
The regularity problem for sub-Riemannian
geodesics

Roberto Monti

1 Introduction

One of the main open problems in sub-Riemannian geometry is the regularity of
length minimizing curves, see [12, Problem 10.1]. All known examples of length
minimizing curves are smooth. On the other hand, there is no regularity theory of a
general character for sub-Riemannian geodesics.

It was originally claimed by Strichartz in [15] that length minimizing curves are
smooth, all of them being normal extremals. The wrong argument relied upon an
incorrect application of Pontryagin Maximum Principle, ingnoring the possibility
of abnormal (also called singular) extremals. In 1994 Montgomery discovered the
first example of a singular length minimizing curve [11]. In fact, manifolds with
distributions of rank 2 are rich of abnormal geodesics: in [9], Liu and Sussmann
introduced a class of abnormal extremals, called regular abnormal extremals, that
are always locally length minimizing. On the other hand, when the rank is at least 3
the situation is different. In [4], Chitour, Jean, and Trélat showed that for a generic
distribution of rank at least 3 every singular curve is of minimal order and of corank
1. As a corollary, they show that a generic distribution of rank at least 3 does not
admit (nontrivial) minimizing singular curves.

The question about the regularity of length minimizing curves remains open. The
point, of course, is the regularity of abnormal minimizers. Some partial results in
this direction are obtained in [8] and [13]. In this survey, we describe these and other
recent results. In Subsection 5.2, we present the classification of abnormal extremals
in Carnot groups [6], that was announced at the meeting Geometric control and sub-
Riemannian geometry held in Cortona in May 2012. The example of nonminimizing
singular curve of Section 7 is new.
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We refer the reader to the monograph [2] for an excellent introduction to Geo-
metric Control Theory, see also the book in preparation [1].

2 Basic facts

Let M be an n-dimensional smooth manifold, n ≥ 3, let D be a completely nonin-
tegrable (i.e., bracket generating) distribution of r-planes on M, r ≥ 2, called hor-
izontal distribution, and let g = gx be a smooth quadratic form on D(x), varying
smoothly with x ∈M. The triple (M,D ,g) is called sub-Riemannian manifold.

A Lipschitz curve γ : [0,1]→M is D-horizontal, or simply horizontal, if γ̇(t) ∈
D(γ(t)) for a.e. t ∈ [0,1]. We can then define the length of γ

L(γ) =
(∫ 1

0
gγ(t)(γ̇(t))dt

)1/2
.

For any couple of points x,y ∈M, we define the function

d(x,y) = inf
{

L(γ) : γ is horizontal, γ(0) = x and γ(1) = y
}
. (1)

If the above set is nonempty for any x,y ∈ M, then d is a distance on M, usually
called Carnot-Carathéodory distance.

By construction, the metric space (M,d) is a length space. If this metric space
is complete, then closed balls are compact, and by a standard application of Ascoli-
Arzelà theorem, the infimum in (1) is attained. Namely, for any given pair of points
x,y ∈ M there exists at least one Lipschitz curve γ : [0,1]→ M joining x to y and
such that L(γ) = d(x,y). This curve, which in general is not unique, is called a length
minimizing curve. Its a priori regularity is the Lipschitz regularity. In particular,
length minimizing curves are differentiable a.e. on [0,1].

For our porpouses, we can assume that M is an open subset of Rn or the whole Rn

itself, and that we have D(x) = span{X1(x), . . . ,Xr(x)}, x∈Rn, where X1, . . . ,Xr are
r ≥ 2 linearly independent smooth vector fields in Rn. With respect to the standard
basis of vector fields in Rn, we have, for any j = 1, . . . ,r,

X j =
n

∑
i=1

X ji
∂

∂xi
, (2)

where X ji : Rn→ R are smooth functions. A Lipschitz curve γ : [0,1]→M is then
horizontal if there exists a vector of functions h=(h1, . . . ,hr)∈ L∞([0,1];Rr), called
controls of γ , such that

γ̇ =
r

∑
j=1

h jX j(γ), a.e. on [0,1].
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We fix on D(x) the quadratic form gx that makes X1, . . . ,Xr orthonormal. Any other
choice of metric does not change the regularity problem. In this case, the length of
γ is

L(γ) =
(∫ 1

0
|h(t)|2dt

)1/2
.

Let h = (h1, . . . ,hr) be the controls of a horizontal curve γ . When γ is length
minimizing we call the pair (γ,h) an optimal pair. Pontryagin Maximum Principle
provides necessary conditions for a horizontal curve to be a minimizer.

Theorem 1. Let (γ,h) be an optimal pair. Then there exist ξ0 ∈ {0,1} and a Lips-
chitz curve ξ : [0,1]→ Rn such that:

i) ξ0 + |ξ | 6= 0 on [0,1];
ii) ξ0h j + 〈ξ ,X j(γ)〉= 0 on [0,1] for all j = 1, . . . ,r;
iii) the coordinates ξk, k = 1, . . . ,n, of the curve ξ solve the system of differential

equations

ξ̇k =−
r

∑
j=1

n

∑
i=1

∂X ji

∂xk
(γ)h jξi, a.e. on [0,1]. (3)

Above, 〈ξ ,X j〉 is the standard scalar product of ξ and X j as vectors of Rn. If we
identify the curve ξ with the 1-form in Rn along γ

ξ = ξ1dx1 + . . .+ξndxn,

then 〈ξ ,X j〉 is the covector-vector duality.
The proof of Theorem 1 relies upon the open mapping theorem, see [2, Chapter

12]. For any v ∈ L2([0,1];Rr), let γv be the solution of the problem

γ̇
v =

r

∑
j=1

v jX j(γ
v), γ

v(0) = x0.

