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Abstract. We prove that length minimizing curves in Carnot-Carathéodory spaces

possess at any point at least one tangent curve (i.e., a blow-up in the nilpotent ap-

proximation) equal to a straight horizontal line. This is the first regularity result

for length minimizers that holds with no assumption on either the space (e.g., its

rank, step, or analyticity) or the curve.

1. Introduction

Let M be a connected n-dimensional C∞-smooth manifold and X = {X1, . . . , Xr},
r ≥ 2, a system of C∞-smooth vector fields on M satisfying the Hörmander condition.

We call the pair (M,X ) a Carnot-Carathéodory (CC) structure (see Section 2). Given

an interval I ⊆ R, a Lipschitz curve γ : I →M is said to be horizontal if there exist

functions h1, . . . , hr ∈ L∞(I) such that for a.e. t ∈ I we have

γ̇(t) =
r∑
i=1

hi(t)Xi(γ(t)). (1.1)

Letting |h|:= (h2
1 + . . .+ h2

r)
1/2, the length of γ is then defined as

L(γ) := inf

{∫
I

|h(t)| dt | h ∈ L∞(I,Rr) s.t. (1.1) holds

}
.

The infimum is attained by a unique h ∈ L∞(I,Rr): in the sequel, h denotes this

minimal control. We will usually assume that curves are parameterized by arclength,

i.e., |h(t)|= 1 for a.e. t and L 1(I) = L(γ).

Since M is connected, for any pair of points x, y ∈ M there exists a horizontal

curve joining x to y. We can therefore define a distance function d : M ×M → [0,∞)

letting

d(x, y) := inf {L(γ) | γ : [0, T ]→M horizontal with γ(0) = x and γ(T ) = y}. (1.2)

The resulting metric space (M,d) is a Carnot-Carathéodory space. Typical examples

of Carnot-Carathéodory spaces are given by sub-Riemannian manifolds (M,D , g),
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where D ⊂ TM is a completely non-integrable distribution and g is a smooth metric

on D .

If the closure of any ball in (M,d) is compact, then the infimum in (1.2) is a

minimum, i.e., any pair of points can be connected by a length-minimizing curve.

A horizontal curve γ : [0, T ] → M is a length minimizer if L(γ) = d(γ(0), γ(T )).

In Carnot-Carathéodory spaces (or even in the model case of Carnot groups) it is

not known whether constant-speed length minimizers are C∞-smooth, or even C1-

smooth. The main obstacle is the presence of abnormal length minimizers, which

are not captured by the natural Hamiltonian framework, see e.g. [13, 2]. In [12],

Montgomery gave the first example of such a length minimizer. Contrary to the

Riemannian case, stationarity conditions do not guarantee any smoothness of the

curve: in [9] it is proved that no further regularity beyond the Lipschitz one can be

obtained for abnormal extremals from the Pontryagin Maximum Principle and the

Goh condition (which is a second-order necessary condition, see e.g. [2]).

However, some partial regularity results are known. If the step is at most 2 (i.e., for

any x the tangent space TxM is spanned by the r +
(
r
2

)
vectors Xi(x), [Xi, Xj](x)),

then all constant-speed length minimizers are smooth. In the context of Carnot

groups, the regularity problem was recently solved also when the step is at most 3

(independently by Tan-Yang in [18] and by Le Donne-Leonardi-Monti-Vittone in [8]).

In [17] Sussmann proved that, in presence of analytic data (and in particular in Carnot

groups), all length minimizers are analytic on a dense open set of times, although it is

not known whether this set has full measure. Building on ideas contained in [11, 10],

Hakavuori and Le Donne recently proved in [4] that length minimizers cannot have

corner-type singularities. Other partial regularity results are contained in [14]. We

also refer to [1, 15, 16, 19] for surveys about the known results on the problem.

At any point x ∈ M the Carnot-Carathéodory structure (M,X ) has a nilpotent

approximation (M∞,X ∞), which is also a Carnot-Carathéodory structure. The con-

struction, which is recalled in Section 2, uses a one-parameter group of anisotropic

dilations (δλ)λ>0 associated with X . In Definition 2.4, given a horizontal curve

γ : [−T, T ] → M , we define the tangent cone Tan(γ; t) for −T < t < T . This cone

contains the horizontal curves in (M∞,X ∞) which are obtained as a blow-up limit

of γ with respect to the dilations (δλ)λ>0 centered at γ(t), along some infinitesimal

sequence of scales. The manifold M∞ is also a vector space and we call horizontal

line a horizontal curve in (M∞,X ∞) passing through 0 ∈ M∞ and with constant

minimal controls h1, . . . , hr (see (1.1)).

The following theorem is the main result of the paper.
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Theorem 1.1. Let γ : [−T, T ]→M be a length minimizer parametrized by arclength

in a Carnot-Carathéodory space (M,d). Then, for any t ∈ (−T, T ), the tangent cone

Tan(γ; t) contains a horizontal line.

Theorem 1.1 has a reformulation that does not depend on the construction of

(M∞,X ∞), see Remark 5.3. A version of Theorem 1.1 holds for the extremal points

t = 0 and t = T of a length minimizer γ : [0, T ]→M . In this case, the tangent cone

contains a horizontal half-line; see Theorem 5.2. These results imply and improve

the ones contained in [11, 10, 4]: while in these papers the existence of (linearly

independent) left and right derivatives is assumed in order to construct a shorter

competitor, Theorem 1.1 provides a mild form of pointwise differentiability which

automatically excludes corner-type singularities.

Theorem 1.1 is deduced from a similar result for the case when M = G is a Carnot

group of rank r ≥ 2 and X = {X1, . . . , Xr} is a system of left-invariant vector fields

forming a basis of the first layer of its Lie algebra g. The reduction to this case relies

on the following facts:

(i) if κ ∈ Tan(γ; t) and κ̂ ∈ Tan(κ; 0), then κ̂ ∈ Tan(γ; t), see Proposition 2.8;

(ii) if γ is length-minimizing in (M,X ) and κ ∈ Tan(γ; t), then κ is length-

minimizing in (M∞,X ∞), see Proposition 2.7;

(iii) if G is a Carnot group lifting (M∞,X ∞) and κ̄ lifts to G a length-minimizing

curve κ in (M∞,X ∞), then κ̄ is length-minimizing in G, see Proposition 2.11.

The proof of Theorem 1.1 in the case of a Carnot group, in turn, is a consequence

of Theorem 1.2 below. Let g = g1 ⊕ · · · ⊕ gs be the stratification of g and let 〈·, ·〉 be

the scalar product on g1 making X1, . . . , Xr orthonormal. The integer s ≥ 2 is the

step of the group and r = dim g1 its rank. We denote by Sr−1 = {v ∈ g1 : 〈v, v〉 = 1}
the unit sphere in g1. We define the excess of a horizontal curve γ : [−T, T ] → G

over a Borel set B ⊆ [−T, T ] with positive measure as

Exc(γ;B) := inf
v∈Sr−1

(∫
B

〈v, γ̇(t)〉2 dt
)1/2

.

The excess Exc(γ;B) measures how far γ̇|B is from being contained in a single hyper-

plane of g1, see Remark 3.2. For length-minimizing curves, the excess is infinitesimal

at suitably small scales, as stated in our second main result.

Theorem 1.2. Let G be a Carnot group and let γ : [−T, T ] → G, T > 0, be a

length-minimizing curve parametrized by arclength. Then there exists an infinitesimal

sequence ηi ↓ 0 such that

lim
i→∞

Exc(γ; [−ηi, ηi]) = 0. (1.3)

Again, this result has a version for extremal points: for a length minimizer γ :

[0, T ] → G the excess Exc(γ; [0, ηi]) is infinitesimal, see Theorem 5.1. When r = 2,
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(1.3) implies that there exists κ ∈ Tan(γ; 0) of the form κ(t) = exp(tv) for some

v ∈ g1. This proves Theorem 1.1 for M = G with r = 2. When r > 2, the situation

can be reduced by induction to the case r = 2, using the facts (i) and (ii) above.

The proof of Theorem 1.2 goes by contradiction and uses a cut-and-adjust construc-

tion performed in s steps, see Section 5. If we had Exc(γ; [−η, η]) ≥ ε for some ε > 0

and for all small η > 0, then we could find t1 < · · · < tr such that, roughly speaking,

the vectors γ̇(t1), . . . , γ̇(tr) ∈ g1 are linearly independent in a quantitative way, see

Lemma 3.6. We could replace the “horizontal projection” γ of γ on the interval [−η, η]

with the line segment joining γ(−η) to γ(η), whose gain of length would be estimated

in terms of the excess, see Lemma 4.4, and we could lift the resulting “horizontal

coordinates” to a horizontal curve in G. The end-point might have changed, but the

vectors γ̇(t1), . . . , γ̇(tr) could then be used to build suitable correction devices restor-

ing the end-point, taking care to keep a positive gain of length. This construction is

detailed in Sections 3, 4 and 5 and is a refinement of the techniques introduced and

developed in [11] and [4].

