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Introduction

The main objective of this thesis is to present fundamental solutions.
There will be a little of definition work to do, we will not give a complete
characterisation to distributions, just the necessary tools to define the Fourier
transform for distributions and to derive the solution to Kolmogorov equa-
tion.
In the first chapter we shall see the definition of the distributions and some
necessary properties. In the second chapter we understand what are differen-
tial operators and what does it means to have a fundamental solution. The
third and last chapter is dedicated to the Kolmogorov equation, introducing
the Fourier transform as is needed to derive one fundamental solution.
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Chapter 1

Test function and Distribution
Space in Rn

First of all, the definitions of our objects

Definition 1.1. (Space of test functions)
A test function on Rn is a infinitely differentiable function with compact
support. The space of test function is denoted as C∞0 (Rn) or D(Rn).

Definition 1.2. (Distribution)
A distribution is a linear form on D(Rn) that has the following continuity

property: for any K compact subset of Rn there are k ∈ N and C ∈ R such
that

∀φ ∈ D(K); |u(φ)| ≤ C
∑
|α|≤k

sup
x∈Rn

|∂αφ(x)|;

where α ∈ Nn is a multi-index and |α| = α1 + · · ·+ αn is the weight of α.
The space of distribution is denoted as D ′(Rn).

Remark. Any locally integrable function f induces a distribution u as

φ ∈ D(Rn); u ∈ D ′(Rn); u(φ) =

∫
Rn
f(x)φ(x)dx.

Example 1.3. If f and g are test functions, the integration by parts formula
gives ∫

Rn
f(x)∂αg(x)dx = (−1)|α|

∫
Rn
∂αf(x)g(x)dx

where α ∈ Nn is a multi-index and ∂αf means ∂|α|

∂
α1
1 ···∂

αn
n
f .

That suggests us the next definition:
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Definition 1.4. (Differentiating a distribution)
Let u be a distribution and α ∈ Zn then we shall define a distribution ∂αu
as

∂αu(φ) = (−1)|α|u(∂αφ).

Theorem 1.5. Let φ(x, y) in C∞(X × Y ) where Y is an open set in Rn,
such that there is a compact set K ⊂ X so that the support of φ is in K
×Y , and u be a distribution. Then

y → u(φ(., y))

as a function in y, is a C∞ function and

∂αy u(φ(., y)) = u(∂αy φ(., y)).

proof. The Taylor formula for φ in respect of y

φ(x, y + h) = φ(x, y) +
∑
j

hj
∂φ(x, y)

∂yj
+ ψ(x, y, h);

sup
x
|∂αxψ ∗ x, y, h)| = O(|h|2)

u(φ(., y + h)) = u(φ(., y)) +
∑
j

hju(
∂φ(x, y)

∂yj
) +O(|h|2)

So y → u(φ(., y)) is differentiable.

∂

∂yj
u(φ(., y)) =

∂φ(x, y)

∂yj
.

Theorem 1.6. if u ∈ D ′(I) where I is an open interval in R. and u′ = 0
then u is a constant.

proof. u′ = 0 means

∀φ ∈ C∞0 (A); u(φ′) = 0.

Obviously if φ is a test function, φ’ is a test function, and the fundamental
theorem of integration holds in this domain.

φ(x) =

∫ x

−∞
φ′(t)dt

The idea is, if
∫
ψ = 0 then we can define the primitive, and that is a test

function, so u(ψ) = 0 then for any ψ and for
∫
γ = 1

0 = u(ψ − γ
∫
ψ) = u(ψ)−

∫
ψu(γ)

This proves that u is a constant.
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Theorem 1.7. Let u be a distribution in Y × I, where Y is an open set in
Rn−1 and I is an open interval in R. Then if ∂nu = 0

φ ∈ D(Y × I);u(φ) =

∫
R
u0(φ(., xn))dxn.

Where u0 is a distribution in Rn−1, if fact this means that u is constant
respectively to xn.

proof. The proof is analogue to the previous.

Theorem 1.8. If u and f are continuous functions, and ∂ju = f as distri-
butions, then ∂ju(x) exists and is equal to f(x)

proof. Assume j = n and that X = Y× I since the property is local. Let
τ ∈ I and define v(x) as

x = (x′, xn); v(x) =

∫ xn

τ
f(x′, t)dt.

