ri)

=1

S|

M
<’ Zr?”_l < (g,

i=1

(HdivggoHLoo + CT‘;I) dos,
)

g(Piﬂ"i

(2.14)

with a constant C’ > 0 independent of e.
Letting € — 0, we have f® — 1 pointwise on OF \ N, by i) and iii). Then, from
(2.13) and (2.14) we obtain

/divggp dos, 2/ (@, Nor)gdXor\ N
F OF\N
and claim (2.12) follows by standard arguments. O

2.2. Proof of Theorem 1.5. Let 2 C H" be an open set and let u € C*°(Q2). By
Sard’s theorem, for a.e. s € R the level set

¥ ={peQ:ulp) =s}

is a smooth hypersurface and, moreover, we have Vu # 0 on X°.

Let £ C H" be a Borel set such that £ N X° has (locally) finite H-perimeter in
QN ¥* in the sense of Definition 2.1. Then on 2 N X* we have the H-perimeter
measure /155s induced by E N Y% We shall use the notation

Wi = HEnss
to denote a measure on {2 that is supported on 2N X°.

We start with the following coarea formula in the smooth case, that is deduced
from the Riemannan formula.

Lemma 2.4. Let Q C H" be an open set and u € C>*(Q). Let E C H™ be an open
set with C* boundary in Q such that pg(2) < co. Then we have

|Viul, /
Val, W= 0 2d 2.15
/R/Q |Vulg Hg s Q\/’VHU‘g (ve, Veu)2dug, (2.15)

where pg is the H-perimeter measure of E and vg is its horizontal normal.

Proof. The integral in the left hand side is well defined, because for a.e. s € R there
holds Vu # 0 on ¥°. By the coarea formula for Riemannian manifolds, see e.g. [4],
for any Borel function h : OF — [0, 0] we have

/ / hd)\BEﬁES ds = / h |V6Eu|g dO’aE, (216)
R JOENYS oF

where V%4 is the tangential gradient of u on OE. Then we have

VP%y = Vu — (Vu, Nog)yNop  and  |[V?Pu|, = \/|Vu|§ — (Vu, Nog)2.  (2.17)
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Step 1. Let us define the set

C= {pG@EﬂQ:Vu(p) # 0 and Nyg(p) :i%}.

If s € R is such that Vu # 0 on ¥°, then C' N %° is a closed set in ¥°. Using the
coarea formula (2.16) with the function h = y¢, we get

/ Nopnss (O) ds = / V|, dogr = 0,
R C

because we have V24 = 0 on C. In particular, we deduce that
CN¥°isaclosed set in X° and Apprxns(CNY°) =0 forae seR. (2.18)

If p € 3¢ is a point such that Vu(p) # 0 and p ¢ C, then ¥° is a smooth hyper-
surface in a neighbourhood of p and E* = E N ¥® is a domain in ¥° with smooth
boundary in a neighbourhood of p. Moreover, we have (OE NX%) \ C = 0E* \ C.
Then, from (2.18) and from Lemma 2.3 we conclude that for a.e. s € R we have

s = |NAE |, Noms. (2.19)

By (2.18) and (2.19), there holds
ps(C N = / |NMZ |, dhogs =0 for ae. s € R. (2.20)

CcNxs

Step 2. We prove (2.15) by plugging into (2.16) the Borel function h : 0F — [0, o]

INGlo/1Virul2 = (v, Viru)2

h= |vu\g\/1 — (Nom, )2
0 on C'U{Vu = 0}.

on OF \ (CU{Vu=0})

Above, N is the projection of the Riemannian normal Nygz onto H and vg is the
horizontal normal. Namely, we have
Noi

N} = Nog — (Nog, T)yT and vg = —22—.
|N8E’g

The H-perimeter measure of E' is
e = NIl oo (2:21)
Using (2.17) and (2.21), we find

/ h |V8Eu| dO'aE = / |N£E|g\/|VHU|§ — <VE, VHU>§ dO‘aE
OF AE\(CU{Vu=0})

-/ IVl — (v, Va3 dias 22)
OE\(CU{Vu=0})

_ /8E IViul2 = (v, Vi) dus,
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where the last equality is justified by the fact that if p € C' U {Vu = 0} then

VIVau®) = (ve(p), Viu(p))2 = 0.

For a.e. s € R, we have Vu # 0 on ¥°. Using (2.21) and the fact that h = 0 on
CU{Vyu = 0}, letting A* = (OE N X*) \ (CU{Vgu = 0}) we obtain

NGl IViul? = (v, Viru)2
/ / hd}\aEs dS - / / d)\aEs dS
R JOENLS R s

[Vl \/1— (No, wul-)2 (2.23)
‘VHU,g
— 9 Ao d
/ As |Vu|g o 0%

where we let

. VNG = (N, o)
\/1 (Noe, wuly)s
We will prove in Step 3 that, for any s € R such that Vu # 0 on 3°, there holds

= | Njp:

g on A’ (2.24)
Using (2.24), (2.19), and (2.20) formula (2.23) becomes

/ / hdNoprs: ds = / / |VVH“|9 NEE| dhops ds
OENYs s |9

’vHu‘g
= dpy d 2.25
/ v [V, (2.25)

R JOENSS Vu\g

The proof is complete, because (2.15) follows from (2.16), (2.22) and (2.25).
Step 3. We prove claim (2.24). Let us introduce the vector field W in Q\{Vyu = 0}

Tu Vgu |VHu|gT
[Vulg [Viul, [V,
It can be checked that |W|, = 1 and Wu = 0. In particular, for a.e. s we have

W e T%°. Moreover, W is g-orthogonal to HX?® because any vector in HY*® is
orthogonal both to Vyu and to T'. It follows that

NHZ = Nygs — (Nops, W),

W:

and, in particular,
|NEE|2

g lg =1 — (Nops, W>2

g

9
Starting from the formula

Nog — (Nog, o) g e Nog — (Nop, o) y e

[Vulg 9\Vu|g [Vulg /9 [Vulg

|N8E - <N8E> \Wﬁg >9\Vu|g |g \/l (NBE,

NBES —

Vuly )4
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we find
s M
[Nos |y = TRYL
I 1-— <N8E7 |Vvu|g >?]
where we let
Vu Vu Vu ?
M =1~ (Nog, =2 — <N8E — (Nop, o )ote 1 > :
[Vuly™ [Vul,"? [Vul, g
We claim that on the open set {Vyu # 0} there holds
M = |Ngl; — (Nok, ki), (2.26)

and formula (2.24) follows from (2.26). Using the identity Vu = Vyu + (Tuw)T and
the orthogonality

Vu Vu
NaE - <N8E7 —> —7vu> - 07
< [Vaul, ™ [Vl g
we find
Vau + (Tu)T>2 Tu Vuu |Vl 2
M=1- <N8Ea — ) — < ~—(Nog, Vg — Y (Nop, T) )
[Vul, [V, |Viul, ! [Vul, !