The mapping E : L2([0,1];Rr)→ Rn, E (v) = γv(1), is called the end-point map-
ping with initial point x0. The extended end-point mapping is the mapping F :
L2([0,1];Rr)→ Rn+1

F (v) =
(∫ 1

0
|v|2dt,E (v)

)
.

If (γ,h) is an optimal pair with γ(0) = x0 then F is not open at v = h and then its
differential is not surjective. It follows that there exists a nonzero vector (λ0,λ ) ∈
R×Rn =Rn+1 such that for all v∈ L2([0,1];Rr) there holds 〈dF (h)v,(λ0,λ )〉= 0.
The case λ0 = 0 is the case of abnormal extremals, that are precisely the critical
points of the end-point mapping E , i.e., points h where the differential dE (h) is
not surjective. In particular, the notion of abnormal extremal is independent of the
metric fixed on the horizontal distribution.

The curve ξ , sometimes called dual curve of γ , is obtained in the following way.
Let h be the controls of an optimal trajectory γ starting from x0. For x ∈ Rn, let γx
be the solution to the problem
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γ̇x =
r

∑
j=1

h jX j(γx) and γx(0) = x.

The optimal flow is the family of mappings Pt : Rn→ Rn, Pt(x) = γx(t) with t ∈ R.
We are assuming that the flow is defined for any t ∈ R. Let (λ0,λ ) ∈ R×Rn be
a vector orthogonal to the image of dF (h). At the point x0 we have the 1-form
ξ (0) = λ1dx1 + . . .+λndxn, where (λ1, . . . ,λn) are the coordinates of λ . Then the
curve t 7→ ξ (t) given by the pull-back of ξ (0) along the optimal flow at time t,
namely the curve

ξ (t) = P∗−t(x0)ξ (0), (4)

satisfies the adjoint equation (3).
We can use i)–iii) in Theorem 1 to define the notion of extremal. We say that

a horizontal curve γ : [0,1]→ Rn is an extremal if there exist ξ0 ∈ {0,1} and ξ ∈
Lip([0,1];Rn) such that i), ii), and iii) in Theorem 1 hold. We say that γ is a normal
extremal if there exists such a pair (ξ0,ξ ) with ξ0 6= 0. We say that γ is an abnormal
extremal if there exists such a pair with ξ0 = 0. We say that γ is a strictly abnormal
extremal if γ is an abnormal extremal but not a normal one.

If γ is an abnormal extremal with dual curve ξ , then by ii) we have, for any
j = 1, . . . ,r,

〈ξ ,X j(γ)〉= 0 on [0,1]. (5)

Further necessary conditions on abnormal extremals can be obtained differentiating
identity (5). In fact, one gets for any j = 1, . . . ,r,

r

∑
i=1

hi〈ξ , [Xi,X j](γ)〉= 0 a.e. on [0,1]. (6)

When the rank is r = 2, from (6) along with the free assumption |h| 6= 0 a.e. on [0,1]
we deduce that

〈ξ , [X1,X2](γ)〉= 0 on [0,1]. (7)

In the case of strictly abnormal minimizers, necessary conditions analogous to (7)
can be obtained also for r ≥ 3.

Theorem 2. Let γ : [0,1]→ Rn be a strictly abnormal length minimizer. Then any
dual curve ξ ∈ Lip([0,1],Rn) of γ atisfies

〈ξ , [Xi,X j](γ)〉= 0 on [0,1] (8)

for any i, j = 1, . . . ,r.

Condition (8) is known as Goh condition. Theorem 2 can be deduced from second
order open mapping theorems. We refer to [2, Chapter 20] for a systematic treatment
of the subject. See also the work [3].

The Goh condition naturally leads to the notion of Goh extremal. A horizontal
curve γ : [0,1]→Rn is a Goh extremal if there exists a Lipschitz curve ξ : [0,1]→Rn
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such that ξ 6= 0, ξ solves the adjoint equation (3) and 〈ξ ,Xi(γ)〉= 〈ξ , [Xi,X j](γ)〉=
0 on [0,1] for all i, j = 1, . . . ,r.

3 Known regularity results

In this section, we collect some regularity results for extremal and length minimzing
curves. Other results are discussed in Section 4. The case of normal extremal is clear
and classical.

Theorem 3. Let (M,D ,g) be any sub-Riemannian manifold. Normal extremals are
C∞ curves that are locally length minimzing.

In fact, with the notation of Section 2, if γ is a normal extremal with controls h
and dual curve ξ , by condition ii) in Theorem 1 we have, for any j = 1, . . . ,r,

h j =−〈ξ ,X j(γ)〉 a.e. on [0,1]. (9)

This along with the adjoint equation (3) implies that the pair (γ,ξ ) solves a.e. the
system of Hamilton’s equations

γ̇ =
∂H
∂ξ

(γ,ξ ), ξ̇ =−∂H
∂x

(γ,ξ ), (10)

where H is the Hamiltonian function

H(x,ξ ) =−1
2

r

∑
j=1
〈ξ ,X j(x)〉2.

This implies that γ̇ and ξ̇ are Lipschitz continuous and thus γ,ξ ∈C1,1. By iteration,
one deduces that γ,ξ ∈C∞.

The fact that normal extremals are locally length minimizing follows by a cali-
bration argument, see [9, Appendix C]. Indeed, using the Hamilton’s equation (10),
the 1-form ξ along γ can be locally extended to an exact 1-form ξ satisfying

r

∑
j=1
〈ξ ,X j(x)〉2 = 1.

This 1-form provides the calibration.

The distribution D = span{X1, . . . ,Xr} on M is said to be bracket-generating of
step 2 if for any x ∈M we have

dim
(
span{X j(x), [Xi,X j](x) : i, j = 1, . . . ,r}

)
= n, (11)

where n = dim(M). For distributions of step 2, Goh condition (8) implies the
smoothness of any minimizer.
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Theorem 4. Let (M,D ,g) be a sub-Riemannian manifold where D is a distribution
that is bracket generating of step 2. Then any length minimizing curve in (M,D ,g)
is of class C∞.