∂n(u − v) = 0 so by the theorem before u(x) = v(x) + w(x′) where w is a
constant function, the right hand function is differentiable in respect to xn,
with derivative f.

Definition 1.9. (C1 boundary) If B ⊂ A open sets in Rn then we say B
has C1 boundary in A if for every boundary point of Y in X we can find a
C1 function

ρ(x0) = 0; dp(x0) 6= 0; A0 ∩B = {x ∈ A0|ρ(x) < 0}

Remark. Any Borel Measure induces a distribution.

µ(φ) =

∫
R
φdµ.

The space of distribution contains many of already known objects and
defines for each derivatives of all orders.

Example 1.10. (Dirac’s measure)
Consider δ0, it is a measure on Rn.

δ0 : P(Rn)→ R; δ0(A) =

{
1 if 0 ∈ A
0 if 0 /∈ A

Example 1.11. (Dirac’s distribution)
Let’s consider the distribution h induced by the Heavyside function H(x).
It is clear that H is not differentiable in 0 as a function.

H :

{
H(x) = 1 if x ≥ 0

H(x) = 0 if x < 0
h(φ) =

∫
R
H(x)φ(x)dx
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If we try to differentiate h as the definition we gave suggests we obtain h’

h′(φ) = −
∫ ∞
0

φ′ = φ(0)

h′ is the distibution induced by the measure δ0, we call it the Delta distri-
bution centered in 0 and denote it simply as δ0.
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Chapter 2

Fundamental Solutions

Definition 2.1. (LDO with constant coefficient and related equation)
A Linear differential operator is a function : C∞(Rn;C) → C∞(Rn;C)

such that is linear in φ and its derivatives.

P =
∑
|α|<k

cα∂
α; cα ∈ C, α ∈ Nn.

Definition 2.2. (Fundamental solution for a LDO)
Let P be a LDO then we call the distribution E a fundamental solution

of P if
PE = δ0.

Remark. (Translation)
We have to note that, when the LDO has constant coefficients, it com-

mutes with translations of Rn.

PE(φ ◦ τ) = δ0(φ ◦ τ) = δτ(0)

Example 2.3. (Examples of differential operator)
Differentiation in R: we have already seen that the Heavyside function

is a fundamental solution for the simple differentiation in R.

P =
d

dx

Differentiation by z̄ in C: We will see that the fundamental solution can
be derived from the solution of the Laplace operator.

P =
∂

∂z̄

Laplace operator in Rn : its fundamental solution has a very different
structure depending on the dimension. The case n = 1 is different because
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the domain is not connected, a wide range of solution is accepted, for the
other case we will have to distinguish for n = 2 and n > 2 .

P = ∆ =

n∑
i=1

∂2

∂x2i

The heat operator in Rn+1 : it represents how heat diffuses through time,
the fundamental solution is the case where all of the heat is concentrated in
a starting point.

P = ∆x − ∂t
The wave operator Rn+1; it represents how waves evolve.

P = ∆x − ∂2t
Remark. (Considering Rn \ {0})

In the following examples, we will work with LDOs that have the follow-
ing property, when A is an open subset of Rn and u is a distribution.

u ∈ D ′(Rn) Pu ∈ C∞(A) =⇒ u ∈ C∞(A)

Since δ0 restricted to Rn \ {0} is in C∞(Rn \ {0}) then E, the fundamental
solution must also be in C∞(Rn \ {0}) when restricted to Rn \ {0} must be
in C∞(Rn \ {0}).

Definition 2.4. (Homogeneous distributions)
A distribution u in (Rn \ {0}) is called homogeneous of degree a if for

any φ in D(R \ {0}),

〈u, φ(x)〉 = tα〈u, tnφ(tx)〉

Theorem 2.5. Given u an homogeneous distribution in (Rn \{0}) of degree
a ≤ −n, there is an unique extension of u that is an homogeneous distribution
of degree a in Rn

Theorem 2.6. Let u1, · · · , un be homogeneous distributions of degree 1−n
in Rn \ {0} and assume that

∑n
j=1 ∂juj = 0

n∑
j=1

∂j u̇j = δ0

Lemma 2.7. Differentiation by z̄
The second fundamental solution that we see is for the

∂Eζ
∂z̄

= δζ where Eζ(z) =
1

π(z − ζ)

It also derives from the Cauchy’s integral formula, but we will solve it in a
more elegant way.