VHU 2 |VHU’§ + (TU)2 9 IVHUE + (Tu)2

=1— (N, — (Npg, T
R PR T T

VHU 2 2

=1~ <N8E7 m>g - <N3E7T>g
VHU VHU 2
—1—(N TQ—(N LN —<N T T—>>
< OFE) >g < OFE) |VHU|g>g < oE >g ) |VHU/|g p
VHU
= |NJLI2 — (N, ———)2.
’ 6E|g < o0E» |VHU|g>g
(2.27)
This ends the proof. OJ

We prove a coarea inequality.

Proposition 2.5. Let Q C H™ be an open set, u € C*°(Q) a smooth function, E C H"
a set with finite H-perimeter in ), and let h : OE — [0, 00] be a Borel function. Then
we have

Vil /
/]R/Q |Vul, Hp @5 = 0 \/'VHU|g <VE7VHU>9 IE (2.28)

Proof. The coarea inequality (2.28) follows from the smooth case of Lemma 2.4 by
an approximation and lower semicontinuity argument.
Step 1. By [6, Theorem 2.2.2], there exists a sequence of smooth sets (E;);en in
Q) such that
LY() . .
XE;, — XE a8j— 00 and lim g, (2) = p(€2).

Jj—0o0
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By a straightforward adaptation of the proof of [2, Proposition 3.13], we also have
that vg, pup, — vepup weakly® in 2. Namely, for any ¢ € C.(€2; H) there holds

llHl <¢aVEJ>gdHE] :/<77Z)7VE>ngE
j—=oo Jq Q

Let A CC Q be an open set such that lim; ,o pg,(A) = pup(A). By Reshetnyak’s
continuity theorem (see e.g. [2, Theorem 2.39]), we have

lim f(p, vE; (p)) dir; Z/Af(p, ve(p)) die

]—}OO

for any continuous and bounded function f. In particular,

lim/ \/|VHu|§—(ij,VHu)3dqu:/ \/|VHU|§—<VE,VHU>§duE. (2.29)
A

J—00 A

Step 2. Let (E;)jen be the sequence introduced in Step 1. Then, for a.e. s € R we
have
Vu # 0 on ¥° and XE,—XE in LY(X%, 055) as j — oo.
In particular, for any such s and for any open set A C ¥° N there holds

pp(A) < liminf g (A).
j—o0 J

From Fatou’s Lemma and from the continuity of Wauls 3%, it follows that

N
|VHU|9 /oo
duy = I3 ({p cA:
A |Vl d 0 P

e (p) > t}) dt

< /Ooo lim inf i <{p €A: %’Jﬂgg (p) > t}) dt

J—00

[e.e]

< liminf 1, <{p €A: |‘v§’u1f‘gg (p) > t}) dt

Jj—o0 0

\Y/
= lim inf [Viruly
J—moo S g |VU|9

Using again Fatou’s Lemma and Lemma 2.4,

// Virtdly ) s ds</liminf/ Vil ds
R |Vul, R J—oo |Vul,

. | Virul,
<
< hjrgloglf/ Val, dp, ds

= lim inf/ \/\VHUE — (vE;, Vau)2 dug,.
A

J—00

This, together with (2.29), gives

|VHU|9
s < 2 _ 2
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Step 3. Any open set A C €) can be approximated by a sequence (A)ren of open
sets such that

A, CcCQ, ApC Agaa, U A, =A and ,LLE(aAk) =0

k=1

In particular, for each £ € N we have

hm inf g, (Ay) < limsup pug, (Ar) < pp(Ar)

j—)OO

= pp(Ax) < l1jrg£f 1E; (Ak).-

Hence, the inequalities are equalities, i.e., up(Ax) = lim pug,(Ax). By Step 2, for any
]*}OO
k € N there holds

|VHU|9 /
duy ds < Viul2 — Vo2 di
/R/Ak |Vu|g A, \/| HU|g <VE’ Hu>g WE

By monotone convergence, letting k& — oo we obtain for any open set A C 2

|Virul, 5 .
/R/ |Vul, Ay ds </A \/WHu’zi_ (ve, Viu)g dpg.

By a standard approximation argument, it is enough to prove (2.28) for the charac-

teristic function h = yp of a Borel set B C OF. Since the measure |VHu]§ — (vg, VHu>§ IR

is a Radon measure on 0F, there exists a sequence of open sets B; such that B C B,
for any j € N and

lim / \/|VHU|§ — (vg, Vau)ldug = / \/|VHU|§ — (vg, Vau)2dug.
’ B

J—00 B

Therefore, we have

//|vHu|gd ds<hmmf// |VHU|gd Hds
B |Vu|g J—r0 |v ’g

j—00 B

:/ \/|VHU’3 — <VE,VHU,>£27 d,uE,
B

and this concludes the proof. 0]

In the next step, we prove an approximate coarea formula for sets F such that the
boundary OF is an H-regular surface.

Lemma 2.6. Let Q C H" be an open set, u € C*°(Q) a smooth function, E C H"
an open set such that OE N Q is an H-reqular hypersurface, and p € OF N ) a point
such that

Vi u(p)

Vyu(p) #0 and vg(p) # im.
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Then, for any € > 0 there ezists T = 7(p,€) > 0 such that Bz(p) C Q and, for any
€ (0,7),

(1 — 5)/ \/|VHU|§ — <I/E, VHU>§ d/uLE
T(ﬁ)

R J By ( |v ’g

<1+ 5)/ " \/]VHUB — (ve, Vau)2 dug.
(P

Proof. We can without loss of generality assume that p = 0 and u(0) = 0. We divide
the proof into several steps.

Step 1: preliminary considerations. The horizontal vector field V5, = |Vv:5\g is
well defined in a neighbourhood 2. C H" of 0. For any s € R, the hypersurface
¥ ={p € Q:u(p) = s} is smooth in Q. because Vgu # 0 on €)..

There are horizontal vector fields Vi,...,V5,_1 on €). such that Vi,...,V5, is a

g-orthonormal frame. In particular, we have Vju =0 for all j =1,...,2n — 1, i.e,,

H,%* = span{Vi(p),. .., Vani(p)} forall p € X° N Q. (2:30)

Possibly shrinking €., reordering {V;},=1,_2,—1, and changing the sign of 1}, we can
assume (see [24, Lemma 4.3 and Lemma 4.4]) that there exist a function f: Q. — R
and a number § > 0 such that:

2) [ € CL(Q) N C=(Q.\ E);
b) ENQ.={peQ.: f(p) >0}
c) Vif >0 >0 on (..

By [24, Remark 4.7], we have also v = on OE N Q..

