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Quote:
Sometimes it is the people no one imagines anything of, who do the things
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Introduction

The main objective of this thesis is to present fundamental solutions.
There will be a little of definition work to do, we will not give a complete
characterisation to distributions, just the necessary tools to define the Fourier
transform for distributions and to derive the solution to Kolmogorov equa-
tion.

In the first chapter we shall see the definition of the distributions and some
necessary properties. In the second chapter we understand what are differen-
tial operators and what does it means to have a fundamental solution. The
third and last chapter is dedicated to the Kolmogorov equation, introducing
the Fourier transform as is needed to derive one fundamental solution.






Chapter 1

Test function and Distribution
Space in R"

First of all, the definitions of our objects

Definition 1.1. (Space of test functions)
A test function on R" is a infinitely differentiable function with compact
support. The space of test function is denoted as C§°(R") or Z(R").

Definition 1.2. (Distribution)

A distribution is a linear form on 2(R™) that has the following continuity
property: for any K compact subset of R" there are k € N and C € R such
that

voe 2(K);  lu@)]<C Y sup |0°6();

R

where o € N" is a multi-index and |o| = ag + - - - + a, is the weight of a.
The space of distribution is denoted as Z'(R™).

Remark. Any locally integrable function f induces a distribution « as
o€ ZR"); ueZ'R"); u(9)= A f(z)¢(z)dz.

Example 1.3. If f and g are test functions, the integration by parts formula
gives

f(@)d%g(x)dz = (D)1 | 9% f(x)g(z)da
R™ R™

||

where a € N” is a multi-index and 0“f means 78,118 5om f-
RS
That suggests us the next definition:
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Definition 1.4. (Differentiating a distribution)
Let u be a distribution and o € Z"™ then we shall define a distribution 0%u
as

0°u(9) = (=1)1*lu(9°¢).

Theorem 1.5. Let ¢(z,y) in C°(X x Y) where Y is an open set in R",
such that there is a compact set K C X so that the support of ¢ is in K
XY, and v be a distribution. Then

y = u(o(,y))

as a function in y, is a C* function and

Ou(¢(.,y)) = u(d5o(.,y)).

proof. The Taylor formula for ¢ in respect of y

oy +) = o) + 31y iy
Sl;p ’831/} *T,Y, h)| = O(’h’2)
W@y + 1) = (o) + 3 by G2 O

So y — u(¢(.,y)) is differentiable.

9. _ 9¢(z,y)
0, (o(-,9)) 9y

Theorem 1.6. if u € 2'(I) where I is an open interval in R. and v = 0
then w is a constant.
proof. ' = 0 means

Vo € C3°(A); u(¢) =0.

Obviously if ¢ is a test function, ¢’ is a test function, and the fundamental
theorem of integration holds in this domain.

o = [ o

The idea is, if f 1 = 0 then we can define the primitive, and that is a test
function, so u(¢)) = 0 then for any ¢ and for [y =1

0=u(w 7 [ w) =u(w) - [ vulr)

This proves that u is a constant.



Theorem 1.7. Let u be a distribution in Y x I, where Y is an open set in
R" ! and I is an open interval in R. Then if d,u = 0

e DY xI)u(p) = / wo(P(., xy))dxy,.

R

Where ug is a distribution in R?~!, if fact this means that u is constant
respectively to x,.
proof. The proof is analogue to the previous.

Theorem 1.8. If u and f are continuous functions, and d;u = f as distri-
butions, then 0ju(z) exists and is equal to f(z)

proof. Assume j = n and that X = Y x I since the property is local. Let
7 € I and define v(x) as

r=(2,2,); wv(x)= /xn f(2', t)dt.

On(u —v) = 0 so by the theorem before u(x) = v(z) + w(2’) where w is a
constant function, the right hand function is differentiable in respect to x",
with derivative f.

Definition 1.9. (C! boundary) If B C A open sets in R™ then we say B
has C! boundary in A if for every boundary point of Y in X we can find a
C! function

p(zo) = 0;  dp(xo) #0; Ao N B = {x € Ao|p(z) <0}

Remark. Any Borel Measure induces a distribution.

n(e) = /R ¢ dp.

The space of distribution contains many of already known objects and
defines for each derivatives of all orders.

Example 1.10. (Dirac’s measure)
Consider §y, it is a measure on R”.

1 if0oeAd

50:@(]1%”)—)1&; 50(A): {0 1f0¢A

Example 1.11. (Dirac’s distribution)
Let’s consider the distribution h induced by the Heavyside function H(z).
It is clear that H is not differentiable in 0 as a function.

H:{H(x):lif:n>0

H(z)=0ifx <0 h(¢) = /RH(fv)ﬁb(ﬂS)d:L“



If we try to differentiate h as the definition we gave suggests we obtain h’
oo
W)=~ [ ¢=0(0)
0

h' is the distibution induced by the measure &y, we call it the Delta distri-
bution centered in 0 and denote it simply as dp.
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Chapter 2

Fundamental Solutions

Definition 2.1. (LDO with constant coefficient and related equation)
A Linear differential operator is a function : C*(R";C) — C*(R";C)
such that is linear in ¢ and its derivatives.