In fact, if γ is a strictly abnormal length minimizing curve with dual curve ξ

then by (5), (8), and (11) it follows that ξ = 0 and this is not possible. In other
words, there are no strictly abnormal minimizers and this implies the claim made in
Theorem 4.

When the step of the distribution is at least 3, then there can exist strictly abnor-
mal extremals. When the step is precisely 3, the regularity question is clear within
the setting of Carnot groups. Let g be a stratified nilpotent n-dimensional real Lie
algebra with

g= g1⊕ . . .⊕gs, s≥ 2,

where gi+1 = [g1,gi] for i≤ s−1 and gi = {0} for i > s.
The Lie algebra g is the Lie algebra of a connected and simply-connected Lie

group G that is diffeomorphic to Rn. Such a Lie group is called Carnot group. The
horizontal distribution D on G is induced by the first layer g1 of the Lie algebra. In
fact, D is spanned by a system of r linearly independent left-invariant vector fields.
By nilpotency, the distribution is bracket-generating. So any quadratic form on g1
induces a left-invariant sub-Riemannian metric on G. The number r = dim(g1) is
the rank of the group. The number s≥ 2 is the step of the group.

Theorem 5. Let G be a Carnot group of step s = 3 with a smooth left-invariant
quadratic form g on the horizontal distribution D . Any length minimizing curve in
(G,D ,g) is of class C∞.

This theorem is proved in [16]. A short and alternative proof, given in [6, Theo-
rem 6.1], relies upon the fact that a strictly abnormal length minimizing curve must
be contained in (the lateral of) a proper Carnot subgroup. Then a reduction argument
on the rank of the group reduces the analysis to the case r = 2, where abnormal
extremals are easily shown to be integral curves of some horizontal left-invariant
vector field.

When the step is s = 4, there is a regularity result only for Carnot groups of rank
r = 2, see [8, Example 4.6].

Theorem 6. Let G be a Carnot group of step s = 4 and rank r = 2 with a smooth
left invariant quadratic form g on the horizontal distribution D . Then any length
minimizing curve in (G,D ,g) is of class C∞.

The proof of this result relies upon two facts. First, one proves that the horizontal
coordinates of any abnormal extremal are contained in the zero set of a quadratic
polynomial in two variables. This shows that the only singularity that abnormal ex-
tremals can have is of corner type. Then using a general theorem proved in [8] (see
Section 4) one concludes that extremal curves with corners are not length minimiz-
ing.

When the rank is r = 2 and the step s is larger than 4, the best regularity known
for minimizers is the C1,δ regularity.
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Theorem 7. Let G be a Carnot group of rank r = 2, step s > 4 and with Lie algebra
g= g1⊕ . . .⊕gs satisfying

[gi,g j] = 0 for all i, j ≥ 2 such that i+ j > 4. (12)

Then any length minimizing curve in (G,D ,g), where g is a smooth left-invariant
metric on the horizontal distribution D , is of class C1,δ for any

0≤ δ < min
{ 2

s−4
,

1
4

}
. (13)

This theorem is proved in [13, Theorem 10.1]. It is a byproduct of a technique that
is used to analyse the length minimality properties of extremals of class C1 whose
derivative is only δ -Hölder continuos for some 0 < δ < 1. We give an example of
such techniques in Section 7. The restriction δ < 2/(s− 4) is a technical one. The
estimates developed in [13], however, show that the restriction δ < 1/4 is deeper.
We shall discuss (12) it in the next section.

4 Analysis of corner type singularities

Let M be a smooth manifold with dimension n ≥ 3, and let D be a completely
nonintegrable distribution on M. Let D1 = D and Di = [D1,Di−1] for i ≥ 2, i.e.,
Di is the linear span of all commutators [X ,Y ] with X ∈D1 and Y ∈Di−1. We also
let L0 = {0} and Li = D1 + . . .+Di, i ≥ 1. By the nonintegrability condition, for
any x ∈ M there exists s ∈ N such that Ls(x) = TxM, the tangent space of M at x.
Assume that D is equiregular, i.e., assume that for each i = 1, . . . ,s

dim
(
Li(x)/Li−1(x)

)
is constant for x ∈M. (14)

In [8], Leonardi and the author proved the following theorem.

Theorem 8. Let (M,D ,g) be a sub-Riemannian manifold, where g is a metric on
the horizontal distribution D . Assume that D satisfies (14) and

[Li,L j]⊂Li+ j−1, i, j ≥ 2, i+ j > 4. (15)

Then any curve in M with a corner is not length minimizing in (M,D ,g).

A “curve with a corner” is a D-horizontal curve γ : [0,1]→M such that at some
point t ∈ (0,1) the left and right derivatives γ̇L(t) 6= γ̇R(t) exist and are different. The
proof of Theorem 8 is divided into several steps.

1) First one blows up the manifold M, the distribution D , the metric g, and the
curve γ at the corner point x = γ(t). The blow-up is in the sense of the nilpotent
approximation of Mitchell, Margulis and Mostow (see e.g. [10]). The limit structure
is a Carnot group and the limit curve is the union of two half-lines forming a corner.
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2) The limit curve is actually contained in a subgroup of rank 2, and after a
suitable choice of coordinates one can assume that the manifold is M = Rn with a
2-dimensional distribution D = span{X1,X2} spanned by the vector fields in Rn

X1 =
∂

∂x1
and X2 =

∂

∂x2
+

n

∑
j=3

f j(x)
∂

∂x j
, (16)

where f j : Rn→ R, j = 3, . . . ,n, are polynomials with certain properties. The curve
obtained after the blow-up is γ : [−1,1]→ Rn

γ(t) =
{
−te2, t ∈ [−1,0],

te1, t ∈ [0,1], (17)

where e1, . . . ,en is the standard basis of Rn. If the limit curve is not length mini-
mizing in the limit structure, then the original curve is not length minimizing in the
original structure.