Acknowledgements. We thank L. Ambrosio for several discussions and for being an

invaluable mentor and friend.

2. Nilpotent approximation and tangent cones to curves

In this section, we recall the construction of the nilpotent approximation of a

Carnot-Carathéodory structure (M,X ), with X = {X1, . . . , Xr}, and we define the

tangent cone to a horizontal curve. We also recall the lifting to a Carnot group.

2.1. Nilpotent approximation of CC structures and horizontal lines. We de-

note by Lie(X1, . . . , Xr) the real Lie algebra generated by X1, . . . , Xr through iterated

commutators. The evaluation of this Lie algebra at a point x ∈ M is a subspace of

the tangent space TxM . If, for any x ∈M , we have

Lie(X1, . . . , Xr)(x) = TxM,

we say that the system X = {X1, . . . , Xr} satisfies the Hörmander condition and

we call the pair (M,X ) a Carnot-Carathéodory (CC) structure. If the Hörmander

condition holds, then the topology induced by d is the standard one on M .

Let U ⊂M be a neighborhood of a fixed point x0 ∈M and let ϕ ∈ C∞(U ;Rn) be a

chart such that ϕ(x0) = 0. Then V := ϕ(U) is a neighborhood of 0 ∈ Rn. The system

of vector fields Yi := ϕ∗Xi, with i = 1, . . . , r, satisfies the Hörmander condition.

For a multi-index J = (j1, . . . , jk) with k ≥ 1 and j1, . . . , jk ∈ {1, . . . , r}, define the

iterated commutator

YJ := [Yj1 , [. . . , [Yjk−1
, Yjk ] . . .]].



TANGENT LINES TO GEODESICS 5

We say that YJ is a commutator of length `(J) := k and we denote by Lj the linear

span of {YJ(0) | `(J) ≤ j}, so that {0} = L0 ⊆ L1 ⊆ · · · ⊆ Ls = Rn for some minimal

s ≥ 1. We select multi-indices J1, . . . , Jn such that, for each 1 ≤ j ≤ s,

`(JdimL(j−1)+1) = · · · = `(JdimLj) = j

and such that, setting Zi := YJi , Z1(0), . . . , ZdimLj(0) form a basis of Lj.

Possibly composing ϕ with a diffeomorphism, we can assume that for any point

x = (x1, . . . , xn) ∈ V we have

x = exp
( n∑
i=1

xiZi

)
(0).

This means that (x1, . . . , xn) are exponential coordinates of the first kind associated

with the frame Z1, . . . , Zn. To each coordinate xi we assign the weight wi := `(Ji)

and we define the anisotropic dilations δλ : Rn → Rn

δλ(x) := (λw1x1, . . . , λ
wnxn), λ > 0. (2.4)

We will frequently use the homogeneous (pseudo-)norm

‖x‖ :=
n∑
i=1

|xi|1/wi , x ∈ Rn. (2.5)

The following proposition is well-known. See [5, Theorem 2.1] for a proof of the

analogous statement for exponential coordinates of the second kind. See also [6] for

a general introduction to the nilpotent approximation.

Proposition 2.1. For any i = 1, . . . , r we have Yi = ai1
∂
∂x1

+ . . .+ain
∂
∂xn

for functions

aij = pij + rij, j = 1, . . . , n, such that:

(i) pij are homogeneous polynomials in Rn such that pij(δλx) = λwj−1pij(x) for

any λ > 0 and x ∈ Rn;

(ii) rij ∈ C∞(V ) are functions such that lim
λ→0

λ1−wjrij(δλx) = 0.

The vector fields Y ∞1 , . . . , Y ∞r in Rn defined by

Y ∞i :=
n∑
j=1

pij(x)
∂

∂xj

are known as the nilpotent approximation of Y1, . . . , Yr at the point 0 and satisfy the

Hörmander condition in Rn, see [6, Lemma 2.1]. The pair (Rn,X ∞) with X ∞ =

{Y ∞1 , . . . , Y ∞r } is a Carnot-Carathéodory structure. We set M∞ := Rn and we call

(M∞,X ∞) a tangent Carnot-Carathéodory structure to (M,X ) at the point x0 ∈M .

The vector fields Y ∞1 , . . . , Y ∞r have polynomial coefficients. In fact, the coeffi-

cient pij(x) depends only on the coordinates x1, . . . , xj−1. The real Lie algebra

g := Lie(Y ∞1 , . . . , Y ∞r ) is stratified and nilpotent: all commutators with length at
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least s + 1 vanish (see e.g. [3]). In particular, g is a finite dimensional real vector

space.

Let G be the abstract connected and simply connected Lie group having g as its

Lie algebra. By the nilpotency of g, the exponential map exp : g → G is a global

diffeomorphism. The group law · on G is related to the Lie bracket of g via the

Baker-Campbell-Hausdorff formula: for any X, Y ∈ g we have exp(X) · exp(Y ) =

exp(P (X, Y )), where

P (X, Y ) := X + Y +
s−1∑
p=1

(−1)p

p+ 1

∑
0≤k1,...,kp<s
0≤`1,...,`p<s
ki+`i≥1

(adX)k1(adY )`1 · · · (adX)kp(adY )`p

(k1 + · · ·+ kp + 1)k1! · · · kp! `1! · · · `p!
X.

(2.6)

Here, adX : g → g is the adjoint mapping adX(Y ) := [X, Y ]. The group G is a

Carnot group, which means that it is a connected, simply connected and nilpotent Lie

group whose Lie algebra g is stratified, i.e., it has a decomposition g = g1 ⊕ · · · ⊕ gs

satisfying [g1, gi−1] = gi and [g, gs] = {0}. The number s is the step of the group.

For any X ∈ g, the flow (x, t) 7→ ΦX
t (x) is a polynomial function in (x, t) ∈M∞×R

and X is therefore complete. For any X, Y ∈ g, x ∈ M∞ and t ∈ R we have the

formula for the composition of flows

Φ
P (X,Y )
t (x) = ΦY

t ◦ ΦX
t (x). (2.7)

This identity follows from the fact that the left and right hand side are polynomial

functions in t and have the same Taylor expansion in t by the Baker-Campbell-

Hausdorff formula for vector fields, see [6, Lemma A.1].

If X ∈ g1, its flow satisfies for any λ > 0, t ∈ R and x ∈M∞ the following identity

ΦλX
t (δλ(x)) = δλ(Φ

X
t (x)), (2.8)

which follows from (δλ)∗X = λX.

The group G acts on M∞ on the right. The action M∞ × G → M∞ is given by

(x, g) 7→ x · g := ΦX
1 (x), where g = exp(X). In fact, by (2.7), for any h = exp(Y ) we

have

x · (gh) = Φ
P (X,Y )
1 (x) = ΦY

1 ◦ ΦX
1 (x) = (x · g) · h. (2.9)

The proof of the following proposition is elementary and is omitted.

Proposition 2.2. Let κ : R → M∞ be a horizontal curve in (M∞,X ∞). The

following statements are equivalent:

(i) The minimal control of κ is constant and κ(0) = 0.

(ii) There exist c1, . . . , cr ∈ R such that κ̇ =
∑r

i=1 ciY
∞
i (κ) and κ(0) = 0.

(iii) There exists Y ∈ g1 such that κ(t) = ΦY
t (0).
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(iv) There exists x0 ∈ M∞ such that κ(t) = δt(x0) (here δt is defined by (2.4) for

any t ∈ R).

Definition 2.3. We say that a horizontal curve κ in (M∞,X ∞) is a horizontal line

(through 0) if one of the conditions (i)-(iv) holds.

The definition of positive and negative half-line is similar, the formulas above being

required to hold for t ≥ 0 and t ≤ 0, respectively.

2.2. Tangent cone to a horizontal curve. Let (M,X ) be a CC structure and let

γ : [−T, T ]→ M be a horizontal curve. Let ϕ be a chart around the point x = γ(t),

for some t ∈ (−T, T ), such that ϕ(x) = 0. Finally, let δλ be the dilations introduced

above and denote by (M∞,X ∞) the tangent CC structure to (M,X ) at the point

x.

Definition 2.4. The tangent cone Tan(γ; t) to γ at t ∈ (−T, T ) is the set of all

horizontal curves κ : R→M∞ such that there exists an infinitesimal sequence ηi ↓ 0

satisfying, for any τ ∈ R,

lim
i→∞

δ1/ηiϕ(γ(t+ ηiτ)) = κ(τ),

with uniform convergence on compact subsets of R.