P= Z ca0% c¢q € C,a e N™.

Definition 2.2. (Fundamental solution for a LDO)
Let P be a LDO then we call the distribution £ a fundamental solution
of P if
PE = 4.

Remark. (Translation)
We have to note that, when the LDO has constant coefficients, it com-
mutes with translations of R™.

PE(¢oT1)=20dp(poT) = d7(0)

Example 2.3. (Examples of differential operator)
Differentiation in R: we have already seen that the Heavyside function
is a fundamental solution for the simple differentiation in R.

d

P=—
dx

Differentiation by z in C: We will see that the fundamental solution can
be derived from the solution of the Laplace operator.

0

pP=_—
0z

Laplace operator in R™ : its fundamental solution has a very different
structure depending on the dimension. The case n = 1 is different because
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the domain is not connected, a wide range of solution is accepted, for the
other case we will have to distinguish for n =2 and n > 2 .

The heat operator in R™*! : it represents how heat diffuses through time,
the fundamental solution is the case where all of the heat is concentrated in
a starting point.

P=A,—-0
The wave operator R"T1; it represents how waves evolve.
P=A, -0}

Remark. (Considering R" \ {0})
In the following examples, we will work with LDOs that have the follow-
ing property, when A is an open subset of R” and w is a distribution.

ue P'(R") PueC™®A) = ueC™(4)

Since d¢ restricted to R™ \ {0} is in C*°(R" \ {0}) then E, the fundamental
solution must also be in C*>°(R™ \ {0}) when restricted to R™ \ {0} must be
in C°(R™\ {0}).

Definition 2.4. (Homogeneous distributions)
A distribution w in (R™\ {0}) is called homogeneous of degree a if for

any ¢ in Z(R\ {0}),
(u, ¢(x)) =t {u, 1" (L))

Theorem 2.5. Given u an homogeneous distribution in (R™\ {0}) of degree
a < —n, there is an unique extension of u that is an homogeneous distribution
of degree a in R™

Theorem 2.6. Let uy,- -, u, be homogeneous distributions of degree 1 —n
in R™\ {0} and assume that > 7, Oju; =0

> 0y =
j=1

Lemma 2.7. Differentiation by z
The second fundamental solution that we see is for the
0E; 1
—— =, where F, = —
P ¢ where E¢(z) =0
It also derives from the Cauchy’s integral formula, but we will solve it in a
more elegant way.

o¢) = [ 2252

1 1 1
ﬂdmdy To 5 /BY ¢($ay)zfc
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Lemma 2.8. (Gauss-Green)
Let A be a open and limited set in R™ and such that A is C!
F e CYA;R") N C(A;R") then

/ divFdz = —/ (F,Nya)do
A 0A
We will use it like this

oAfdz = [ ¢div(Vf)de = | (div(9Vf) = (V,V))de
[ onsa= | /
_ /8 Vo - /A (V6. V f))de

Theorem 2.9. (Fundamental solution for the Laplace equation) The Laplace
operator has a fundamental solution in R" for n > 2.

E(z) = "9l if ¢ € B2\ {0}
E(z) = — laf® " if z € R"\ {0} and n > 2

x
(n—2)cn
where ¢, is the area of the unit sphere

proof. If ¢ € C§°(R™)

(0,E,¢) = —(E,0;¢) = — lim E(z)0;¢(x)dx =

e—0 |z|>e
/ 0, ()6 (x)dz + lim E(w)qﬁ(w)’%da
€E—r ‘x|:€

Using the gauss green theorem for the last equality. The limit is O(e) or
O(log(2) depending on the cases. This tells us that the distribution’s deriva-
tives are defined by locally integrable functions. For z # 0

nja|™" = Y nadla[ "

AFE = =0

j

This tells us that cdg is an extension of AFE for some ¢

(AE,¢) = (B,A¢) =1lim | (EAG— ¢AE)dz =

e—0 |z|>€
lim div(EV¢ — ¢V E)dx =
e—0 z|>e
lim ($VE — EVe, ~Vdo = ¢(0)
e—0 |z|=¢ |l’|

Remark. The case n=2 implies the solution of the first operator we dis-
cussed, the differentiation by Zz.

9?2 0 1

A= 43285; 0z 47‘(‘2;



Lemma 2.10. (Integrals)

To prove that the fundamental solution for the Heat equation defines a
distribution we need that it is locally integrable.

e T2
([ et =,

2
/ e Pdt =7
R
/ e~ dt = (
R

exp(—(Az,z))dz = T
.