3) At this stage, one uses (15). If the original distribution satisfies (15), then the
limit Lie algebra satisfies (12) and the polynomials f j only depends on the variables
x1 and x2. This makes possible an effective and computable way to prove that the
curve γ in (17) is not length minimizing. One cuts the corner of γ in the x1x2 plane
gaining some length. The new planar curve must be lifted to get a horizontal curve,
changing in this way the end-point. One can use several different devices to bring
the end-point back to its original position. To do this, we can use a total amount
of length that is less than the length gained by the cut. This adjustment is in fact
possible, and the entire construction is the main achievement of [8].

The restriction (15) has a technical character. The problem of dropping this re-
striction is adressed in [14] (see also Subsection 6.2). The cut-and-adjust technique
introduced in [8] is extended in [13] to the analysis of curves having singularities of
higher order. In Section 7, we study a nontrivial example of such a situation.

5 Classification of abnormal extremals

The notion of abnormal extremal is rather indirect or implicit. There is a differential
equation, the differential equation (3), involving the dual curve and the controls of
the extremal. Even though this equation can be translated into some better form
(see Theorem 2.6 in [6]), nevertheless the carried information is not transparent. In
this section, we present some attempts to describe abnormal extremals is a more
geometric or algebraic way.
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5.1 Rank 2 distributions

We consider first the case when M =Rn and D is a rank 2 distribution in M spanned
by vector fields X1 and X2 as in (16), where f3, . . . , fn ∈ C∞(R2) are functions de-
pending on the variables x1,x2. We fix on D the quadratic form g making X1 and X2
orthonormal. Let K : Rn−2×R2→ R be the function

K(λ ,x) =
n−2

∑
i=1

λi
∂ fi+2

∂x1
(x), (18)

where λ = (λ1, . . . ,λn−2) ∈ Rn−2 and x ∈ R2.
In this special situation, Pontryagin Maximum Principle can be rephrased in the

following way (see Propositions 4.2 and 4.3 in [8]).

Theorem 9. Let γ : [0,1]→M be a D-horizontal curve that is length minimizing in
(M,D ,g). Let κ = (γ1,γ2) and assume that |κ̇| = 1 almost everywhere. Then one
(or both) of the following two statements holds:

1) There exists λ ∈ Rn−2, λ 6= 0, such that

K(λ ,κ(t)) = 0, for all t ∈ [0,1]. (19)

2) The curve γ is smooth and there exists λ ∈Rn−2 such that κ solves the system of
differential equations

κ̈ = K(λ ,κ)κ̇⊥, (20)

where κ⊥ = (−κ2,κ1).

The geometric meaning of the curvature equation (20) was already noticed by
Montgomery in [11].

The interesting case in Theorem 9 is the case 1): the curve κ , i.e., the horizontal
coordinates of γ , is in the zero set of a nontrivial explicit function.

5.2 Stratified nilpotent Lie groups

In free stratified nilpotent Lie groups (free Carnot groups) there is an algebraic char-
acterization of extremal curves in terms of an algebraic condition analogous to (19).

Let G be a free nilpotent Lie group with Lie algebra g. Fix a Hall basis X1, . . . ,Xn
of g and assume that the Lie algebra is generated by the first r elements X1, . . . ,Xr.
We refer to [5] for a precise definition of the Hall basis. The basis determines a
collection of generalized structure constants ck

iα ∈ R, where α = (α1, . . . ,αn) ∈ Nn

is a multi-index and i,k ∈ {1, . . . ,n}. These constants are defined via the identity

[Xi,Xα ] =
n

∑
k=1

ck
iα Xk, (21)
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where the iterated commutator Xα is defined via the relation

[Xi,Xα ] = [Xi, [X1, . . . , [X1︸ ︷︷ ︸
α1 times

, . . . , [Xn, . . . ,Xn︸ ︷︷ ︸
αn times

] . . .] . . .]]. (22)

Using the constants ck
iα , for any i = 1, . . . ,n and for any multi-index α ∈ Nn, we

define the linear mappings φiα : Rn→ R

φiα(v) =
(−1)|α|

α!

n

∑
k=1

ck
iα vk, v = (v1, . . . ,vn) ∈ Rn. (23)

Finally, for each i = 1, . . . ,n and v ∈Rn, we introduce the polynomials Pv
i : Rn→R

Pv
i (x) = ∑

α∈Nn
φiα(v)xα , x ∈ Rn, (24)

where we let xα = xα1
1 · · ·xαn

n .
The group G can be identified with Rn via exponential coordinates of the second

type induced by the basis X1, . . . ,Xn. For any v ∈ Rn, v 6= 0, we call the set

Zv =
{

x ∈ Rn : Pv
1 (x) = . . .= Pv

r (x) = 0
}

an abnormal variety of G of corank 1. For linearly independent vectors v1, . . . ,vm ∈
Rn, m ≥ 2, we call the set Zv1 ∩ . . .∩ Zvm an abnormal variety of G of corank m.
Recall that the property of having corank m for an abnormal extremal γ means that
the range of the differential of the end-point map at the extremal curve is n−m
dimensional.

The main result of [6] is the following theorem.

Theorem 10. Let G = Rn be a free nilpotent Lie group and let γ : [0,1]→ G be a
horizontal curve with γ(0) = 0. The following statements are equivalent:

A) The curve γ is an abnormal extremal of corank m≥ 1.
B) There exist m linearly independent vectors v1, . . . ,vm ∈Rn such that γ(t) ∈ Zv1 ∩

. . .∩Zvm for all t ∈ [0,1].