The definition of Tan(γ; t) depends on the chart ϕ and on the choice Z1, . . . , Zn
of linearly independent iterated commutators. When γ : [0, T ] → M , the tangent

cones Tan+(γ; 0) and Tan−(γ;T ) can be defined in a similar way. Tan+(γ; 0) contains

curves in M∞ defined on [0,∞), while Tan−(γ;T ) contains curves defined on (−∞, 0].

When M = M∞ or M = G is a Carnot group, there is already a group of dilations

on M itself. In such cases, when γ(t) = 0, we define the tangent cone Tan(γ; t) as

the set of limiting curves of the form κ(t) = lim
i→∞

δ1/ηiγ(t+ ηiτ).

The tangent cone is closed under uniform convergence of curves on compact sets.

We need the following observation in order to initiate the proof of Theorem 1.1.

Proposition 2.5. For any horizontal curve γ : [−T, T ] → M the tangent cone

Tan(γ; t) is nonempty for any t ∈ (−T, T ). The same holds for Tan+(γ; 0) and

Tan−(γ;T ), for a horizontal curve γ : [0, T ]→M .

Proof. We prove that Tan+(γ; 0) 6= ∅. The other proofs are analogous.

We use exponential coordinates of the first kind centered at γ(0). By (1.1), we

have a.e.

γ̇ =
r∑
i=1

hiYi(γ) =
n∑
j=1

r∑
i=1

hiaij(γ)
∂

∂xj
,

where hi ∈ L∞(−T, T ) and aij = pij + rij are functions satisfying the claims (i) and

(ii) of Proposition 2.1. In fact, we can also assume that ‖h‖∞= 1 and that the closure
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K := B(0, T ) of the CC ball B(0, T ) is compact: this is true for small enough T ,

which is enough for our purposes. Then γ(t) ∈ K for all t ∈ [0, T ] and we have

|γ̇(t)|≤ C for some constant depending on ‖aij‖L∞(K). This implies that |γ(t)|≤ Ct

for all t ∈ [0, T ].

By induction on k ≥ 1, we prove the following statement: for any j satisfying

wj ≥ k we have |γj(t)|≤ Ctk. The base case k = 1 has already been treated. Now

assume that wj ≥ k > 1 and that the statement is true for 1, . . . , k − 1. Since rij is

smooth, we have rij = qij,k + rij,k, where qij,k is a polynomial containing only terms

with homogeneous degree at least wj and |rij,k(x)|≤ C|x|k−1 on K (here |x| denotes

the usual Euclidean norm).

Each monomial cαx
α of the polynomial pij + qij,k has homogeneous degree wα :=∑n

m=1 αmwm ≥ wj − 1. If αm = 0 whenever wm ≥ k, then we can estimate

|γ(t)α|=
∏

m:wm≤k−1

|γm(t)|αm≤ Ctwα ≤ Ctk−1,

using the inductive hypothesis with k replaced by wm ≤ k−1. Otherwise, there exists

some index m with wm ≥ k and αm > 0, in which case

|γ(t)α|≤ C|γm(t)|≤ Ctk−1,

using the inductive hypothesis with k replaced by k−1. Thus |pij(γ(t))+qij,k(γ(t))|≤
Ctk−1. Combining this with the estimate |rij,k(γ(t))|≤ Ctk−1, we obtain |aij(γ(t))|≤
Ctk−1. So we finally have

|γj(t)|≤
r∑
i=1

∫ t

0

|aij(γ(τ))| dτ ≤ Ctk.

Applying the above statement with k = wj, we obtain

|γj(t)|≤ Ctwj , (2.10)

for a suitable constant C depending only on K and T .

Now we prove that Tan+(γ; 0) is nonempty. For η > 0 consider the family of curves

γη(t) := δ1/η(γ(ηt)), defined for t ∈ [0, T/η]. The derivative of γη is a.e.

γ̇η(t) =
n∑
j=1

r∑
i=1

hi(ηt)η
1−wjaij(γ(ηt))

∂

∂xj
,

where, by Proposition 2.1 and the estimates (2.10), we have

|aij(γ(ηt))|≤ C‖γ(ηt)‖wj−1≤ C(ηt)wj−1.

We are using the homogeneous norm ‖·‖ defined in (2.5). This proves that the family

of curves (γη)η>0 is Lipschitz equicontinuous. So it has a subsequence (γηi)i that is

converging locally uniformly as ηi → 0 to a curve κ : [0,∞)→ Rn. Now it is easy to

see that κ is horizontal in (M∞,X ∞): see also the proof of Lemma 3.5. �
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Remark 2.6. The following result was obtained along the proof of Proposition 2.5.

Let (M,X ) be a Carnot-Carathéodory structure. Using exponential coordinates of

the first kind, we (locally) identify M with Rn and we assign to the coordinate xj
the weight wj, as above. Assume that T > 0 is such that K := B(0, T ) is compact.

Then there exists a positive constant C = C(T ) such that the following holds: for

any horizontal curve γ : [0, T ] → M = Rn parametrized by arclength and such that

γ(0) = 0, one has

|γj(t)|≤ Ctwj , for any j = 1, . . . , n and t ∈ [0, T ]. (2.11)

We shall use this fact in the case of Carnot groups where, by homogeneity, the constant

C does not depend on T .

If γ is a length-minimizing curve, then the curves in Tan(γ; t) are also locally

length-minimizing.

Proposition 2.7. Let γ : [−T, T ] → M be a length-minimizing curve in (M,X ),

parametrized by arclength, and let κ ∈ Tan(γ; t) for some t ∈ (−T, T ). Then κ is

parametrized by arclength and, when restricted to any compact interval, it is length-

minimizing in the tangent Carnot-Carathéodory structure (M∞,X ∞).

The proof of Proposition 2.7 is contained in [11, Proposition 2.4] (the quoted paper

deals with equiregular CC spaces, but the proof of this proposition works also in our

more general setting). The following fact is a special case of the general principle

according to which the tangent to the tangent is (contained in the) tangent.

Proposition 2.8. Let γ : [−T, T ] → M be a horizontal curve and t ∈ (−T, T ). If

κ ∈ Tan(γ; t) and κ̂ ∈ Tan(κ; 0), then κ̂ ∈ Tan(γ; t).

Proof. We can without loss of generality assume that t = 0 and that γ takes values

in Rn = M∞. Let N > 0 be fixed. Since κ̂ ∈ Tan(κ; 0), there exists an infinitesimal

sequence ξk ↓ 0 such that, for all t ∈ [−N,N ] and k ∈ N, we have

‖κ̂(t)− δ1/ξkκ(ξkt)‖≤
1

2k
.

Since κ ∈ Tan(γ; 0), there exists an infinitesimal sequence ηk ↓ 0 such that, for all

t ∈ [−N,N ] and k ∈ N, we have

‖κ(ξkt)− δ1/ηkγ(ηkξkt)‖≤
ξk
2k
.

It follows that for the infinitesimal sequence σk := ξkηk we have, for all t ∈ [−N,N ],

‖κ̂(t)− δ1/σkκ(σkt)‖≤ ‖κ̂(t)− δ1/ξkκ(ξkt)‖+‖δ1/ξkκ(ξkt)− δ1/σkγ(σkt)‖≤
1

2k−1
.

The thesis now follows by a diagonal argument. �
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When γ : [0, T ]→ M , there are analogous versions of Propositions 2.7 and 2.8 for

Tan+(γ; 0) and Tan−(γ;T ).

2.3. Lifting of tangent structures to Carnot groups. It might happen that, at

some points, the vector fields Y ∞1 , . . . , Y ∞r are R-linearly dependent and the group G

could have rank strictly less than r. To avoid this situation, we lift the tangent CC

structure (M∞,X ∞) to a free Carnot group. We give some details of the construction,

which is well-known (see [6]).

Let F be the free Carnot group of rank r and step s, and denote by f = f1⊕· · ·⊕ fs

its Lie algebra. Let W1, . . . ,WN be a basis of f adapted to the stratification. In

particular, W1, . . . ,Wr is a basis of f1 and we let W := {W1, . . . ,Wr}. Via the

exponential mapping exp : f → F , the one-parameter group of automorphisms of

f given by Wk 7→ λiWk if and only if Wk ∈ fi induces a one-parameter group of

automorphisms (δ̂λ)λ>0 of F , called dilations. In the next sections, we will use the

simpler notation δλ := δ̂λ. In exponential coordinates for F these dilations coincide

with the ones introduced in (2.4).