\V f|
Step 2: change of coordinates. Let S C H" be a (2n — 1)-dimensional smooth
submanifold such that:
i)0es;
i) S C ZO N §2; in particular, Vu is g-orthogonal to S;
iii) V1(0) is g-orthogonal to S at 0;
iv) there exists a diffeomorphism H : U — H", where U C R?*"~! is an open set
with 0 € U, such that H(0) =0 and H(U) = S N
v) the area element JH of H satisfies JH(0) = 1. Namely, there holds

_ o As(H(BY))
JH(0) = }qlil(l) Zai(pE)
where BE = {p € R*~! : |p| < r}is a Euclidean ball and \g is the Riemannian
(2n — 1)-volume measure on S induced by g.
For small enough a,b > 0 and possibly shrinking U and €., the mapping G : (—a, a) X
(=b,b) x U — H"

G(v, z,w) = exp(vVy) exp (zwv—u“@)(ﬂ(w))
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is a diffeomorphism from Q. = (—a,a) x (—b,b) x U onto €. The differential of G
satisfies

dG(a% ai) |vv;(( )>|2

Moreover, the tangent space TpS = ImdH (0) is g-orthogonal to V;(0) and Vu( ))\2

We denote by G, the restriction of G to (—a,a) x {z} x U, i.e., G.(v,w) = G(v 2 w)
From the above considerations, we deduce that the area elements of G and of Gy
satisfy

):V1 and  dG(0 )(

1
JG(0 and JGo(0) =
0= o, 0
Then, possibly shrinking further Qa, we have
JG (v, w)
1—¢)JG 1 JG 2.31
( 5) (v,z,w) IVUOG(U Py w)} ( +6) (U,Z,U}), ( )

for all (v, z,w) € Q..

For j = 1,...,2n, we define on €. the vector fields V; = (dG)~*(V;). By the
definition of G, we have V; = 9/dv. We also define it = uoG € C*(.), f = fo G :
Q. » R, and E = G~Y(E). Then:

1) we have E = {qg € Q. : f(q) > 0};

2) we have f € C°(Q. \ OE);

3) the derivative Vj]?is defined in the sense of distributions with respect to the
measure y = JG.Z2"! Namely, for all ¢ € C*°(€.) we have

ﬁs<%f>wdu=—ésf%*wdu,

where ‘7;* is the adjoint operator of ‘7j with respect to u. Then we have
Vif = (V;f) oG and so V; f is a continuous function for any j =1,...,2n. In
particular, we have Vi f = 0,f > d > 0.

Step 3: approzimate coarea formula. We follow the argument of [24, Propositions
4.1 and 4.5], see also Remark 4.7 therein.

Possibly shrinking Q. and €., there exists a continuous function ¢ : (=b,b) x U —
(—a,a) such that:

A) OENC, is the graph of ¢. Namely, letting ® : (=b,b) x U — R*" " ®(z,w) =
(¢(z,w), z,w), we have:

OE N Q. = ®((=b,b) x U).

B) The measure pug is

,U,ELQE = (GO(I))# ((D?f] JG) od $2n|_((—b,b) X U)) , (232)

Vif
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where (G o ®)4 denotes the push-forward and

2n

7i= (XY

=1
Using Viu = 0 and v o H = 0 (this follows from H(U) = SN Q. C X°NQ.), we
obtain

u(v, z,w) = u(G(v, z,w)) = u(exp(vV;) exp (ZWVJ‘%)(H(IU)))

= u(exp (z‘vvfb"g)(H<w)))
=z + u(H(w)) = Z.

In particular, from © = u o G we deduce that
G (Z*NQ.) = (—a,a) x {s} x U.
We denote by JG, the Jacobian (area element) of G. We also define the restriction
O, : U — R*™ & (w) = D(s,w), for any s € (—b,b).
By (2.30), for any s € R the measure pj; = pj s is the horizontal perimeter of

E N ¥° with respect to the Carnot-Carathéodory structure induced by the family
Vi,..., Va1 on X°. We can repeat the argument that lead to (2.32) to obtain

ppLl Qe = (Gody)y ((Q;? JGS> OQ)SZQ”_II_U) , (2.33)

1

where ‘7’]7: (‘71]7, o Vgn,lf). We omit details of the proof of (2.33). The proof is
a line-by-line repetition of Proposition 4.5 in [24] with the unique difference that now
the horizontal perimeter is defined in a curved manifold.

Let us fix 7 > 0 such that B; C €., and for any r € (0,7) let

A= {w ceU:G(0,s,w) € BT},
A, ={(s,w) € (=b,b) x U:w e A, }.
By Fubini-Tonelli theorem and by (2.33), the function
!/
5> Vil dus, = / ('VH“|9 o G) ('V /] JG ) o®,d* (2.34)
B, |Vl Asr Vlf

is Z1-measurable. Here and hereafter, the composition o®, acts on the product.

Thus, from Fubini-Tonelli theorem and (2.31) we obtain

[ o= [ (o) (V0 osnse

Vv’ JG,
/A(WH%OG)('V? |Vu|g0G> o (s, w) L (s, w)
r 1

<u+a <|vHu|goG>('Z";'\/1 Gl G') o 0(s,u) 127 (5).

(2.35)
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From the identity

oG = , oG=(—=——,vg) oG, 2.36
Vi Nl <|VHU|g Vi flg >9 <|VHU|g E>9 (230

and from (2.32) we deduce that

‘VHU’g /
d d < (1+ V 1-— di
// |Vulg ( : Vil \/ \VHUI ’VE> E

(2.37)
=(1+ 6)/ \/|VHU|§ — (ve, Veu)2dug.
In a similar way, we obtain
|VHU|9
> (1— 2 _ 2
/R/ e s 2 (1=2) [ /ISl — (e, S e
This concludes the proof. 0

We can now prove the coarea formula for H-regular boundaries.

Proposition 2.7. Let Q C H" be an open set, u € C*(Q), and E C H" be an open
domain such that OF N Q) is an H-reqular hypersurface. Then

| Viulg 5 5
/R \Vul, Ay ds 0 \/|VHU|9 — (vE, Vru); dpp. (2.38)

Proof. Let us define the set

[ Viru(p )\g

The set A is relatively open in OF N 2. Let € > 0 be fixed. Since the measure ug is
locally doubling on OE N Q (see e.g. [24, Corollary 4.13]), by Lemma 2.6 and Vitali
covering Theorem (see e.g. [11, Theorem 1.6]) there exists a countable (or finite)
collection of balls B,,(p;), i € N, such that:

A:{peﬁEﬂQ:VHu(p)#Oandz/E( ) £+ D)

i) for any ¢ € N we have p; € A and 0 < r; < 7(p;,e), where 7 is as in the
statement of Lemma 2.6;
ii) the balls B,,(p;) are contained in A and pairwise disjoint;

111) HE (A \ UieN m(pl)) = 0.