A stronger version of Theorem 10 holds for Goh extremals. If g= g1⊕g2⊕·· ·⊕
gs, we let r1 = dim(g1) and r2 = dim(g2). Then, for v ∈Rn with v 6= 0 we define the
zero set

Γv =
{

x ∈ Rn : Pv
i (x) = 0 for all i = r1 +1, . . . ,r1 + r2

}
.

Theorem 11. Let G = Rn be a free nilpotent Lie group and let γ : [0,1]→ G be a
horizontal curve such that γ(0) = 0. The following statements are equivalent:

A) The curve γ is a Goh extremal.
B) There exists v ∈ Rn, v 6= 0, such that γ(t) ∈ Γv for all t ∈ [0,1].
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The zero set Γv is always nontrivial for v 6= 0 and, moreover, there holds vi = 0
for all i = 0, . . . ,r1 + r2. See Remark 4.12 in [6].

These results are obtained via an explicit integration of the adjoint equation (3).
Some work in progress [7] shows that Theorems 10 and 11 also hold in nonfree
stratified nilpotent Lie groups.

6 Some examples

In this section, we present two examples. In the first one, we exhibit a Goh extremal
having no regularity beyond the Lipschitz regularity. In the second example, there
are extremals with corner in a sub-Riemannian manifold violating (15).

6.1 Purely Lipschitz Goh extremals

Let G be the free nilpotent Lie group of rank r = 3 and step s = 4. This group
is diffeomorphic to R32. By Theorem 11, Goh extremals of G starting from 0 are
precisely the horizontal curves γ in G contained in the algebraic set

Γv =
{

x ∈ R32 : Pv
4 (x) = Pv

5 (x) = Pv
6 (x) = 0

}
,

for some v ∈ R32 such that v 6= 0 and v1 = . . .= v6 = 0. The structure constants ck
iα

are determined by the relations of the Lie algebra of G. Using (24), we can then
compute the polynomials defining Γv (for details, see [6]). These are

Pv
4 (x) =−x1v7− x2v8− x3v9 + x5v30 + x6v31

+
x2

1
2

v15 + x1x2v16 + x1x3v17 +
x2

2
2

v18 + x2x3v19 +
x2

3
2

v20

Pv
5 (x) =−x1v10− x2v11− x3v12− x4v30 + x6v32

+
x2

1
2

v21 + x1x2v22 + x1x3v23 +
x2

2
2

v24 + x2x3v25 +
x2

3
2

v26

Pv
6 (x) = x1(v9− v11)− x2v13− x3v14− x4v31− x5v32 + x2

1(−
1
2

v17 +
1
2

v22 + v30)

+ x1x2(−v19 + v24 + v31)+ x1x3(−v20 + v25)+
x2

3
2

v29.

Theorem 12. For any Lipschitz function φ : [0,1]→R with φ(0) = 0, the horizontal
curve γ : [0,1]→G =R32 such that γ(0) = 0, γ1(t) = t2, γ2(t) = t, and γ3(t) = φ(t)
is a Goh extremal.

With the choice v7 = 1, v18 = 2, and v j = 0 otherwise, the relevant polynomials
are Pv

4 (x) = x2
2−x1, Pv

5 (x) = Pv
6 (x) = 0. Then, the curve γ is contained in the zero set
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Γv and, by Theorem 11, it is a Goh extremal. The Lipschitz function φ is arbitrary. It
would be interesting to understand the length minimality properties of γ depending
on the regularity of φ .

6.2 A family of abnormal curves

During the meeting Geometric control and sub-Riemannian geometry, A. Agrachev
and J. P. Gauthier suggested the following situation, in order to find a nonsmooth
length-minimizing curve.

In M = R4, consider the vector fields

X1 =
∂

∂x1
+2x2

∂

∂x3
+ x2

3
∂

∂x4
, X2 =

∂

∂x2
−2x1

∂

∂x3
, (25)

and denote by D the distribution of 2-planes in R4 spanned pointwise by X1 and X2.
Fix a parameter α > 0 and consider the initial and final points L= (−1,α,0,0)∈R4

and R = (1,α,0,0) ∈ R4. Let γ : [−1,1]→ R4 be the curve

γ1(t) = t, γ2(t) = α|t|, γ3(t) = 0, γ4(t) = 0, t ∈ [−1,1]. (26)

The curve γ is horizontal and joins L to R. Moreover, it can be easily checked that γ

is an abonormal extremal.
This situation is interesting because the distribution D violates condition (15)

with i = 2 and j = 3. In fact, we have

[[X2,X1], [[X2,X1],X1]] = 48
∂

∂x4
.

That condition (15) is violated is also apparent from the fact that the nonhorizontal
variable x3 do appear in the coefficients of the vector field X1 in (25). The fact that
the distribution D is not equiregular, is not relevant.

Agrachev and Gauthier asked whether the curve γ is length minimizing or not,
especially for small α > 0. The results of [8] cannot be used, because of the failure
of (15). In [14], we answered in the negative to the question, at least when α 6= 1.

Theorem 13. For any α > 0 with α 6= 1, the curve γ in (26) is not length minimizing
in (R4,D ,g), for any choice of metric g on D .

The proof is a lengthy adaptation of the cut-and-adjust technique of [8]. When
α = 1 the construction of [13] does not work and, in this case, the length minimality
property of γ remains open.
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7 An extremal curve with Hölder continuous first derivative

On the manifold M = R5, let D be the distribution spanned by the vector fields

X1 =
∂

∂x1
, X2 =

∂

∂x2
+ x1

∂

∂x3
+ x5

1
∂

∂x4
+ x1x3

2
∂

∂x5
. (27)

We look for abnormal curves passing through 0 ∈ R5. In view of Theorem 9, case
1), we consider the function K : R3×R2→ R, defined as in (18),

K(λ ,x) = λ1 +5λ2x4
1 +λ3x3

2.