Let G be the abstract Carnot group constructed in the previous subsection starting

from (M∞,X ∞) with Lie algebra g. Since g is a quotient of f, there exists a unique

homomorphism ψ : F → G such that ψ∗(Wi) = Y ∞i ∈ g. We define the map

π∞ : F → M∞ by π∞(f) := 0 · ψ(f), where the dot stands for the right action of G

on M∞.

Definition 2.9. We call the CC structure (F,W ) the lifting of (M∞,X ∞) with

projection π∞ : F →M∞.

Proposition 2.10. The lifting (F,W ) of (M∞,X ∞) has the following properties.

(i) For any x ∈M∞ and i = 1, . . . , r, we have π∞∗ (Wi)(x) = Y ∞i (x).

(ii) The dilations of F and M∞ commute with the projection. Namely, for any

λ > 0 we have

π∞ ◦ δ̂λ = δλ ◦ π∞.

Proof. (i) Let x = π∞(f) for some f ∈ F . Using the homomorphism property for

ψ : F → G and the action property (2.9), we find

π∞∗ (Wi)(π
∞(f)) =

d

dt
π∞(f exp(tWi))

∣∣∣∣
t=0

=
d

dt
0 · (ψ(f)ψ(exp(tWi)))

∣∣∣∣
t=0

=
d

dt
π∞(f) · ψ( exp(tWi))

∣∣∣∣
t=0

= ψ∗(Wi)(π
∞(f)) = Y ∞i (π∞(f)).

(ii) Let λ > 0 and x ∈M∞. By (2.8), for any X ∈ g1 we have

δλ(x) · exp(λX) = ΦλX
1 (δλ(x)) = δλ

(
ΦX

1 (x)
)

= δλ(x · exp(X)). (2.12)
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We prove the claim for f = exp(W ) with W ∈ f1:

π∞(δ̂λ(f)) = π∞(exp(λW )) = 0 · exp(λψ∗(W ))

= Φ
λψ∗(W )
1 (0) = δλ(Φ

ψ∗(W )
1 (0)) = δλ(π

∞f).

In general, any f ∈ F is of the form f = f1f2 . . . fk with each fi ∈ exp(f1). Assume by

induction that the claim holds for f̂ = f1f2 . . . fk−1. By (2.12), letting fk = exp(W )

we have

π∞(δ̂λ(f)) = π∞(δ̂λ(f̂) exp(λW )) = 0 · ψ(δ̂λ(f̂) exp(λW ))

= (0 · ψ(δ̂λ(f̂))) · ψ(exp(λW )) = π∞(δ̂λ(f̂)) · ψ(exp(λW ))

= δλ(π
∞(f̂)) · ψ(exp(λW )) = δλ(π

∞(f̂) · ψ(exp(W ))) = δλ(π
∞(f)).

�

Let κ : I → M∞ be a horizontal curve in (M∞,X ∞), with minimal control

h ∈ L∞(I,Rr). A horizontal curve κ̄ : I → F such that

˙̄κ(t) =
r∑
i=1

hi(t)Wi(κ̄(t)) for a.e. t ∈ I

is called lift of κ to (F,W ).

Proposition 2.11. Let (F,W ) be the lifting of (M∞,X ∞) with projection π∞ :

F →M∞. Then the following facts hold:

(i) If κ is length-minimizing in (M∞,X ∞), then any horizontal lift κ̄ of κ is

length-minimizing in (F,W ).

(ii) If κ̄ is a horizontal (half-)line in F , then π∞ ◦ κ̄ is a horizontal (half-)line in

(M∞,X ∞).

Proof. Claim (i) follows from L(κ̄) = L(κ) and the inequality L(κ′) ≥ L(κ), whenever

κ′ is horizontal and κ = π∞ ◦ κ′. We now turn to Claim (ii). Let κ̄(t) = exp(tW ) for

some W ∈ f1. The projection π∞ ◦ κ̄ is horizontal by part (i) of Proposition 2.10. The

thesis follows from characterization (ii) for horizontal lines, contained in Proposition

2.2.

�

3. Excess, compactness of length minimizers and first consequences

In this section we prove Lemma 3.6, which provides the correct position for the

correction devices introduced in Section 4. We work in the setting of a Carnot group.

Let G be an n-dimensional Carnot group with Lie algebra g = g1⊕· · ·⊕gs, endowed

with a positive definite scalar product 〈·, ·〉 such that gi ⊥ gj whenever i 6= j. We

also let |·|:= 〈·, ·〉1/2. We fix an orthonormal basis X1, . . . , Xn of g adapted to the

stratification, i.e., such that gj = span{Xrj−1+1, . . . , Xrj} for any j = 1, . . . , s, where
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rj := dim(g1) + · · ·+ dim(gj) and r0 := 0. We identify g1 with Rr through the fixed

orthonormal basis X1, . . . , Xr and denote by Sr−1 and G(r−1) the set of unit vectors

and linear hyperplanes in g1, respectively.

We denote by exp : g→ G the exponential mapping, by π : g→ g1 the projection

onto the first layer and by π : G → g1 the mapping π = π ◦ exp−1. For any curve γ

in G we use the short notation γ := π ◦ γ.

In this section, I denotes a compact interval of positive length.

Definition 3.1. Given a horizontal curve γ : I → G and a Borel subset B ⊆ I with

L 1(B) > 0, we define the excess of γ on B as

Exc(γ;B) := inf
v∈Sr−1

(∫
B

〈
v, γ̇(t)

〉2
dt

)1/2

.

Remark 3.2. The excess can be equivalently defined as

Exc(γ;B) := inf
Π∈G(r−1)

(∫
B

∣∣γ̇(t)− Π
(
γ̇(t)

)∣∣2 dt)1/2

,

where we identify the hyperplane Π with the orthogonal projection g1 → Π.

Remark 3.3. Given a horizontal curve γ, g ∈ G and r > 0, setting γ1(t) := g γ(t),

γ2(t) := δr(γ(t)), we have

Exc(γ1;B) = Exc(γ;B) and Exc(γ2;B) = rExc(γ;B).

Moreover, for γ3(t) := δr(γ(t/r)) we have Exc(γ3; rB) = Exc(γ;B).

Remark 3.4. The map from

Sr−1 × L2(I, g1) 3 (v, u) 7→
(∫

B

〈v, u(t)〉2 dt
)1/2

∈ R

is continuous. As a consequence, the infimum in Definition 3.1 is in fact a minimum

and, by the compactness of Sr−1, we have

Exc(γk;B)→ Exc(γ;B)

whenever γ̇k → γ̇ in L2(I, g1).

The following compactness result for length minimizers parametrized by arclength

implies a certain uniform – though not explicit – estimate: see Lemma 3.6 below.

Lemma 3.5 (Compactness of minimizers). Let I be a compact interval containing

0 and let γk : I → G, k ∈ N, be a sequence of length minimizers parametrized by

arclength with γk(0) = 0. Then, there exist a subsequence γkp and a length minimizer

γ∞ : I → G, parametrized by arclength and with γ∞(0) = 0, such that γkp → γ∞
uniformly and γ̇kp → γ̇∞ in L2(I).
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Proof. By homogeneity, it is not restrictive to assume I = [0, 1]. For any k we have

γk([0, 1]) ⊆ B(0, 1), the closed unit ball, which is compact. Since all the curves γk
are 1-Lipschitz with respect to the Carnot-Carathéodory distance d, we can find a

subsequence γkp converging uniformly to some curve γ∞.

Since ‖γ̇kp‖L2([0,1],g1)= 1, up to selecting a further subsequence we can assume that

γ̇kp ⇀ u in L2([0, 1], g1). Thus, identifying G with Rn by exponential coordinates and

passing to the limit as p→∞ in

γkp(t) =

∫ t

0

(
r∑
i=1

γ̇kp,i(τ)Xi(γkp(τ))

)
dτ,

we obtain, for any t ∈ [0, 1],

γ∞(t) =

∫ t

0

(
r∑
i=1

ui(τ)Xi(γ∞(τ))

)
dτ.