It follows that we have:

Vuu
/ / | VH |9 d dS < (1 + 6)/ \/|VHU|§ — <VE, VHU>§ d,uE
R JU;en Br; (i) | u|9 Usen Br; (o)

=(1 +6)/ \/VHu\?] — (v, Vyu)2 dug
A

—(1+¢) /Q \/|vHu|g — (vp, Viu)2 dpup.
(2.39)
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The last equality follows from the fact that \/ |Viu|2 — (v, Vau)?2 = 0 outside A. In

the same way one also obtains

|VH |g 5 .
//ZEN TV, duyds > (1 —¢) /\/|VHUI (ve, Vu)2 dpp. (2.40)

Moreover, by Propos1t10n 2.5, there holds

v
@S [Vely U, Br, (00

In particular, the integral on the left hand side of the last inequality is 0 and, by
(2.39) and (2.40), we obtain

(1-— 5)/ \/|VHu|§ — (g, Vgu)2 dug
Q

|Vl
< dus ds
/]R o |Vul o
Q

Since € > 0 is arbitrary, this concludes the proof. O

By a standard approximation argument, we also have the following extension of
the coarea formula (2.38).

Proposition 2.8. Let Q@ C H" be an open set, u € C*(R), and E be an open
domain such that OF NS2 is an H-regqular hypersurface. Then, for any Borel function
h:0FE — [0,00) there holds

|VHU|9 2 2
// Val, du; ds Qh\/|VHu|g—<VE,VHu>gd,uE.

Our next step is to prove the coarea formula for .#?"*1-rectifiable sets.

Lemma 2.9. Let R C H" be an .*"-rectifiable set. Then, there exists a Borel
S rectifiable set ' C H" such that /*" ™ (RAR') = 0.

Proof. By assumption, there exist a .#?"*1l-negligible set N and H-regular hypersur-
faces S; C H", j € N, such that

RcNuUlJs;
j=1
It is proved in [7, 3] that (up to a localization argument), for any j € N, there exist
an open set U; C R?", a homeomorphism ®; : U; — S}, and a continuous function
i+ U — [1,00) such that " 1LS; = ®,u(p; L*"LU;). Since the Lebesgue
measure " is a complete Borel measure, for any j € N there exists a Borel set
T; C Uj such that
LMT08; (RN S))) =
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In particular, the Borel set

R =[] o;(1))
j=1

is "l equivalent to R. O

Proof of Theorem 1.5. Step 1. We prove (1.8) when R is an H-regular hypersurface.
Then, R is locally the boundary of an open set £ C H" with H-regular boundary.
Moreover, we have (locally) prp = #*""1L R and vg = vg, up to the sign.

We define the measures p3 = p3 for any s such that Vu # 0 on 2°. The measura-
bility of the function in (1.7) follows from the argument (2.34). Formula (1.8) follows
from Proposition 2.8.

Step 2. We prove (1.8) when R is an .*"*l_rectifiable Borel set. There exist a
St qnegligible set N and H-regular hypersurfaces S; C H", j € N such that

RcNuUlJs;
j=1
Each S; is (locally) the boundary of an open set E; with H-regular boundary. We
denote by I, the perimeter measure on 0F; N %° induced by E;.

We define the pairwise disjoint Borel sets R; = (RN S;) \ UI_} Sy, and we let
M =D iy, L Ry
=1

The definition is well posed for any s such that Vu # 0 on X°. We have vgp = tvg,
St a.e. on R; and the sign of vg does not affect formula (1.8). From the Step 1,

for each j € N the function
s .—>/ |VHu|g _
[V !g E

is #'-measurable; here, we were allowed to utilize Step 1 because Rr; is Borel regular.
Thus also the function

|vHu|g / |VHU|9
S —»
ARIED> g

is measurable. Moreover, we have

RQ!V!g 1IR{R]- !V!g
:2/ IV — (g, V)3 >
j=1 "1

_ / IVl — (v, Vigu) d
R




20 MONTI AND VITTONE

Step 3. Finally, if R is .#*"*!-rectifiable but not Borel, we set u$, = u$,, where R’
is a Borel set as in Lemma 2.9. Again, this definition is well posed for a.e. s € R.
This concludes the proof. [l

2.3. Proof of Theorem 1.6. In this subsection we assume n > 2.

Lemma 2.10. Forn > 2, let Q C H" be an open set, u € C*(£2) a smooth function,
R C Q an *" L rectifiable set. Then

S ({p e R : Vyu(p) =0 and Vu(p) # 0}) = 0.
Proof. 1t is enough to prove the lemma when R is an H-regular hypersurface. Let
A= {p€ R:Vyu(p) =0 and Vu(p) #0}.

We claim that #?*"t1(A) = 0.
Let p € A be a fixed point and let vg(p) be the horizontal normal to R at p. Since
n > 2, we have

dim{V(p) € H, : (V(p),vr(p))y =0} =2n—1>n+1.
Thus there exist left invariant horizontal vector fields V, W such that
(V(p)vr(p))g = (W(p),vr(p))y =0 and [V,W]=T.
From Vyu(p) = 0 and Vu(p) # 0 we deduce that Tu(p) # 0. It follows that
VWu(p) = WVu(p) = Tu(p) # 0,

and, in particular, we have either VWu(p) # 0 or WVu(p) # 0. Without loss of
generality, we assume that VWu(p) # 0. Then the set S = {qg € Q : Wu(q) = 0} is
an H-regular hypersurface near the point p € S. Since we have

VWu(p)

(V(p),vr(p))g =0 and (V(p),vs(p))y = [V Wu(p),

7&07

we deduce that vg(p) and vg(p) are linearly independent. Then there exists > 0 such
that the set RN.SN B, (p) is a 2-codimensional H-regular surface (see [8]). Therefore,
by [8, Corollary 4.4], the Hausdorff dimension in the Carnot-Carathéodory metric of
AN B,(p) C RNSN B,(p) is not greater than 2n. This is enough to conclude. [

Remark 2.11. Lemma 2.10 is not valid in the case n = 1. Consider the smooth
surface R = {(z,y,t) € H' : = 0} and the function u(z,y,t) =t — 2zy. We have

Vu=—42Y +T and Vyu= —4zxY.

Then we have
{p € R:Vyu(p) =0and Vu(p) #0} = R
and .73(R) = co.
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If n > 2 and 2, u, and R are as in Lemma 2.10, then the function

2
Vuu
|Vu\g\/1 - <VE, —\V5u|g >g

is defined .*"*!-almost everywhere on R. We agree that its value is 0 when |Vul|, = 0.
Viu
|V u‘g

is not defined.

Notice that, in this case,

Proof of Theorem 1.6. Let € > 0 be fixed. Then (1.9) can be obtained by plugging

- Jrl‘vgg‘; P h into (1.8), letting ¢ — 0 and using the monotone convergence

theorem. n

the function

3. HEIGHT ESTIMATE

In this section, we prove Theorem 1.3. We discuss first a relative isoperimetric
inequality on slices. Then we list some elementary properties of excess, and finally
we proceed with the proof.