[N

)%, a>0

M

w3

(det(A))~2

Theorem 2.11. (Fundamental solution for the Heat equation) Considering
the Heat operator introducing before we will prove that the function F is is
the fundamental solution of the Heat operator P.

n ol
mmy{@ﬂzéuu>m

0,¢<0

0

9 A)E =
(at ) do

proof Calculating the two parts of PE we note that they cancel each

other.
oF FE FE E 0

= = AE=-n= 2 - _ 2
o, _ iy ¢ TR e

So we know that PE = 0 on (R™\ {0}) As before we know that PFE has {0}
as support.

0
(PE,¢) = (B, 5 + A9)
e ¢
=lim | B0 + Aag)dude

=lim [ E(z,€)p(z,€)dz

e—0
= tim [ B(z, )o(ver, dz = 6(0)

We used the Gauss green theorem, a change of variables and the bounded
convergence theorem to bring the limit inside the integral.

Definition 2.12. (Support of a distribution)
We say that a point x is inside of the support of u if x has no neighborhood

in which the restriction of w is 0. The space of distribution with compact
support is denoted with &’ (R™)
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Definition 2.13. (Convolution by smooth function)
If u is a distribution and ¢ a test function then the convolution u * ¢ is
defined as the function of z

(ux@)(x) = u(o(z —y));
where ¢ on the righthand is considered a function of .

Theorem 2.14. (Associativity of the convolution operation)
If u is a distribution and ¢ and 1) are test functions then

(us @) x =ux(¢p*v)

Definition 2.15. (Convolution of distribution)

Let w1 and ug be two distributions one of which has compact support
then the convolution of the two is defined as the only distribution u such
that

¢ € CR™);  up *ug* ¢ =uxp.

Remark. (Reason behind fundamental solutions)

Through the fundamental solution of an operator one can construct any
solution of that operator, thank to the following convolution and &g proper-
ties

(0%Uu) *x p = u* (0%) = ux* (dp * (0%¢)) = u* (0%dy) * .

The first and last equalities are derived from the definitions; the second is due
to the fact that g is the identity for convolution with test functions. This
proves 0%u = (0%dp) * u if we remember the definition of linear differential
operator we gave before we can just substitute 9% with P

This has the important consequence, where E is the fundamental solution

Ex(Pu)=u, uecd&(R")
P(E=xf)=f [fe& R

The convolution with E is the right and left inverse of P. The second equation
show us very clearly the importance behind finding a fundamental solution.
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Chapter 3

Kolmogorov equation

In this last chapter we will consider the following equation, relative to a LDO
with non constant coefficients.
0%u ou Ou
Hu=—+r———=0 t> 0.
Ox2 oy Ot
u(t,.) = 0(xo,y0) as t— 0.

Definition 3.1. (Schwartz space and its dual)
We call Z(R™) the space of temperate functions, the set of all ¢ €
C*°(R™) functions such that

sup [£70%¢(z)| < oo

Definition 3.2. (Fourier transform)
If u € '(R™) it is defined the Fourier transform of u 4.

a(¢) = u(9)
This @ is still in .#/(R™) and the inversion rule holds.

Theorem 3.3. (Transform of a Gaussian function)

If A is a symmetric and non singular matrix in M (C) the function u(z) =
exp(—(Ax,x)2) is in '(R™) if and only if (ReAz,z) > 0 and if ReA > 0
its Fourier transform is a(z) = (27r)%(det(A*1))%emp(—M)

Theorem 3.4. (Construction of the solution to the Kolmogorov equation)
This is the solution of the Kolmogorov equation
proof Let us assume that w is a solution and @ his Fourier transform
respect (x,y) exists and behaves well when ¢t — 0.
Transforming each term of the equation.
9. oun  0u .
& n T 0; t> 0.
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We have that di = —&2adt if dn = 0 and d€ = ndt
! 2
a(t, & +nt,n) = a(0,&,m) ewp/o —(§+ns)ds

3
= 4(0,&,m) exp(—E* — &nt® — 772%)

The exponential on the right is relative to the matrix A~!
2t ¢ 2 3
-1
3 23

If we assume @(0,&,n) = exp(—izof —iyon) and invert the Fourier trans-
form we get

1

1 3 3
ort2 eivp(—g(l“ - xO)Q + tﬁ(l” —20)(y — o) — tj(y - yo)Q)

NI

u(t,x,y —tx) =3
This function depends on xg and yg, we should rewrite it in a more general
form, showing all of the dependencies.

1 1 3 3
513 ea:p(—;(x—a:o)z—i—t—g(a:—:vo)(y+t:1:—y0)—t—3(y+tx—y0)2)

[NIE

E(x7y7t7 Zo, yO) =3

Remark. Conclusions.

Even if the operator does not have constant coefficients, it does commute
with translations and we can say that E is a two sided fundamental solution
of the Kolmogorov equation.

Hu=f;

U = E(t — s,x,y;x0,Y0)f (s, xo, yo)dxodyods.
s<t

The function f — wu is a right and left inverse of the operator.
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