With the choice λ1 = 0, λ2 = 1/5, and λ3 = −1, the equation K(λ ,x) = 0 reads
x4

1− x3
2 = 0. Thus the curve κ : [0,1]→ R2, κ(t) = (t, t4/3), is in the zero set of K.

It can be checked that the horizontal curve γ : [0,1]→M such that (γ1,γ2) = κ is an
abnormal extremal with dual curve ξ : [0,1]→ R5,

ξ (t) =
(
0,

4
5

t5,0,
1
5
,−1

)
.

Notice that we have, for any t ∈ [0,1],

〈ξ , [X1, [X1,X2]](γ)〉= 4t3,

〈ξ , [X2, [X1,X2]](γ)〉=−3t8/3.

Then, when t > 0 the curve γ is a regular abnormal extremal, in the sense of Defini-
tion 14 on page 36 of [9]. By Theorem 5 on page 59 of [9], the curve γ is therefore
locally (uniquely) length minimizing on the set where t > 0.

The curve γ fails to be regular abnormal at t = 0. Moreover, there holds γ ∈
C1,1/3([0,1];R5) with no further regularity at t = 0. In this section, we show that γ

is not length minimizing.

Theorem 14. Let g be any metric on the distribution D . The horizontal curve γ :
[0,1]→M defined above is not length minimizing in (M,D ,g) at t = 0.

Proof. For any 0 < η < 1, let Tη ⊂ R2 be the set

Tη =
{
(x1,x2) ∈ R2 : x4/3

1 < x2 < η
1/3x1, 0 < x1 < η

}
.

The boundary ∂Tη is oriented counterclockwise. Let κη : [0,1]→ R2 be the curve
κη(t) = (t,η1/3t) for 0 ≤ t ≤ η and κη(t) = (t, t4/3) for η ≤ t ≤ 1, and let γη :
[0,1]→ R5 be the horizontal curve such that (γη

1 ,γ
η

2 ) = κη .
We assume without loss of generality that g is the quadratic form on D that makes

X1 and X2 orthonormal. The gain of length in passing from γ to γη is

∆L(η) =
∫ 1

0
|κ̇|dt−

∫ 1

0
|κ̇η |dt =

1
30

η
5/3 +o(η5/3). (28)
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On the generic monomial xi+1
1 x j

2 with i, j ∈ N, the cut Tη produces the error T i j
η

given by the formula

T i j
η =

∫
∂Tη

xi+1
1 x j

2dx2 = (i+1)
∫

Tη

xi
1x j

2dx1dx2

=
i+1
j+1

[ 1
i+ j+2

− 1
i+ 4

3 ( j+1)+1

]
η

i+ 4
3 ( j+1)+1.

(29)

We are interested in this formula when i = j = 0, when i = 4 and j = 0, when i = 0
and j = 3. The initial error produced by the cut Tη is the vector of R3

E0(η) =
(
T 0,0

η ,T 4,0
η ,T 0,4

η

)
=
( 1

14
η

7/3,
5

114
η

19/3,
1

95
η

19/3). (30)

Only the exponents 7/3 and 19/3 of η are relevant, not the coefficients.
Our first step is to correct the error of order η7/3 on the third coordinate. For

fixed parameters b > 0, λ > 0, and ε > 0, let us define the curvilinear rectangle

Rb,λ (ε) =
{
(x1,x2) ∈ R2 : b < x1 < b+ |ε|λ , x4/3

1 < x2 < x4/3
1 + ε

}
. (31)

When ε < 0, we let

Rb,λ (ε) =
{
(x1,x2) ∈ R2 : b < x1 < b+ |ε|λ , x4/3

1 + ε < x2 < x4/3
1

}
. (32)

The boundary ∂Rb,λ (ε) is oriented counterclockwise if ε > 0, while it is oriented
clockwise when ε < 0. The curve κη is deviated along the boundary of this rectan-
gle and then it is lifted to a horizontal curve. The effect of Rb,λ (ε) on the generic
monomial xi+1

1 x j
2 is

Ri j
b,λ (ε) =

∫
∂Ri j

b,λ (ε)
xi+1

1 x j
2dx2

=
i+1
j+1

j

∑
k=0

(
j+1

k

)
ε j+1−k

i+ 4
3 k+1

[
(b+ |ε|λ )i+ 4

3 k+1−bi+ 4
3 k+1

]
.

(33)

The cost of length of Rb,λ (ε) is

Λ
(
Rb,λ (ε)

)
= 2|ε|. (34)

When i = j = 0, formula (33) reads R0,0
b,λ (ε) = ε|ε|λ , whereas

R4,0
b,λ (ε) = 5ε

[
(b+ |ε|λ )5−b5]

= 5ε

4

∑
k=0

(
5
k

)
|ε|λ (5−k)bκ ,

(35)
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and

R0,3
b,λ (ε) =

1
4

3

∑
k=0

(
4
k

)
ε4−k

4
3 k+1

[
(b+ |ε|λ )

4
3 k+1−b

4
3 k+1]

=
ε

5
[
(b+ |ε|λ )5−b5]+ 1

4

2

∑
k=0

(
4
k

)
ε4−k

4
3 k+1

[
(b+ |ε|λ )

4
3 k+1−b

4
3 k+1]

=
1
25

R4,0
b,λ (ε)+ R̂0,3

b,λ (ε),

(36)

where R̂0,3
b,λ (ε) is defined via the last identity.