We assume throughout this section that n > 2.

3.1. Relative isoperimetric inequalities. For each s € R, we define the level sets
of the height function

H! = {p € H" : §(p) = s}.
Let H® be the g-orthogonal projection of H onto the tangent space of H”. Since the

vector field X is orthogonal to H?, while the vector fields X»,..., X,,Y1,...,Y, are
tangent to H”, then at any point p € H we have

H? = span{Xs(p), ..., Xu(p), Y (p), Ya(p), ..., Ya(p) },
where X, Y5,..., X,,,Y, are as in (1.2) and

The natural volume in H” is the Lebesgue measure .£*". For any measurable set
F C H? and any open set 2 C H?, we define

(@) =sup { [ diviedz™ s e Cl@), ol <1},

where divyp = Xowo + ...+ Xpwon + Y 0ni1 + .+ Yoon. If p5(2) < oo then pf. is
a Radon measure in €.

By Theorem 1.6, for any Borel function h : H" — [0, 00) and any set E with locally
finite H-perimeter in H", we have the following coarea formula

/ / hd[I/SES ds = / h\ /1 — <I/E,X1>g duE, (341)
R n n

where E*¥ = ENH is the section of £ with H?. Notice that Vi = X;.
In the proof of Theorem 1.3, we need a relative isoperimetric inequality in each
slice H? for s € (—1,1). These slices are cosets of W = Hy and the isoperimetric
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inequalities in H? can be reduced to an isoperimetric inequality in the central slice
W = Hf relative to a family of varying domains.

For any s € (—1,1) let Q5 C W be the set 23 = (—sey) * Dy * (sey). This is the left
translation by —se; of the section C; NHY. See the introduction for the definition of
D; and C;. With the coordinates (y;,%,t) € W =R x C" ! x R, we have

Q= {(y,2,t) e W: (45 + [Z1°)* + (t — 4sy1)* < 1}.

The sets 2, C W are open and convex in the standard sense. The boundary 0€), is
a (2n — 1)-dimensional C'*° embedded surface with the following property. There are
4n open convex sets Uq,...,Uy C W such that 09, C Uf:l U; and for each ¢ the
portion of boundary 0Q2,NU; is a graph of the form p; = f#(p;) with j =2,...,2n+1
and p; = (P2, -+, Dj—1,Pj+1s---»Pansr1) € Vi, where V; C R*"! is an open convex set
and f7 € C*(V;) is a function such that

V17 (py) = V(@) < K[pj —g;| for all p;, g; € Vi, (3.42)

where K > 0 is a constant independent of ¢ = 1,...,4n and independent of s &€
(—1,1). In other words, the boundary 99, is of class C™! uniformly in s € (—1,1).

By Theorem 3.2 in [20], the domain €3 C W is a non-tangentially accessible (NTA)
domain in the metric space (W, dc¢) where dee is the Carnot-Carathéodory metric
induced by the horizontal distribution Hz?' In particular, Q; is a (weak) John domain
in the sense of [10]. Namely, there exist a point py € s, e.g. pp = 0, and a constant
C'; > 0 such that for any point p € €, there exists a continuous curve « : [0, 1] — Q;
such that (1) = po, 7(0) = p, and

disteo(y(0), 0925) > Cydec(y(o),p), o €0,1]. (3.43)

By Theorem 3.2 in [20], the John constant C; depends only on the constant K > 0
in (3.42). This claim is not stated explicitly in Theorem 3.2 of [20] but it is evident
from the proof. In particular, the John constant C; is independent of s € (—1,1).
Then, by Theorem 1.22 in [9] we have the following result

Theorem 3.1. Let n > 2. There exists a constant C(n) > 0 such that for any
s € (—1,1) and for any measurable set F' C W there holds

min{ 22(F 1.0,), 2(Q,\ F)}™ < C(n) D‘Z‘j;—ﬁu%m (3.44)

An alternative proof of Theorem 3.1 can be obtained using the Sobolev-Poincaré
inequalities proved in [10] in the general setting of metric spaces.

The diameter diamgo(€2) is bounded for s € (—1,1) and £?"(€),) > 0 is a constant
independent of s. Then we obtain the following version of (3.44).

Corollary 3.2. Let n > 2. For any 7 € (0,1) there exists a constant C(n,7) > 0
such that for s € (—1,1) and for any measurable set F C W satisfying

LMEF Q) < T L)
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there holds

2n

10(,) > C(n,7).L>(F N Q) 204 .

3.2. Elementary properties of the excess. We list here, without proof, the most
basic properties of the cylindrical excess introduced in Definition 1.2. Their proofs
are easy adaptations of those for the classical excess, see e.g. [13, Chapter 22]. Note
that, except for property 3), they hold also in the case n = 1.

1) For all 0 < r < s we have

2n+1
Exc(E,rv) < <f> Exc(FE, s,v). (3.45)

r

2) If (E;)jen is a sequence of sets with locally finite H-perimeter such that £; — E
as j — oo in Li (H"), then we have for any r > 0

loc
Exc(E,r,v) < liminf Exc(Ej, 7, v). (3.46)

j—ro0
3) Let n > 2. If E C H" is a set such that Exc(E,r,v) =0 and 0 € 0*E, then
ENC,={peC, :4(p) <0}. (3.47)
In particular, we have vy = v in C, N OE. See also [18, Proposition 3.6].
4) For any A > 0 and r > 0 we have
Exc(AE, Ar,v) = Exc(E,r,v), (3.48)
where A\E = {(A\z,\?t) e H" : (2,t) € E}.

3.3. Proof of Theorem 1.3. The following result is a first suboptimal version of
Theorem 1.3.

Lemma 3.3. Let n > 2. Forany s € (0,1), A € [0,00), and r € (0, 00] with Ar <1,
there exists a constant w(n, s, A,r) > 0 such that if E C H" is a (A, r)-minimizer of
H -perimeter in the cylinder Cy, 0 € OF, and Exc(E,2,v) < w(n,s, A, r), then

h(p)| < s for any p € OE N CY,

L ({pe ENCy:h(p) > s}) =0,

L ({pe Ci\ Eh(p) < —s}) =0.
Proof. By contradiction, assume that there exist s € (0,1) and a sequence of sets
(E;)jen that are (A, r)-minimizers in Cy and such such that

lim Exc(E;,2,v) =0

j—o0
and at least one of the following facts holds:

cither  there exists p € dE; N Cy such that s < [h(p)] < 1, (3.49)

or L ({pe E;NCi:h(p) > s}) >0, (3.50)

or L ({peCi\E;:h(p) <—s})>0. (3.51)
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By Theorem 4.3 in the Appendix A, there exists a measurable set F' C (5,3 such
that F' is a (A,r)-minimizer in Cs/3, 0 € OF and (possibly up to subsequences)
Ej N 05/3 — Fin L1(05/3). By (346) and (345)7 we obtain

Exc(F,4/3,v) < liminf Exc(E;,4/3,v) < (%)%H lim Exc(E;,2,v) = 0.

j—00 Jj—o0
Since 0 € OF, by (3.47) the set F'NCy3 is (equivalent to) a halfspace with horizontal

inner normal » = — X, and, namely,

Fn 04/3 = {p S 04/3 é(p) < 0}

Assume that (3.49) holds for infinitely many j. Then, up to a subsequence, there are
points (p;);en and py such that

pj €OE;NCy, |h(pj)| € (s,1] and p; — po € OF NCh.