This proves that γ∞ is horizontal with γ̇∞ = u. Moreover,∥∥γ̇∞∥∥L2([0,1],g1)
≥ L(γ∞) ≥ d(γ∞(0), γ∞(1)) = lim

p→∞
d(γkp(0), γkp(1)) = 1. (3.13)

We already know that
∥∥γ̇∞∥∥L2([0,1],g1)

≤ 1 (because γ̇kp ⇀ γ̇∞ and ‖γ̇kp‖L2([0,1],g1)= 1),

so ‖γ̇kp‖L2([0,1],g1)→
∥∥γ̇∞∥∥L2([0,1],g1)

and, since L2([0, 1], g1) is a Hilbert space, this

gives γ̇kp → γ̇∞ in L2([0, 1], g1) and γ̇kp → γ̇∞ in L2([0, 1]). In particular, γ̇∞(t) is

for a.e. t ∈ [0, 1] a unit vector in g1. As all inequalities in (3.13) must be equalities,

we obtain L(γ∞) = d(γ∞(0), γ∞(1)), i.e., γ∞ is a length minimizer parametrized by

arclength. �

Lemma 3.6. For any ε > 0 there exists a constant c = c(G, ε) > 0 such that the

following holds. For any length minimizer γ : I → G parametrized by arclength

and such that Exc(γ; I) ≥ ε, there exist r subintervals [a1, b1], . . . , [ar, br] ⊆ I, with

ai < bi ≤ ai+1, such that∣∣det
(
γ(b1)− γ(a1), . . . , γ(br)− γ(ar)

)∣∣ ≥ c(L 1(I))r. (3.14)

The determinant is defined by means of the identification of g1 with Rr via the basis

X1, . . . , Xr.

Proof. By Remark 3.3 we can assume that I = [0, 1] and that γ(0) = 0. By contradic-

tion, assume there exist length minimizers γk : [0, 1]→ G parametrized by arclength,

with γk(0) = 0 and Exc(γk; [0, 1]) ≥ ε, such that

∣∣det
(
γk(b1)− γk(a1), . . . , γk(br)− γk(ar)

)∣∣ ≤ 2−k, (3.15)

for any 0 ≤ a1 < b1 ≤ · · · ≤ ar < br ≤ 1. By Lemma 3.5, there exists a subsequence

(γkp)p∈N such that γkp → γ∞ uniformly and γ̇kp → γ̇∞ in L2([0, 1]) for some length
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minimizer γ∞ parametrized by arclength. Passing to the limit as p→∞ in (3.15) we

deduce that

det
(
γ∞(b1)− γ∞(a1), . . . , γ∞(br)− γ∞(ar)

)
= 0, (3.16)

for any 0 ≤ a1 < b1 ≤ · · · ≤ ar < br ≤ 1.

Let S be the set of differentiability points t ∈ (0, 1) of γ∞ and let

h1 := span{γ̇∞(t) | t ∈ S} ⊆ g1

be the linear subspace of g1 spanned by the derivatives γ̇∞(t). We claim that dim h1 <

r. If this were not the case, we could find 0 < t1 < · · · < tr < 1, ti ∈ S, such that

γ̇∞(t1), . . . , γ̇∞(tr) are linearly independent. Setting

ai := ti, bi := ti + δ, i = 1, . . . , r

and letting δ ↓ 0 in (3.16), we would deduce that det (γ̇∞(t1), . . . , γ̇∞(tr)) = 0, which

is a contradiction.

As a consequence, there exists a unit vector v ∈ g1 orthogonal to h1 and we obtain

Exc(γ∞; [0, 1]) ≤
(∫ 1

0

〈v, γ̇∞(t)〉2 dt
)1/2

= 0.

But from Exc(γkp ; [0, 1]) ≥ ε and Remark 3.4 we also have Exc(γ∞; [0, 1]) ≥ ε. This

is a contradiction and the proof is accomplished. �

Remark 3.7. Under the same assumptions and notation of Lemma 3.6, we also have

|γ(bi)− γ(ai)|≥ cL 1(I) for any i = 1, . . . , r. (3.17)

Indeed, one has |γ(bi)−γ(ai)|≤ L 1(I) by arclength parametrization and (3.14) could

not hold in case (3.17) were false for some index i.

4. Cut and correction devices

In this section we introduce the cut and the iterated correction of a horizontal

curve. In Lemma 4.4 we compute the gain of length in terms of the excess. In the

formula (4.21), we establish an algebraic identity for the displacement of the end-

point produced by an iterated correction. We keep on working in a Carnot group

G.

The concatenation of two curves α : [a, a + a′] → G and β : [b, b + b′] → G is the

curve α ∗ β : [a, a+ (a′ + b′)]→ G defined by the formula

α ∗ β(t) :=

α(t) if t ∈ [a, a+ a′]

α(a+ a′)β(b)−1β(t+ b− (a+ a′)) if t ∈ [a+ a′, a+ a′ + b′].

The concatenation α ∗ β is continuous if α and β are continuous and it is horizontal

if and only if α and β are horizontal. The operation ∗ is associative.
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Definition 4.1 (Cut curve). Let γ : [a, b] → G be a curve. For any subinterval

[s, s′] ⊆ [a, b] with γ(s′) 6= γ(s) we define the cut curve Cut(γ; [s, s′]) : [a, b′′] → G,

with b′′ := b− (s′ − s) +
∣∣γ(s′)− γ(s)

∣∣, by the formula

Cut(γ; [s, s′]) := γ|[a,s] ∗ exp( · w)|[0,|γ(s′)−γ(s)|] ∗ γ|[s′,b],

where

w =
γ(s′)− γ(s)∣∣γ(s′)− γ(s)

∣∣ .
When γ(s′) = γ(s), the cut curve is defined by

Cut(γ; [s, s′]) = γ|[a,s] ∗ γ|[s′,b].

Remark 4.2. If γ is parametrized by arclength and horizontal, then the cut curve

Cut(γ; [s, s′]) is parametrized by arclength and horizontal. Moreover, its length is

L(Cut(γ; [s, s′])) = L(γ)− (s′ − s) + |γ(s′)− γ(s)|. (4.18)

Remark 4.3. The final point of the cut curve has the same projection on g1 as the

final point of γ, i.e., π (Cut(γ; [s, s′])(b′′)) = π(γ(b)). Indeed, by Lemma 4.6 below we

have
π (Cut(γ; [s, s′])(b′′)) = π(γ(s) exp

(∣∣γ(s′)− γ(s)
∣∣w) γ(s′)−1γ(b))

= γ(s) +
∣∣γ(s′)− γ(s)

∣∣w +
(
γ(b)− γ(s′)

)
= γ(b).

Lemma 4.4. Let γ : I → G be a horizontal curve parametrized by arclength on a

compact interval I and let J ⊆ I be a subinterval with L 1(J) > 0. Then we have

L(γ)− L(Cut(γ; J)) ≥ L 1(J)

2
Exc(γ; J)2.

Proof. Let J = [s, s′] for some s < s′. As in Definition 4.1, let w ∈ g1 be a unit vector

such that
〈
w, γ(s′)− γ(s)

〉
=
∣∣γ(s′)− γ(s)

∣∣, i.e.,〈
w,

∫ s′

s

γ̇(t) dt

〉
=
|γ(s′)− γ(s)|

s′ − s
.

Since
∣∣γ̇∣∣ = 1 a.e., we have

∣∣γ̇ − w∣∣2 = 2
(
1−

〈
w, γ̇

〉)
, and since r ≥ 2 there exists a

unit vector v ∈ g1 with 〈v, w〉 = 0. Thus, for all t such that γ̇(t) is defined we have∣∣〈v, γ̇(t)
〉∣∣ =

∣∣〈v, γ̇(t)− w
〉∣∣ ≤ ∣∣γ̇(t)− w

∣∣ .
We deduce that

Exc(γ; [s, s′])2 ≤
∫ s′

s

〈
v, γ̇(t)

〉2
dt ≤

∫ s′

s

∣∣γ̇(t)− w
∣∣2 dt

= 2

(
1−

〈
w,

∫ s′

s

γ̇(t) dt

〉)
= 2

(
1−
|γ(s′)− γ(s)|

s′ − s

)
.
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Multiplying by L 1(J) = s′ − s and using (4.18), we obtain the claim:

L 1(J) Exc(γ; J)2 ≤ 2
(
(s′ − s)−

∣∣γ(s′)− γ(s)
∣∣) = 2 (L(γ)− L(Cut(γ; J))) .

�

Given Y ∈ g, we hereafter denote by δY : [0, `Y ]→ G a geodesic from 0 to exp(Y )

parametrized by arclength; in particular, `Y = d(0, exp(Y )). We denote by δY (`Y −· )
the curve δY traveled backwards from exp(Y ) to 0.

Definition 4.5 (Corrected curve and displacement). Let γ : [a, b]→ G be a horizon-

tal curve parametrized by arclength. For any subinterval [s, s′] ⊆ [a, b] and Y ∈ g, we

define the corrected curve Cor(γ; [s, s′], Y ) : [a, b′′′]→ G, with b′′′ := b+ 2`Y , by

Cor(γ; [s, s′], Y ) := γ|[a,s] ∗ δY ∗ γ|[s,s′] ∗ δY (`Y − · ) ∗ γ|[s′,b].