We choose b = η . The parameter 0 < λ < 1 will be fixed at the end of the argu-
ment. To correct the error on the third coordinate, we solve the equation

R0,0
η ,λ (ε)+T 0,0

η = 0,

in the unknown ε . In fact, this equation is ε|ε|λ + 1
14 η7/3 = 0 and the solution is

ε =−c0η
β , where c0 =

1
141/(1+λ )

and β =
7

3(1+λ )
.

The choice b = η is not relevant, here. By (28) and (34), the cost of length is admis-
sible if η > 0 is small enough and we have

7
3(1+λ )

>
5
3
⇔ λ <

2
5
. (37)

This is our first restriction on λ .
The rectangle Rη ,λ (ε) produces new errors on the fourth and fifth coordinates.

Namely, by (35) we have

R4,0
η ,λ

(
− c0η

β
)
=−5c0η

β
4

∑
k=0

(
5
k

)(
c0η

β
)λ (5−k)

η
k. (38)

When λ < 3/4, condition implied by (37), the leading term in η in the sum above
is obtained for k = 0.

By (36), the error produced on the last coordinate is

R0,3
η ,λ

(
− c0η

β
)
=

1
4

3

∑
k=0

(
4
k

)(
− c0η

β
)4−k 3

4k+3

[(
η +

(
c0η

β
)λ
) 4

3 k+1
−η

4
3 k+1

]
.

(39)

When λ < 3/4, the bracket [. . .] in the sum over k above is

(
c0η

β
)λ ( 4

3 k+1)
[
1+
(4

3
k+1

)
c−λ

0 η
1− 7λ

3(1+λ ) +
2k
3

(4
3

k+1
)

c−2λ

0 η
2− 14λ

3(1+λ ) + . . .
]
.
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The leading term in the sum in (39) is obtained for k = 3, and the second leading
term is obtained for k = 2.

We have the new vector of errors

E1(η) =
(

0,R4,0
η ,λ

(
− c0η

β
)
+T 4,0

η ,R0,3
η ,λ

(
− c0η

β
)
+T 0,3

η

)
. (40)

When λ < 3/4, the errors on the fourth and fifth coordinates produced by the rect-
angle Rη ,λ dominate the errors produced by the cut, see (30). In fact, we have

β (1+5λ )<
19
3

⇔ λ <
3
4
.

Also the second leading term in R0,3
η ,λ

(
− c0ηβ

)
dominates T 0,3

η . In fact, we have

β

(
2+

11
3

λ

)
<

19
3

⇔ λ <
3
4
.

Now we use a rectangle Rb,µ(ε) to correct the error on the fourth coordinate.
Here, 1

2 < b < 3/4 is position parameter and µ > 0 is small enough. Conceptually,
we could take µ = 0. The parameter µ > 0 is only needed to confine the construction
in a bounded region. We solve the equation

R4,0
b,µ(ε)+R4,0

η ,λ

(
− c0η

β
)
= 0 (41)

in the unknown ε . By the formulas computed above, we deduce that the solution
ε = ε̄ is

ε̄ = c1η
β

1+5λ

1+5µ + . . . ,

where c1 > 0 is an explicit constant and the dots stand for lower order terms in η .
The cost of length of the rectangle Rb,µ(ε̄) is admissible for any µ > 0 close to 0,
because β (1+5λ )> 5/3.

By (36) and (41), we have the identity

R0,3
b,µ(ε̄)+R0,3

η ,λ

(
− c0η

β
)
= R̂0,3

b,µ(ε̄)+ R̂0,3
η ,λ

(
− c0η

β
)
,

and, therefore, the new vector of errors is

E2(η) =
(

R0,0
b,µ(ε̄),T

4,0
η , R̂0,3

b,µ(ε̄)+ R̂0,3
η ,λ

(
− c0η

β
)
+T 0,3

η

)
, (42)

where we have
R0,0

b,µ(ε̄) = ε̄
1+µ = c2η

β
(1+5λ )(1+µ)

1+5µ + . . . , (43)

with the coefficient c2 = c1+µ

1 .
In the next step, we correct simultaneously the errors on the fourth and fifth

coordinates. We need curvilinear squares. Let 0 < b < 1 be a position parameter.
For any ε ∈ (−1,1), we let

Qb(ε) = Rb,1(|ε|). (44)
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The parameter λ of the rectangle is set to λ = 1. Set-theoretically, the definition is
the same for positive and negative ε . However, when ε > 0 the boundary ∂Qb(ε) of
the square is oriented clockwise; when ε < 0 the boundary is oriented counterclock-
wise. The cost of length Λ(Qb(ε)) of the square is the sum of the length of the four
sides. For some constant C > 0 independent of b and ε we have

Λ(Qb(ε))≤C|ε|. (45)

By (33), when ε > 0 the effect Qi j
b (ε) of the square on the monomial xi+1

1 x j
2 is

Qi j
b (ε) =

i+1
j+1

j

∑
k=0

(
j+1

k

)
ε

j+1−k 1
i+ 4

3 k+1

[
(b+ ε)i+ 4

3 k+1−bi+ 4
3 k+1

]
.