We used again Theorem 4.3 in the Appendix A. This is a contradiction because
OF NCy = {p € C1 : 4(p) = 0}. Here, we used n > 2. Therefore, there exists jo € N
such that

{pedE;NCL:s<|h(p) <1} =0 forall j> j,
and hence
i (Cr\ {p € H" : [h(p)| < s}) = 0.

This implies that, for j > jo, xpg, is constant on the two connected components
Cin{p:4h(p) > s} and Cy N{p: h(p) < —s}. Since the sequence (E;);en converges
in L'(C}) to the halfspace F', then for any j > j, we have

xg, =0 " ae on CiN{p:4H(p) > s}, and
Xg, =1 £ ae on CiN{p:h(p) < —s}.
This contradicts both (3.50) and (3.51) and concludes the proof. O

Let 7 : H* — W be the group projection defined, for any p € H", by the formula

p=7(p) * (h(p)er).
For any set £ C H" and for any s € R, we let £ = E'NH? and we define the
projection
E,=7(E") ={weW:wx(se,) € E}.
Lemma 3.4. Let n > 2, let E C H" be a set with locally finite H-perimeter and
0 € OF, and let sp € (0,1) be such that
6(p)| < so for any p € OE N C4, (3.52)
L7 ({pe ENCyh(p) > so}) =0, (3.53)
L7 ({p e L\ E:h(p) < —so}) = 0. (3.54)
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Then, for a.e. s € (—1,1) and for any continuous function ¢ € C.(D;) we have, with
M =9"ENC, and My =M N {4 > s},

/ pd L = —/ pom(ve, X1),ds*" . (3.55)
EsNDy

S

In particular, for any Borel set G C Dy, we have

2M(G) = — / (v, X1}y 72 (3.56)
Mnr—1(G)
2(G) < (M AT (). (3.57)

Proof. 1t is enough to prove (3.55). Indeed, taking s < —s¢ in (3.55) and recalling
(3.52) and (3.54), we obtain

/ 0 dL* = —/ pom(vg, X1), ds* . (3.58)
D, M

Formula (3.56) follows from (3.58) by considering smooth approximations of yq. For-
mula (3.57) is immediate from (3.56) and |(vg, X1),| < 1.

We prove (3.55) for a.e. s € (—1, 1) and, namely, for those s satisfying the property
(3.61) below. Up to an approximation argument, we may assume that ¢ € C!(Dy).
Let r € (0,1) and o € (max{sg, s}, 1) be fixed. We define

F=EN(D,x(s,0))=En{wx(oe;) eH":w € D,, o€ (s,0)}.
We claim that for a.e. r € (0,1) and any s satisfying (3.61) we have
(vp, X1)gpr = (ve, X1)y*" LI EN (D, * (s,0)) + L*"_EN DS, (3.59)

Above, we let DS = {w = (se;) € H" : w € D, }. We postpone the proof of (3.59). Let
Z be a horizontal vector field of the form Z = (¢ om)X;. We have div,Z = 0 because
Xi(pom) =0. Hence, we obtain

O:/dngZCLZQ"Jrl :—/ por (vr, X1)ydpip,
F n

i.e., by Fubini-Tonelli theorem and by (3.59),

—/ @dfzn:—/ gpowdﬁzn:/ pom{vg, Xi),ds*"
EsnD, ENDg O*EN(Dyx(s,0))

Formula (3.55) follows on letting first » 1 and then o 7 1.
We are left with the proof of (3.59). Let ¢ € C}(H") be a test function. For any
w e W we let

E,={0eR:wx(ge1) € E}, 1y(0) =1v(wx*(0er)).
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Then we have 1, € C}(R) and, by Fubini-Tonelli theorem,

- [ xwazr = [ r / " p(w + (ge) Xyt (w + (0e1) do d- 2™ (w)
= —/Dr /: X, ()Y, (0) do dZL*" (w)

_ /D [ / " dDX 5, — (@)X (07) + uls)xe, (57| L7 (w),
T (3.60)

where Dx g, is the derivative of x g, in the sense of distributions and x g, (07), xg, (s1)
are the classical trace values of yg, at the endpoints of the interval (s, o). We used
the fact that the function g, is of bounded variation for .£?"-a.e. w € W, which in
turn is a consequence of the fact that X;yg is a signed Radon measure. For any such
w, the trace of xp, satisfies

XE,(57) = xEg,(s) = xp(w* (se;)) for ae. s,
so that, by Fubini’s Theorem, for a.e. s € R there holds
xe, (57) = xp(w * (se;)) for L*-a.e. w € D;. (3.61)
With a similar argument, using (3.53) and the fact that ¢ > sy one can see that
XE,(07) = xg(w * (0e;)) =0 for £*"-a.e. we D;. (3.62)

We refer the reader to [2] for an extensive account on BV functions and traces. By
(3.60), (3.61) and (3.62) we obtain

_ / Xy d.gt = / " dDyi, AL (W) + [ u(5) v (5) AL (w)
F D, Js D,

_ / Ol X gdun + | wde™
Dyx(s,0)

ENDs

= / U (vg, X1)ydS? T + / v dL,
O*EN(Dy(s,0)) END;g

and (3.59) follows. O

Corollary 3.5. Under the same assumptions and notation of Lemma 3.4, for a.e. s €

(—1,1) there holds
0 < 7"N(M,) — £*"(E; N Dy) < Exc(E,1,v). (3.63)
Moreover, we have
(M) — £*(Dy) = Exc(E,1,v). (3.64)
Proof. On approximating xp, with functions ¢ € C.(D;), by (3.55) we get

XQN(ES N Dl) == —/ <I/E,X1>g dﬂQ”H,

s
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and the first inequality in (3.63) follows. The second inequality follows from

F(M,) — LP(E,N DY) = / (1+ (vp, X1)g) 72!

s

— / |VE — V|9 dy?n—i—l (365>
2

< Exc(E,1,v).
Notice that v = —X;. Finally, (3.64) follows on choosing a suitable s < —s, and

recalling (3.52) and (3.54). In this case, the inequality in (3.65) becomes an equality
and the proof is concluded. 0