We refer to the process of transforming γ into Cor(γ; [s, s′], Y ) as to the application

of the correction device associated with [s, s′] and Y . The displacement of the final

point produced by the correction device associated with [s, s′] and Y is

Dis(γ; [s, s′], Y ) := γ(b)−1 Cor(γ; [s, s′], Y )(b′′′).

We will later express the displacement in terms of suitable conjugations Cg(h) :=

ghg−1 and commutators [g, h] := ghg−1h−1 in G.

For any 1 ≤ j ≤ s, we denote by πj : g→ gj the canonical projection with respect

to the direct sum. The mappings πj : G→ g are defined as πj := πj ◦ exp−1. Clearly,

one has π1 = π and π1 = π. We let wj := gj ⊕ · · · ⊕ gs and Gj := exp(wj). We also

agree that Gs+1 := {0}, the identity element of G, and ws+1 := {0}.

Lemma 4.6. The mapping π : G → (g1,+) is a group homomorphism. For any

1 ≤ j ≤ s, Gj is a subgroup of G and πj : Gj → (gj,+) is a group homomorphism.

Proof. Given points g = exp(x1X1 + · · ·+ xnXn) and g′ = exp(x′1X1 + · · ·+ x′nXn) in

G, by (2.6) we have exp−1(g g′) = (x1 + x′1)X1 + · · ·+ (xr + x′r)Xr + R with R ∈ w2

and hence

π(gg′) = π(exp−1(gg′)) = (x1 + x′1)X1 + · · ·+ (xr + x′r)Xr = π(g) + π(g′).

The fact that Gj is a subgroup follows from the Baker-Campbell-Hausdorff formula,

and the assertion that πj : Gj → gj is a homomorphism can be obtained as above. �

The following lemmas describe how the homomorphisms πj interact with conju-

gations, commutators and Lie brackets. We denote by Ad(g) the differential of the

conjugation Cg at the identity 0 ∈ G. This is an automorphism of g. For X, Y ∈ g and

g ∈ G, we have the formulas Ad(exp(X)) = ead(X) and Cg(exp(Y )) = exp(Ad(g)Y ),

see e.g. [7].
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Lemma 4.7. For any g ∈ G and h ∈ Gj we have ghg−1 ∈ Gj (i.e., Gj is normal in

G) and πj(ghg
−1) = πj(h).

Proof. With g = exp(X) and h = exp(Y ), we have

exp−1(ghg−1) = Ad(g)Y = eadXY =
∞∑
k=0

(adX)k

k!
Y = Y +R,

with R ∈ wj+1, because in the previous sum all the terms with k ≥ 1 belong to wj+1.

Hence, we have ghg−1 ∈ Gj and

πj(ghg
−1) = πj ◦ exp−1(ghg−1) = πj(Y +R) = πj(Y ) = πj(h).

�

Lemma 4.8. For any g ∈ G and h ∈ Gj with 1 ≤ j < s we have

[g, h] ∈ Gj+1 and πj+1([g, h]) = [π(g), πj(h)].

A similar statement holds if g ∈ Gj and h ∈ G.

Proof. We prove only the first part of the statement, the second one following from

the first one and the identity [g, h] = [h, g]−1. Combining Lemma 4.7 with Lemma

4.6, we obtain [g, h] = (ghg−1)h−1 ∈ Gj and

πj([g, h]) = πj(ghg
−1) + πj(h

−1) = πj(h)− πj(h) = 0,

so that [g, h] ∈ Gj+1. Now, writing g = exp(X), h = exp(Y ) and using the formula

exp−1(ghg−1) = eadXY as in the previous proof, we obtain

exp−1(ghg−1) =
∞∑
k=0

(adX)k

k!
Y = Y + [X, Y ] +R′,

where the remainder R′ is the sum of all terms with k ≥ 2 and thus belongs to wj+2.

As h−1 = exp(−Y ), the Baker-Campbell-Hausdorff formula gives

exp−1([g, h]) = P (Y + [X, Y ] +R′,−Y ) = [X, Y ] +R′ +R′′,

where R′′ is given by the double sum in (2.6). Now, thinking each term of this double

sum as a (k1 + `1 + · · ·+ kp + `p + 1)-multilinear function (and expanding each factor

containing Y + [X, Y ] + R′ accordingly), we obtain that R′′ is a linear combination

of elements of the form

(adZ1) · · · (adZk)Zk+1,

where k ≥ 1 and Zi ∈ {Y, [X, Y ], R′}. Those elements where only Y appears vanish,

while the other terms belong to wj+2, since [X, Y ], R′ ∈ wj+1 and k ≥ 1. We deduce

that R′′ ∈ wj+2. Finally,

πj+1([g, h]) = πj+1([X, Y ] +R′ +R′′) = πj+1([X, Y ]) = [π(X), πj(Y )],

since X = π(X) +RX and Y = πj(Y ) +RY , with RX ∈ w2 and RY ∈ wj+1. �
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Hereafter, we adopt the short notation γ|ba := γ(a)−1γ(b).

Lemma 4.9. Under the assumptions and notation of Definition 4.5, the displacement

is given by the formula

Dis(γ; [s, s′], Y ) = Cγ|sb

([
exp(Y ), γ|s

′

s

])
. (4.19)

In particular, if Y ∈ gj and 1 ≤ j < s, then Dis(γ; [s, s′], Y ) ∈ Gj+1 and

πj+1 (Dis(γ; [s, s′], Y )) = [Y, γ(s′)− γ(s)].

Proof. We have

Cor(γ; [s, s′], Y )(b′′′) = γ(s) exp(Y ) γ|s
′

s exp(−Y ) γ|bs′
= γ(s)

[
exp(Y ), γ|s

′

s

]
γ|s
′

s γ|
b
s′

= γ(s)
[
exp(Y ), γ|s

′

s

]
γ|bs ,

hence

Dis(γ; [s, s′], Y )) = γ|sb
[
exp(Y ), γ|s

′

s

]
(γ|sb)

−1
= Cγ|sb

([
exp(Y ), γ|s

′

s

])
.

By Lemma 4.6, we have π(γ|s
′

s ) = γ(s′) − γ(s); moreover, πj(exp(Y )) = Y . Hence,

using Lemma 4.8, we obtain[
exp(Y ), γ|s

′

s

]
∈ Gj+1 and πj+1

([
exp(Y ), γ|s

′

s

])
= [Y, γ(s′)− γ(s)].

The lemma now follows from equation (4.19) and Lemma 4.7. �

Definition 4.10 (Iterated correction). Let γ : I → G be a horizontal curve para-

metrized by arclength on the interval I and let I1 := [s1, t1], . . . , Ik := [sk, tk] ⊆ I be

subintervals with ti ≤ si+1. For any Y1, . . . , Yk ∈ g we define by induction on k ≥ 2

the iterated correction

Cor(γ; I1, Y1; . . . ; Ik, Yk) := Cor(Cor(γ; I1, Y1; . . . ; Ik−1, Yk−1); Ik + 2
∑

i<k`Yi , Yk).

The iterated correction is a curve defined on the interval [a, b̂], with b̂ := b +

2
∑k

i=1 `Yi . The displacement of the final point produced by this iterated correction

is

Dis(γ; I1, Y1; . . . ; Ik, Yk) := γ(b)−1 Cor(γ; I1, Y1; . . . ; Ik, Yk)(̂b).

Corollary 4.11. For any Ii = [si, ti] ⊆ I and Yi ∈ gj, with i = 1, . . . , k and j < s,

we have

Dis(γ; I1, Y1; . . . ; Ik, Yk) ∈ Gj+1 (4.20)

and

πj+1 (Dis(γ; I1, Y1; . . . ; Ik, Yk)) =
k∑
i=1

[Yi, γ(ti)− γ(si)]. (4.21)
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Proof. We prove (4.21) by induction on k. The case k = 1 is in Lemma 4.9. Assume

the formula holds for k−1. Letting γ̂ := Cor(γ; I1, Y1; . . . ; Ik−1, Yk−1), which is defined

on the interval [a, b̂] (where b̂ := b+ 2
∑

i<k `Yi), we have

Dis(γ; I1, Y1; . . . ; Ik, Yk) = γ(b)−1 Cor(γ̂; Ik + (̂b− b), Yk)

= γ(b)−1 γ̂(̂b) Dis(γ̂; Ik + (̂b− b), Yk)

= Dis(γ; I1, Y1; . . . ; Ik−1, Yk−1) Dis(γ̂; Ik + (̂b− b), Yk).