When ε < 0, we have Qi j
b (ε) =−Qi j

b (|ε|).
Let 3/4 < b1 < b2 < 1 be position parameters and let µ > 0 be close to 0. We

solve the system of equations{
Q4,0

b1
(ε1)+R4,0

b2,µ
(ε2)+T 4,0

η = 0
Q0,3

b1
(ε1)+R0,3

b2,µ
(ε2)+ R̂0,3

b,µ(ε̄)+ R̂0,3
η ,λ

(
− c0ηβ

)
+T 0,3

η = 0

in the unknowns ε1,ε2. Subtracting the first equation from the second one and using
(36), we get the equivalent system{

Q4,0
b1
(ε1)+R4,0

b2,µ
(ε2)+T 4,0

η = 0
Q̂0,3

b1
(ε1)+ R̂0,3

b2,µ
(ε2)+E (η) = 0

(46)

where

E (η) = R̂0,3
b,µ(ε̄)+ R̂0,3

η ,λ

(
− c0η

β
)
+T 0,3

η −T 4,0
η

= c3η
β (2+ 11

3 λ )+ . . .

for some c3 > 0. The dots stand for lower order terms in η . In fact, the leading term
in R0,3

η ,λ

(
− c0ηβ

)
dominates the remaining terms. Using a notation consistent with

(35), we also let

Q̂0,3
b1
(ε1) = sgn(ε1)

1
4

2

∑
k=0

(
4
k

)
|ε1|4−k

4
3 k+1

[
(b1 + |ε1|)

4
3 k+1−b

4
3 k+1
1

]
= c4ε

3
1 + ....

Above, c4 > 0 is a constant and the dots stand for negligible terms. Notice that we
have control on the sign of the leading term.

The system (46) can thus be approximated in the following way
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sgn(ε1)ε

2
1 + c5ε2|ε2|5µ + c6η

19
3 + . . .= 0

ε3
1 + c7|ε2|2+

11
3 µ + c8η

β (2+ 11
3 λ )+ . . .= 0,

(47)

where c5, . . . ,c8 > 0 are constants and the dots stand for negligible terms. We can
compute ε2 as a function of ε1 from the first equation and replace this value into
the second equation. This operation produces lower order terms. Thus the second
equation reads

ε
3
1 + c8η

β (2+ 11
3 λ )+ . . .= 0,

and there is a solution ε1 < 0 satisfying

ε1 =−c9η
β (2+ 11

3 λ )/3 + . . .=−c9η

7(2+ 11
3 λ )

9(1+λ ) + . . . ,

where c9 > 0 and the dots stand for lower order terms in η . As a consequence, from
the first equation in (47) we deduce that

ε2 =−c10η
19

3(1+5µ) + . . . .

The cost of length of the rectangle Rb2,µ(ε2) is 2|ε2|, and it is admissible because
for µ > 0 close to 0 we have

19
3(1+5µ)

>
5
3
.

By (45), the cost of lenght of the square Qb1(ε1) is at most C|ε1|, and, for small η ,
it is admissible if and only if

7(2+ 11
3 λ )

9(1+λ )
>

5
3
⇔ λ >

3
32

. (48)

Here, we have a nontrivial restriction for λ . This restriction is compatible with (37).
Now the parameter λ is fixed once for all in such a way that

3
32

< λ <
2
5
. (49)

The device Qb1(ε1) produces an error on the third coordinate of the order |ε1|2,
that is of the order η

14(2+ 1
3 λ )/9. The device Rb2,µ(ε2) produces an error on the third

coordinate of the order |ε2|1+µ , that is of the order η19(1+µ)/3. These errors are
negligible with respect to the error R0,0

b,µ(ε̄) appearing in (42)–(43). Eventually, after
our last correction we have the vector of errors

E3(η) =
(
c2η

7
3 ρ + . . . ,0,0

)
, where ρ =

(1+5λ )(1+µ)

(1+λ )(1+5µ)
, (50)
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the dots stand for lower order terms and the number ρ satisfies the key condition
ρ > 1, provided that 0 < µ < λ . Now also µ is fixed.

Comparing the initial error E0(η) in (30) and the error E3(η) in (50), we realize
that the initial error η7/3 on the third coordinate decreased by a geometric factor ρ >
1. Now we can iterate the entire construction to set to zero all the three components
of the error. Here, we omit the details of this standard part of the argument. This
finishes the proof.

Remark 1. The curve γ studied in Theorem 14 is of class C1,1/3. The curves con-
sidered in Theorem 7 are at most C1,1/4. There is a gap between the two cases. In
the proof of Theorem 14, the key step is the choice of λ made in (49). In particular,
there is a very delicate bound from below for λ . In the proof of Theorem 7, there is
no such a bound from below.

8 Final comments

Concerning the question about the regularity of length minimizing curves in sub-
Riemannian manifolds, there are two possibilities. Either, in any sub-Riemannian
manifold every length minimizing curve is C∞ smooth (answer in the positive);
or, there is some sub-Riemannian manifold with nonsmooth (non C1, non C2, etc.)
length minimizing curves (answer in the negative). The author has no clear feeling
on which of the two answers to bet.

Theorem 5 on step 3 Carnot groups suggests that, in sub-Riemannian manifolds
of step 3, any length minimizing curve is C∞ smooth. This seems to be the first
question to investigate in view of an answer in the positive. In the same spirit, The-
orem 6 suggests that in sub-Riemannian manifolds of rank 2 and step 4 any length
minimizing curve is C∞ smooth.

On the other hand, the first example to investigate in order to find a length min-
imizer with a corner type singularity is the one of Subsection 6.2 with the choice
α = 1. Moreover, Theorem 7 and the computations made in Section 7 suggest to
look for nonsmooth length minimizing curves in the class of C1,δ abnormal ex-
tremals with 0 < δ < 1 sufficiently close to 1. One interesting example could be the
manifold M = R5 with the distribution spanned by the vector fields

X1 =
∂

∂x1
, X2 =

∂

∂x2
+ x1

∂

∂x3
+ x2m

1
∂

∂x4
+ x1xm

2
∂

∂x5
, (51)

for m ∈ N large.
Finally, the example of a purely Lipschitz Goh extremal of Subsection 6.1 proves

that the first and second order necessary conditions for strictly abnormal extremals
do not imply, in general, any further regularity beyond the given Lipschitz regularity.
New and deeper techniques are needed in order to develop the regularity theory.
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