Proof of Theorem 1.3. Step 1. Up to replacing F with the rescaled set A\E = {(\z, \*t) €
H" : (2,t) € E} with A = 1/2k*r and recalling (3.48), we can without loss of gener-
ality assume that E is a (A’, 557 )-minimizer of H-perimeter in C5 with

/

Ve <1, 0 € OF, Exc(E,2,v) < eo(n). (3.66)
Our goal is to find ¢(n) and ¢;(n) > 0 such that, if (3.66) holds, then
1
sup {[6(p)| : p € OE N Cyjop2} < c1(n) Exc(E, 2, v)2@n+1) (3.67)
We require
eo(n) <w(n, 35, 2K, 52, (3.68)

where w is given by Lemma 3.3. Two further assumptions on g¢(n) will be made
later in (3.80) and (3.85). By (3.66), E is a (2k* 57 )-minimizer in C5. Letting
M = 0FE Ny, by Lemma 3.3 and (3.68) we have

1h(p)| < 4 for any p € M, (3.69)
52”“({;9 €eENC: ) (3.70)
L ({peCi\E: é < ——}) (3.71)
By (3.64) and (3.45) we get
0 <. 7*"H M) — £*(D;) < Exc(E,1,v) < 2" Exc(E, 2,v). (3.72)

Corollary 3.5 implies that, for a.e. s € (—1,1),
0 <. 7" (M,) — L*"(E,N Dy) < Exc(E,1,v) < 2" Exc(E,2,v) (3.73)
where, as before, M, = M N {4 > s}.
Step 2. Consider the function f: (—1,1) — [0, #*"T1(M)] defined by
f(s) =" (M), se(-1,1).
The function f is nonincreasing, right-continuous and, by (3.69), it satisfies
f(s) = M) for any s € (—1,— 2],

f(s) =0for any s € (55, 1].
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In particular, there exists sy € (— such that

3 i)
f(s) > .7 (M)/2 for any s < s,
f(s) <. (M)/2 for any s > sq.

Let s1 € (so, ) be such that

s) > v/Exc(E,2,v) for any s < s, (3.75)
f(s) = 7" (M,) < \/Exc(E,2,v) for any s > s;.

We claim that there exists c3(n) > 0 such that

1
h(p) < s1+ ca(n)Exc(E,2,v)2C2+D)  for any p € OFE N C jgy. (3.76)

Inequality (3.76) is trivial for any p € OE N C o2 with é(p) < s lfp e OENChjape
is such that £(p) > sy, then

Byp)—s, ( ) C Bijar(p) C B C Ch.
We used the fact that [|p||x < 5; whenever p € C g2, see (1.3). Therefore
Blé(p)_s1 (p) cCin{h > s1}
and, by the density estimate (4.91) of Theorem 4.1 in Appendix A,
ks(n)(h(p) — 51)*"" < pp(Byp)—s (p)) < pe(Cr N {5 > s1})

= .7 (M) = f(s1) < VExc(E,2,v).

(3.74)

This proves (3.76).

Step 3. We claim that there exists ¢3(n) > 0 such that

_1
s1— so < c3(n)Exc(E, 2, v)2@n+1) (3.77)

By the coarea formula (3.41) with h = x¢,, Di = {p € C\ : 4(p) = s}, and E* = {p €
E : (p) = s}, we have

1
/ / d,uSEsds:/ ,/1—(1/E,X1>3d,u5§\/§/ 1+ (ve, X1),ds*"
-1Jps ol M
By Holder inequality, (4.91), (3.56), and (3.72), we deduce that
1 1/2
/ / ds. ds <+/2.77 (M) ( / (14 (i, X1)y) dYQ"“)
—1 $ M

<eca(n)(S# (M) — 22 (Dy)V?
)V Exc(E,2,v).

(3.78)

65(
By Corollary 3.5 and (3.72), we obtain, for a.e. s € [sq, $1),
LP(EsNDy) < (M) = f(s) < f(so)

)=
41 on 2n+1 3.79
rd 2( )Sz (D1)+22 EXC(E,Q,U)SEX%(DI)‘ (3.79)
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The last inequality holds provided that

22t (n) < @. (3.80)
Let Q, = (—sey) * D = (—se;) % Dy  (sey) and F, = (—se;) * ES. We have
L7(Q,) = £*(Dy) = £*"(Dy), (3.81)
and, by (3.79),
LP(F,NQ) = L"(E*ND;) = L*"(E,ND;) < 232”@1). (3.82)

Moreover, by left invariance we also have

i (D5) = 1, (). (3.8)
By (3.81)—(3.83) and Corollary 3.2, there exists a constant k(n) > 0 independent

of s € (—1,1) such that
2n

2n
pps (D) = iy, (Qs) > k(n) L2 (F, N Q)2+ = k(n) 2% (E° N Dy)2n+1. (3.84)
This, together with (3.78), gives

n)v Exc(E,2,v) > / LPES N Ds)2n+1 ds

(3.73) 2n
> / (y%ﬂ( ,) — 22" Exc(E, 2 ,,))> " ds

S0

(3.75) o oan+1 2311
> / ( Exc(E,2,v) — 2" Exc(F, 2, V))) ds
50

1 [/ _n_
5/ Exc(E,2,v)2n+1 ds.

S0

v

In the last inequality, we require that eq(n) satisfies
Vz =2 > 1z forall z € [0,e0(n)). (3.85)
It follows that

1 _n_
ce(n)\/Exc(E,2,v) > 5 Exc(FE,2,v)2n+1(s1 — sg),
and (3.77) follows.

Step 4. Recalling (3.76) and (3.77), we proved that there exist £9(n) and cg(n) such
that the following holds. If F is a (2k?, 2k2) -minimizer of H-perimeter in Cy such that

0 € 0F, Exc(FE,2,v) < go(n)

and sg = so(F) satisfies (3.74), then
1
h(p) — so < cr(n)Exc(E,2,v)22+1)  for any p € OE N C jae. (3.86)

Let us introduce the mapping ¥ : H" — H"
U(T1, Ty Ty Y1y v oy Yny t) = (=21, =Ty ooy =Ty Y1y« oy Yy —1)
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Then we have U™! = U, W(Cy) = Cy, (Xj,ver))g = —(Xj,vr)g o WU, (Y}, ver))y =
(Y, vp)go W, and puy(r) = Wupp, for any set F' with locally finite H-perimeter; here,

W, denotes the standard push-forward of measures. Therefore, the set £ = W(H"\ E)
satisfies the following properties:

i) Eis a (2k2, 5tz )-minimizer of H-perimeter in Cb;
i) 0 € OF and

1
EXC(E 2, V) 2Q /aE . |VE — I/|§d5ﬂ2n+1 = Exc(E727 y) < 50(”);
*ENCo

iii) setting M = 9"E N Cy = W(M) and f(s) = .2 (M N {§ > s}), we have
f(s) = (M) /2 = > (M) /2 for any s < —sq,
f(s) < 2" H(M) /2 for any s > —s.