Then, by Lemma 4.6, by the inductive assumption and by Lemma 4.9 applied to γ̂

we have

πj+1(Dis(γ; I1, Y1; . . . ; Ik, Yk))

=
k−1∑
i=1

[Yi, γ(ti)− γ(si)] + [Yk, γ̂(tk + (̂b− b))− γ̂(sk + (̂b− b))]

=
k∑
i=1

[Yi, γ(ti)− γ(si)],

because γ̂(tk + (̂b− b))− γ̂(sk + (̂b− b)) = γ(tk)− γ(sk). �

When dealing with curves γ defined on symmetric intervals, it is convenient to

use modified versions of Cut and Cor, which we will denote by Cut′(γ; [s, s′]) and

Cor′(γ; [s, s′], Y ). They are obtained from Cut(γ; [s, s′]) and Cor(γ; [s, s′], Y ) by com-

position with the time translation such that the new domain is a symmetric interval.

The iterated correction is then defined in the following way:

Cor′(γ; I1, Y1, . . . ; Ik, Yk) := Cor′(Cor′(γ; I1, Y1; . . . ; Ik−1, Yk−1); Ik +
∑

i<k`Yi , Yk).

The related displacement satisfies the properties (4.20) and (4.21) of Corollary 4.11

with Cor′ replacing Cor.

5. Proof of the main results

Let G be a Carnot group with rank r ≥ 2 and step s, and let X = {X1, . . . , Xr}
be an orthonormal basis for g1 (recall that g is endowed with a scalar product such

that gi ⊥ gj). We first prove the one-sided version of Theorem 1.2; we will illustrate

later how to adapt the proof in order to obtain Theorem 1.2.

Theorem 5.1. Let γ : [0, T ]→ G, T > 0, be a length-minimizing curve parametrized

by arclength. Then there exists an infinitesimal sequence ηi ↓ 0 such that

lim
i→∞

Exc(γ; [0, ηi]) = 0. (5.22)

Proof. Step 1. We can assume that γ(0) = 0. Suppose by contradiction that there

exists ε > 0 such that Exc(γ; [0, t]) ≥ ε for any sufficiently small t > 0. For k =
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1, . . . , s, we inductively define horizontal curves γ(k) : [0, Tk] → G parametrized by

arclength such that:

(i) γ(k)(0) = γ(0) = 0;

(ii) γ(T )−1γ(k)(Tk) ∈ Gk+1, where Gs+1 = {0};
(iii) L

(
γ(k)
)
< L(γ), i.e., Tk < T .

In particular, γ(s) is a horizontal curve with the same endpoints as γ, but with smaller

length: this contradicts the minimality of γ.

We define γ(1) := Cut(γ; [0, η]), where the parameter η > 0 will be chosen later;

in fact, any sufficiently small η will work. In this proof, the notation O(·) and o(·)
is used for asymptotic estimates which hold as η → 0. By Remarks 4.2 and 4.3, γ(1)

satisfies (i), (ii) and (iii) with k = 1.

Step 2. Let us fix parameters β > 0 and %1 := 1 > %2 > · · · > %s > 0 such that for

all k = 1, . . . , s− 1

(k + 1)%k − %k+1

k
> 1 + β. (5.23)

This is possible if β is small enough: indeed, the inequality (5.23) is equivalent to

%k >
%k+1 + k

k + 1
+

k

k + 1
β,

and we can choose any %s ∈ (0, 1) and then %s−1 < 1 so as to verify the (strict)

inequality when β = 0 and k = s − 1, then %s−2 similarly and so on. By continuity,

the inequalities will still hold for a small enough β > 0.

For any k = 1, . . . , s − 1, we define Ik := [0, η%k ]; the curve γ(k+1) is defined from

γ(k) by applying several correction devices within Ik+1, see (5.26). As soon as η ≤ 1,

there holds [0, η] = I1 ⊆ I2 ⊆ · · · ⊆ Is−1.

By Lemma 4.4, since Exc(γ; [0, η]) ≥ ε, the gain of length obtained by performing

the cut is

L(γ)− L(γ(1)) ≥ ηε2

2
≥ η1+β,

provided η is small enough.

The curves γ(k) : [0, Tk]→ G will be constructed inductively so as to satisfy (i), (ii)

and (iii), as well as the following additional technical properties, which hold for γ(1):

(iv) Tk ≥ Tk−1 if k ≥ 2;

(v) L
(
γ(k)
)
≤ L(γ)− (1 + o(1))η1+β;

(vi) γ(k)(t) = γ(t+ (T − Tk)) for any t ∈ [2η%k , Tk], i.e., on [2η%k , Tk] the curve γ(k)

has the same projection on g1 as the corresponding final piece of γ;

(vii)
∥∥∥γ(k) − γ

∣∣
[0,Tk]

∥∥∥
L∞

= O(η).

Notice that (v) implies (iii) for small enough η.



TANGENT LINES TO GEODESICS 21

Step 3. Assume that γ(k) has been constructed, for some 1 ≤ k ≤ s− 1, in such a

way that (i)–(vii) hold. By (ii), there exists Ek ∈ gk+1 ⊕ · · · ⊕ gs such that

γ(T )−1γ(k)(Tk) = exp(Ek).

Let us estimate πk+1(Ek). First, by (vi) and the uniqueness of horizontal lifts, we

have

γ(k)|Tk2η%k = γ|Tτk , where τk := 2η%k + (T − Tk).

Hence, defining gk := γ(τk)
−1γ(k)(2η%k), we have

γ(k)(Tk) =γ(k)(2η%k) γ(k)
∣∣Tk
2η%k

= γ(τk)gk γ|Tτk
=γ(τk) γ|Tτk Cγ|τkT

(gk) = γ(T )Cγ|τkT
(gk),

i.e., gk = Cγ|Tτk
(γ(T )−1γ(k)(Tk)). By (ii), from Lemma 4.7 we obtain gk ∈ Gk+1 and

πk+1(Ek) = πk+1

(
γ(T )−1γ(k)(Tk)

)
= πk+1(gk) = O

(
η(k+1)%k

)
. (5.24)

The last estimate follows from Remark 2.6 applied to the curve

γ(τk)
−1 γ|[0,τk](τk − ·) ∗ γ

(k)
∣∣
[0,2η%k ]

,

which connects 0 to γ(τk)
−1γ(k)(2η%k). Its length is τk +2η%k and is controlled by 5η%k

because, by (iv),

T − Tk ≤ T − T1 = L(γ)− L(γ(1)) ≤ η ≤ η%k .

Step 4. We now define γ(k+1). As gk+1 = [gk, g1], using estimate (5.24) for πk+1(Ek),

there exist Y1, . . . , Yr ∈ gk such that

πk+1(Ek) =
r∑
i=1

[Yi, Xi] and |Y1| , . . . , |Yr| = O
(
η(k+1)%k

)
. (5.25)

Furthermore, we have Exc(γ; Ik+1) ≥ ε whenever η is small enough. We can then

apply Lemma 3.6 to Ik+1 and find [a1, b1], . . . , [ar, br] ⊆ Ik+1 (with bi ≤ ai+1) such

that ∣∣det
(
γ(b1)− γ(a1), . . . , γ(br)− γ(ar)

)∣∣ ≥ cηr%k+1 .

Using (vii) we obtain, for small η,∣∣det
(
γ(k)(b1)− γ(k)(a1), . . . , γ(k)(br)− γ(k)(ar)

)∣∣ ≥ cηr%k+1 −O(η1+(r−1)%k+1)

≥ c

2
ηr%k+1 .

This implies that for i = 1, . . . , r we have

Xi =
r∑
j=1

cij
(
γ(k)(bj)− γ(k)(aj)

)
,
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where |cij| = O (η−%k+1). This estimate depends on c and thus on ε. So, defining

Zi :=
∑r

j=1 cjiYj, from (5.25) we obtain

πk+1(Ek) =
r∑
i=1

[Zi, γ
(k)(bi)− γ(k)(ai)],

with |Zi| = O
(
η(k+1)%k−%k+1

)
. Finally, we let

γ(k+1) := Cor(γ(k); [a1, b1],−Z1; . . . ; [ar, br],−Zr). (5.26)

Since d(0, exp(Z)) = O(|Z|1/k) for Z ∈ gk, the extra length Tk+1 − Tk needed for the

application of these r correction devices is

Tk+1 − Tk =
r∑
i=1

O
(
|Zi|1/k

)
= O

(
η

(k+1)%k−%k+1
k

)
= o

(
η1+β

)
,

thanks to the inequalities (5.23) on the parameters %k. Thus, we obtain

L(γ(k+1)) ≤ L(γ(k)) + o(η1+β).

Step 5. We check that γ(k+1) satisfies properties (i)-(vii). We have just verified

(iii) and (v), while (i) and (iv) are trivial. The property (vii) follows from the fact

that γ(k+1) (as well as γ(k+1)) is obtained from γ(k) (from γ(k)) by the application of

correction devices of total length o(η1+β).