φ(ζ) = − 1

π

∫
Y
∂
φ(x, y)

∂z̃

1

z − ζ
dxdy +

1

2πi

∫
∂Y
φ(x, y)

1

z − ζ
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Lemma 2.8. (Gauss-Green)
Let A be a open and limited set in Rn and such that ∂A is C1

F ∈ C1(A;Rn) ∩ C(Ā;Rn) then∫
A
divFdx = −

∫
∂A
〈F,N∂A〉dσ

We will use it like this∫
A
φ∆fdx =

∫
A
φdiv(∇f)dx =

∫
A

(div(φ∇f)− 〈∇φ,∇f〉)dx

=

∫
∂A
φ∇fdσ −

∫
A
〈∇φ,∇f〉)dx

Theorem 2.9. (Fundamental solution for the Laplace equation) The Laplace
operator has a fundamental solution in Rn for n ≥ 2.{

E(x) = log|x|
2π if x ∈ R2 \ {0}

E(x) = − |x|2−n
(n−2)cn if x ∈ Rn \ {0} and n > 2

where cn is the area of the unit sphere
proof. If φ ∈ C∞0 (Rn)

〈∂jE, φ〉 = −〈E, ∂jφ〉 = − lim
ε→0

∫
|x|>ε

E(x)∂jφ(x)dx =∫
∂jE(x)φ(x)dx+ lim

ε→0

∫
|x|=ε

E(x)φ(x)
xj
|x|
dσ

Using the gauss green theorem for the last equality. The limit is O(ε) or
O(log(1ε ) depending on the cases. This tells us that the distribution’s deriva-
tives are defined by locally integrable functions. For x 6= 0

∆E =
n|x|−n −

∑
nx2j |x|−n−2

cj
= 0

This tells us that cδ0 is an extension of ∆E for some c

〈∆E, φ〉 = 〈E,∆φ〉 = lim
ε→0

∫
|x|>ε

(E∆φ− φ∆E)dx =

lim
ε→0

∫
|x|>ε

div(E∇φ− φ∇E)dx =

lim
ε→0

∫
|x|=ε
〈φ∇E − E∇φ, x

|x|
〉dσ = φ(0)

Remark. The case n=2 implies the solution of the first operator we dis-
cussed, the differentiation by z̄.

∆ = 4
∂2

∂z∂z̃
;

∂

∂z
E =

1

4πz
;
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Lemma 2.10. (Integrals)
To prove that the fundamental solution for the Heat equation defines a

distribution we need that it is locally integrable.

(

∫
R
e−t

2
dt)n = cn

Γ(n/2)

2∫
R
e−t

2
dt = π

1
2∫

R
e−at

2
dt = (

π

a
)
1
2 , a > 0∫

Rn
exp(−〈Ax, x〉)dx = π

n
2 (det(A))−

1
2

Theorem 2.11. (Fundamental solution for the Heat equation) Considering
the Heat operator introducing before we will prove that the function E is is
the fundamental solution of the Heat operator P .

E(x, t) =

{
(4tπ)−

n
2 e(−

|x|2
4t

), t > 0;

0, t ≤ 0

(
∂

∂t
−∆x)E = δ0

proof Calculating the two parts of PE we note that they cancel each
other.

∂E

∂j
= −xj

E

2t
; ∆xE = −nE

2t
+ |x|2 E

4t2
=

∂

∂t

So we know that PE = 0 on (Rn \ {0}) As before we know that PE has {0}
as support.

〈PE, φ〉 = 〈E, ∂φ
∂t

+ ∆xφ〉

= lim
ε→0

∫
t>ε
−E(x, t)(

∂φ

∂t
+ ∆xφ)dxdt

= lim
ε→0

∫
E(x, ε)φ(x, ε)dx

= lim
ε→0

∫
E(x, 1)φ(

√
εx, ε)dx = φ(0)

We used the Gauss green theorem, a change of variables and the bounded
convergence theorem to bring the limit inside the integral.

Definition 2.12. (Support of a distribution)
We say that a point x is inside of the support of u if x has no neighborhood

in which the restriction of u is 0. The space of distribution with compact
support is denoted with E ′(Rn)
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Definition 2.13. (Convolution by smooth function)
If u is a distribution and φ a test function then the convolution u ∗ φ is

defined as the function of x

(u ∗ φ)(x) = u(φ(x− y));

where φ on the righthand is considered a function of y.