Formula (3.86) for the set E gives
1

h(p) + so < cz(n)Exc(E,2,v)22+1)  for any p € OF N Chjak2.
Notice that we have p € E if and only if ¥(p) € JF and, moreover, 4(¥(p)) = —4(p).

Hence, we have

_1
—h(p) + so < cr(n)Exc(E, 2,v)22 40 for any p € OE N C} 2. (3.87)

By (3.86) and (3.87) we obtain

1

15(p) — so| < cr(n)Exc(E,2,v)2Cm+D  for any p € OF N C o2, (3.88)
and, in particular,
1
|so] < er(n)Exc(E, 2,v)2Cn+1) (3.89)
because 0 € OE N C)9p2. Inequalities (3.88) and (3.89) give (3.67). This completes
the proof. O

4. APPENDIX A

We list some basic properties of A-minimizers of H-perimeter in H". The proofs
are straightforward adaptations of the proofs for A-minimizers of perimeter in R".

Theorem 4.1 (Density estimates). There exist constants ki(n), k2(n), ks(n), ka(n) >
0 with the following property. If E is a (A, r)-minimizer of H-perimeter in @ C H",
pE€OENQ, B.(p) CQ and s <, then

L2 (E N Bi(p))

ki(n) < T < ka(n) (4.90)
ko) < 2D < g ) (4.91)

For a proof see [13, Theorem 21.11]. By standard arguments Theorem 4.1 implies
the following corollary.
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Corollary 4.2. If E is a (A, r)-minimizer of H-perimeter in Q2 C H", then
OB\ 0'E)N Q) = 0.

Theorem 4.3. Let (E;);en be a sequence of (A, r)-minimizers of H-perimeter in an
open set Q C H", Ar < 1. Then there exists a (A, r)-minimizer E of H-perimeter in
Q and a subsequence (Ej, )ren such that

E;, = FE inL.(Q) and VE;, IE;, X vpug
as k — oo. Moreover, the measure theoretic boundaries OE;, converge to OE in the
sense of Kuratowski, i.e.,
i) if p;, € OE; N2 and pj, — p € Q, then p € OF;
ii) if p € OENQ, then there exists a sequence (p;, )ken Such that p;, € OE;, N
and p;, — D.
For a proof in the case of the perimeter in R", see [13, Chapter 21].

5. APPENDIX B

We define a Borel unit normal vg to an .#?"*l-rectifiable set R C H" and we
show that the definition is well posed .#?"*1-almost everywhere, up to the sign. The
normal vg to an H-regular hypersurface S C H" is defined in (1.6).

Definition 5.1. Let R C H" be an .#?*"*!-rectifiable set such that
] (R\ g Sj) —0 (5.92)
jEN
for a sequence of H-regular hypersurfaces (5;),en in H”. For any p € RN UjGN S; we
define
vr(p) = vs,(p),
where J is the unique integer such that p € S5\ U, S;-

We show that Definition 5.1 is well posed, up to a sign, for .#?*"*l-a.e. p. Namely,
let (S})jen and (S7)jen be two sequences of H-regular hypersurfaces in H" for which
(5.92) holds and denote by v} and v%, respectively, the associated normals to R
according to Definition 5.1. We show that v = 1% .#?""!la.e. on R, up the the sign.

Let A C R be the set of points such that either v}(p) is not defined, or v%4(p) is
not defined, or they are both defined and v (p) # +v%(p). It is enough to show that
S*"1(A) = 0. This is a consequence of the following lemma.

Lemma 5.2. Let Sy,5; be two H-regular hypersurfaces in H™ and let
A={pe S NS,y :vs(p) # tvs,(p)}

Then, the Hausdorff dimension of A in the Carnot-Carathéodory metric is at most
2n, dimge(A) < 2n, and, in particular, #*"1(A) = 0.

Proof. The blow-up of S;, 7 = 1,2, at a point p € A is a vertical hyperplane II; x R C
R?" x R = H", see e.g. [7], where:
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i) by blow-up of S; at p we mean the limit
lim A(p~' * S;)

A—00

in the Gromov-Hausdorff sense. Recall that, for E C H", we define \E' =
{(Az,\?t) e H" : (2,t) € E}).
ii) For ¢ = 1,2, IT; C R*" is the normal hyperplane to vg,(p) € H, = R*".

It follows that the blow-up of A at p is contained in the blow-up of S; N Sy at p, i.e.,
in (IT; N1II,) x R. Since vg, (p) # tvs,(p), 11 N1y is a (2n — 2)-dimensional plane in
R?", and we conclude thanks to the following lemma. 0J

Lemma 5.3. Let k=0,1,...,2n and A C H" be such that for any p € A, the blow-
up of A at p is contained in 11, X R for some plane 11, C R*" of dimension k. Then
we have dimge(A) < k + 2.

Proof. We claim that for any n > 0 we have
SHEEEN(A) = 0. (5.93)

Let € € (0,1/2) be such that Ce” < 1/2, where C' = C(n) is a constant that will
be fixed later in the proof. By the definition of blow-up, for any p € A there exists
rp, > 0 such that for all r € (0,r,) we have

(ptx A)NU, C (I1,)e x R,
where (II,)., denotes the (er)-neighbourhood of II,, in R?". For any j € N set
Ai={peAnB;:r,>1/j}.
To prove (5.93), it is enough to prove that
FIEEN(A) =0

for any fixed j > 1. This, in turn, will follow if we show that, for any fixed § € (0, %),
one has

inf{ZTfHM : Aj C U U”.(pi), r < 25(5} <

ieN 1 ieN (5.94)
: k+2+4n
gélnf{eeri .AjcgUn(pi),m<5}.

Let (U,,(p:))ien be a covering of A; with balls of radius smaller than §. There exist
points p; € A; such that (U, (P;))ien is a covering of A; with balls of radius smaller
than 26 < 1/j. By definition of A;, we have

(ﬁ;1 * AJ) N U27“¢ - ((Hf)i)sri X R) N U27'i'

The set ((IT;,)er; X R) N Uy, can be covered by a family of balls (Us,, (p}))nen, of
radius er; < 2e6 in such a way that the cardinality of H; is bounded by Ce=*=2,
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where the constant C' depends only on n and not on . In particular, the family of

balls (Us,, (Di * p},))iennen, is a covering of A; and

D D (radius Uy (i) 277 = 37 37 (o) 20 < O7F2 (o) 20

ieN heH; ieN heH; ieN
1
_ k+2+4n k+2+
DWAEED W
ieN i
This proves (5.94) and concludes the proof. O
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