In order to check (vi), we remark that

γ(k+1) = γ(k+1)
∣∣
[0,η%k+1+(Tk+1−Tk)]

∗ γ(k)
∣∣
[η%k+1 ,Tk]

and that the final point of the first curve in this concatenation coincides with the

starting point of the second one. Since Tk+1 − Tk = O
(
η

(k+1)%k−%k+1
k

)
= o (η%k+1), if η

is small enough we obtain

γ(k+1)
∣∣
[2η%k+1 ,Tk+1]

= γ(k)
∣∣
[2η%k+1−(Tk+1−Tk),Tk]

( · − (Tk+1 − Tk))

= γ
∣∣
[2η%k+1+(T−Tk+1),T ]

( · + (T − Tk+1)) ,

the last equality holding because 2η%k+1 − (Tk+1 − Tk) ≥ 2η%k when η is small. Thus,

γ(k+1) satisfies (vi).

Finally, let us check (ii). By Lemma 4.6 and Corollary 4.11, we have

γ(T )−1γ(k+1)(Tk+1) =
(
γ(T )−1γ(k)(Tk)

) (
γ(k)(Tk)

−1γ(k+1)(Tk+1)
)
∈ Gk+1

and

πk+1

(
γ(T )−1γ(k+1)(Tk+1)

)
= πk+1(exp(Ek)) + πk+1

(
γ(k)(Tk)

−1γ(k+1)(Tk+1)
)

= πk+1(Ek) +
r∑
i=1

[−Zi, γ(bi)− γ(ai)]

= 0.
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This concludes the proof. �

We now prove Theorem 1.2. The proof is basically the same as that of Theorem

5.1 and we just list the required minor modifications below.

Proof of Theorem 1.2. The constraints imposed on the curves γ(k), as well as the

cut and correction operations, have to be replaced by their symmetric counterparts.

For k = 1, . . . , s we inductively construct horizontal curves γ(k) : [−Tk, Tk] → G

parametrized by arclength satisfying:

(i’) γ(k)(−Tk) = γ(−T );

(ii’) γ(T )−1γ(k)(Tk) ∈ Gk+1 (in particular, γ(s)(Ts) = γ(T ));

(iii’) L
(
γ(k)
)
< L(γ), i.e., Tk < T ;

(iv’) Tk ≥ Tk−1 if k ≥ 2;

(v’) L
(
γ(k)
)
≤ L(γ)− (1 + o(1))η1+β;

(vi’) γ(k)
∣∣
[2η%k ,Tk]

= γ
∣∣
[2η%k+(T−Tk),T ]

( · + (T − Tk)) and

γ(k)
∣∣
[−Tk,−2η%k ]

= γ
∣∣
[−T,−2η%k−(T−Tk)]

( · − (T − Tk));

(vii’)
∥∥∥γ(k) − γ

∣∣
[−Tk,Tk]

∥∥∥
∞

= O(η).

We list the necessary modifications in the various steps.

Step 1. The first curve is γ(1) := Cut′(γ; [−η, η]), which satisfies (i’)–(vii’) for k = 1.

Step 2. The interval Ik is now [−η%k , η%k ].
Step 3. Let Ek, τk, gk be defined as in the proof of Theorem 5.1. The estimate

πk+1(gk) = O
(
η(k+1)%k

)
follows by applying Remark 2.6 to the curve

γ(τk)
−1 γ|[−τk,τk](τk − ·) ∗ γ

(k)
∣∣
[−2η%k ,2η%k ]

(5.27)

and observing that γ(−τk) = γ(k)(−2η%k). The length of the curve in (5.27) is 2τk +

4η%k ≤ 10η%k .

Step 4. In the definition (5.26) of γ(k+1), Cor is replaced by Cor′.

Step 5. The fact that γ(k+1) satisfies (vi’) follows from the identity

γ(k+1) = γ(k)
∣∣
[−Tk,−η%k+1 ]

∗ γ(k+1)
∣∣
[−η%k+1−(Tk+1−Tk),η%k+1+(Tk+1−Tk)]

∗ γ(k)
∣∣
[η%k+1 ,Tk]

,

where the final point of each curve in the concatenation coincides with the starting

point of the next one. �

We finally prove Theorem 1.1 and then state its one-sided version.

Proof of Theorem 1.1. As explained in the introduction, by Propositions 2.5, 2.7,

2.8 and 2.11 it is not restrictive to assume that the Carnot-Carathéodory structure

(M,X ) is that of a Carnot group G; moreover, we can assume that t = 0, γ(0) = 0.

Let ηi ↓ 0 be the sequence provided by Theorem 1.2. Since Exc(γ; [−ηi, ηi]) → 0,

we can find a sequence ζi ↓ 0 satisfying

ζ
−1/2
i Exc(γ; [−ηi, ηi])→ 0.
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Let us set λi := ζiηi ↓ 0. Up to subsequences, using Lemma 3.5 and a diagonal argu-

ment, we can assume that there exists a length minimizer γ∞ : R→ G parametrized

by arclength such that

γi(t) := δλ−1
i

(γ(λit))→ γ∞(t),

uniformly on compact subsets of R, and that γ̇i → γ̇∞ in L2
loc(R). For any fixed N > 0

we have by Remark 3.3

Exc (γi; [−N,N ]) = Exc(γ; [−Nζiηi, Nζiηi]) ≤ (Nζi)
−1/2 Exc(γ; [−ηi, ηi])→ 0,

the last inequality being true for any i such that Nζi ≤ 1. So, by Remark 3.4,

we deduce that Exc(γ∞; [−N,N ]) = 0, which means that γ̇∞(t) is contained in a

hyperplane h1 of g1 for a.e. t ∈ [−N,N ]. Since this is true for any N , we deduce that

there exists a hyperplane h1 of g1 such that γ̇∞(t) ∈ h1 for a.e. t ∈ R; in particular,

γ∞ is contained in the Carnot subgroup H associated with the Lie algebra generated

by h1.

If the rank of G is r = 2, we conclude that γ∞ is contained in a one-parameter

subgroup of G. Since γ∞ ∈ Tan(γ; 0) is a length minimizer parametrized by arclength,

we deduce that γ∞ is a line in G.

Otherwise, we can reason by induction on r > 2: since H has rank r− 1 and γ∞ is

a length minimizer in H parametrized by arclength, there exists γ̂ ∈ Tan(γ∞; 0) such

that γ̂ is a line in H ⊂ G. By Proposition 2.8 we have γ̂ ∈ Tan(γ; 0) and the proof is

accomplished. �

We state without proof the following version of Theorem 1.1, which holds for ex-

tremal points of length-minimizers. The proof uses the same arguments as the previ-

ous one and can be easily deduced from Theorem 5.1.

Theorem 5.2. Let γ : [0, T ]→M be a length minimizer parametrized by arclength

in a Carnot-Carathéodory space (M,d). Then, each of the tangent cones Tan+(γ; 0)

and Tan−(γ;T ) contains a horizontal half-line.

Remark 5.3. Theorem 1.1 admits the following reformulation in terms of the minimal

control h = (h1, . . . , hr) of a length-minimizer γ : [−T, T ] → M (parametrized by

arclength): for any t ∈ (−T, T ) there exist an infinitesimal sequence ηi ↓ 0 and a

constant unit vector v ∈ Sr−1 such that

h(t+ ηi ·)→ v in L2
loc(R).

Of course, an analogous version holds for extremal points.

Let us prove this fact. Let the chart ϕ and the vector fields Yi, Y
∞
i be as in Section

2. We can assume t = 0. Theorem 1.1 provides a sequence ηi ↓ 0 such that the
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curves γi(τ) := δ1/ηiϕ(γ(ηiτ)) converge locally uniformly to a horizontal line κ, in

some tangent CC structure (M∞,X ∞). We have

γi(τ) =

∫ τ

0

r∑
j=1

hj(ηis)Y
1/ηi
j (γi(s)) ds,

where Y λ
j (x) := λ−1(δλ)∗Yj(δ1/λ(x)). Up to subsequences we have h(ηi ·) ⇀ h∞ in

L2
loc(R), with ‖h∞‖∞≤ 1. Since Y

1/ηi
j → Y ∞j locally uniformly, we obtain

κ(τ) =

∫ τ

0

r∑
j=1

h∞(s)Y ∞j (κ(s)) ds.

By Proposition 2.7, κ is parametrized by arclength. So |h∞|= 1 a.e. and h∞ is the

minimal control of κ. Since κ is a line, h∞ is constant. Finally, for any compact

set K ⊂ R, we trivially have ‖h(ηi ·)‖L2(K)→ ‖h∞‖L2(K). This gives h(ηi ·) → h∞ in

L2(K).
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