Theorem 2.14. (Associativity of the convolution operation)
If u is a distribution and φ and ψ are test functions then

(u ∗ φ) ∗ ψ = u ∗ (φ ∗ ψ).

Definition 2.15. (Convolution of distribution)
Let u1 and u2 be two distributions one of which has compact support

then the convolution of the two is defined as the only distribution u such
that

φ ∈ C∞0 (Rn); u1 ∗ u2 ∗ φ = u ∗ φ.

Remark. (Reason behind fundamental solutions)
Through the fundamental solution of an operator one can construct any

solution of that operator, thank to the following convolution and δ0 proper-
ties

(∂αu) ∗ φ = u ∗ (∂αφ) = u ∗ (δ0 ∗ (∂αφ)) = u ∗ (∂αδ0) ∗ φ.

The first and last equalities are derived from the definitions; the second is due
to the fact that δ0 is the identity for convolution with test functions. This
proves ∂αu = (∂αδ0) ∗ u if we remember the definition of linear differential
operator we gave before we can just substitute ∂α with P

This has the important consequence, where E is the fundamental solution

E ∗ (Pu) = u, u ∈ E ′(Rn)

P (E ∗ f) = f, f ∈ E ′(Rn)

The convolution with E is the right and left inverse of P. The second equation
show us very clearly the importance behind finding a fundamental solution.

15





Chapter 3

Kolmogorov equation

In this last chapter we will consider the following equation, relative to a LDO
with non constant coefficients.

K u =
∂2u

∂x2
+ x

∂u

∂y
− ∂u

∂t
= 0; t > 0.

u(t, .)→ δ(x0, y0) as t→ 0.

Definition 3.1. (Schwartz space and its dual)
We call S (Rn) the space of temperate functions, the set of all φ ∈

C∞(Rn) functions such that

sup
x
|xβ∂αφ(x)| <∞

Definition 3.2. (Fourier transform)
If u ∈ S ′(Rn) it is defined the Fourier transform of u û.

û(φ) = u(φ̂)

This û is still in S ′(Rn) and the inversion rule holds.

Theorem 3.3. (Transform of a Gaussian function)
If A is a symmetric and non singular matrix inM(C) the function u(x) =

exp(−〈Ax, x〉2) is in S ′(Rn) if and only if 〈ReAx, x〉 ≥ 0 and if ReA ≥ 0

its Fourier transform is û(x) = (2π)
n
2 (det(A−1))

1
2 exp(− 〈A

−1x,x〉
2 )

Theorem 3.4. (Construction of the solution to the Kolmogorov equation)
This is the solution of the Kolmogorov equation
proof Let us assume that u is a solution and û his Fourier transform

respect (x,y) exists and behaves well when t→ 0.
Transforming each term of the equation.

−ξ2û− η∂û
∂ξ
− ∂û

∂t
= 0; t > 0.
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We have that dû = −ξ2ûdt if dη = 0 and dξ = ηdt

û(t, ξ + ηt, η) = û(0, ξ, η) exp

∫ t

0
−(ξ + ηs)2ds

= û(0, ξ, η) exp(−ξ2t− ξηt2 − η2 t
3

3
)

The exponential on the right is relative to the matrix A−1

A−1 =

[
2t t2

t2 2
3 t

3

]
A =

[
2
t − 3

t2

− 3
t2

6
t3

]
If we assume û(0, ξ, η) = exp(−ix0ξ− iy0η) and invert the Fourier trans-

form we get

u(t, x, y− tx) = 3
1
2

1

2πt2
exp
(
−1

t
(x−x0)2 +

3

t2
(x−x0)(y− y0)−

3

t3
(y− y0)2

)
This function depends on x0 and y0, we should rewrite it in a more general
form, showing all of the dependencies.

E(x, y, t;x0, y0) = 3
1
2

1

2πt2
exp
(
−1

t
(x−x0)2+

3

t2
(x−x0)(y+tx−y0)−

3

t3
(y+tx−y0)2

)
Remark. Conclusions.

Even if the operator does not have constant coefficients, it does commute
with translations and we can say that E is a two sided fundamental solution
of the Kolmogorov equation.

K u = f ;

u =

∫
s<t
E(t− s, x, y;x0, y0)f(s, x0, y0)dx0dy0ds.

The function f → u is a right and left inverse of the operator.
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