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Introduction

This thesis develops around Lebesgue’s Differentiation Theorem, progres-
sively trying to generalize its statement.
The first chapter will focus on Rn with the lebesgue measure, here the ’Max-
imal function’ will be introduced and its properties will be studied.
The differentiation theorem, in fact, will descend as a corollary from the
theorem of the Maximal function.

Subsequently we will treat Vitali’s cover lemma, necessary for previous proofs,
and the last part of the first chapter will end with some application of the
theorem, in particular the Marcinkiewicz integral will be introduced and
some properties of this function will be studied.

At this point it is natural to wonder if the Rn environment is necessary
to prove the previous theorems; in the second chapter we will try to answer
this question by showing that in some metric spaces equipped with regular
Borel measures, it is possible to show the same theorems as the first chapter
using a cover lemma very similar to vitali’s one.

Finally, in the last chapter, the study of the differentiation theorem in Rn
with measures other than that of Lebesgue will be deepened. We will show
that it is possible to generalize the previous concepts but not for free, in fact
it is necessary to narrow yourself to metric balls and not to general families
of regular sets as in the first two cases.
The latter section will close with a study of the cover lemma used to show
the third variant of the theorem: the Besicovitch cover lemma.

5





Chapter 1

The study of Lebesgue
Differentiation Theorem on Rn

with Lebesgue measure

In this chapter we are going to study the properties of the maximal func-
tion and the applications on Differentiation Theorem. We will analyze the
behaviour of this function in Rn with the Lebesgue measure.
Let’s start with some definitions:

Definition 1.1. We define the maximal function as:

M(f)(x) = sup
r>0

1

m(Br(x))

∫
B
|f(y)| dy. (1.1)

It is to be noticed that nothing excludes the possibility that M(f)(x) is
infinite for any given x.

Definition 1.2. Let be λ(α) = m(x | |g(x)| > α). This is called the distri-
bution function of g with g a measurable function.

Obviously we are interested in studying the properties of this function
when is defined on a non bounded set. This function describes the relative
largeness of the function g: it is very useful for many applications and for
the proof of the principal theorem of this chapter.

Observation 1.3. It’s useful to notice that∫
Rn
|g(y)|p dy = p

∫ ∞
0

αp−1 λ(α) dα. (1.2)

We will use this equality during the proof of Theorem 1.5.
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Proof.

∫
Rn
|g(y)|p dy =

∫
Rn

(∫ |g(y)|p

0
1 dt

)
dy =

∫
Rn

∫ ∞
0

χ[0,|g(y)p|](t) dt dy =

=

∫ ∞
0

∫
Rn
χ{y∈Rns.a.|g(y)|p>t} dy dt =

∫ ∞
0

λ(t
1
p )dt.

Now we use this replacement: t
1
p = α, dt = pαp−1dα˙

The result is:

p

∫ ∞
0

αp−1 λ(α) dα.

Observation 1.4. If g ∈ L∞ we can claim that ‖g‖∞ = inf{α |λ(α) = 0}
and ∫

Rn
|g(y)| dy ≥ αλ(α). (1.3)

Proof. Te first equality comes from the definition of ‖g‖∞. Let’s prove the
1.3 inequality:∫

Rn
|g(y)| dy ≥

∫
{x | g(x)>α}

|g(y)|dy ≥
∫
{x | g(x)>α}

αdy = αλ(α)

After these small observations we can introduce the first important the-
orem of this chapter:

Theorem 1.5. Let f : Rn −→ R and A a constant depending on p and n
a) If f ∈ Lp(Rn); 1 ≤ p ≤ ∞ we have that:

M(f) <∞ a.e.

b) If f ∈ L1(Rn) we have that forall α > 0 :

m{y |M(f)(x) > α} ≤ A

α

∫
Rn
|f(x)| dx.

c) If f ∈ Lp(Rn); 1 < p ≤ ∞ we have that:

M(f) ∈ Lp(Rn) and ‖M(f)‖p ≤ A ‖f‖p.
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Observation 1.6. In c), when p=1 and f 6= 0, we can’t claim that M(f) ∈
L1(Rn):
We can observe that

M(f)(x) = sup
r>0

1

m(Br(x)

∫
B
|f(y)| dy ≥ C

|x|n
; ∀ |x| ≥ 1

where C is a constant depending on ‖f‖1 and |x|n comes from the measure
of the n-dimensional ball. Now if we try to computing ‖M(f)‖1:

‖M(f)‖1 ≥
∫
Rn

C

|x|n
dnx

and passing by the n-dimensional spherical coordinates we found:∫ ∞
0

K∗

rn
rn−1 dr = +∞

so we have to ask stronger conditions to f than the integrability to be M(f)
integrable.
(*)=K is a constant that comes from the change of variables rule and C, the
prior constant.

Observation 1.7. The result obtained in b) is the best possible estimator:
if we consider f = δ0 we have:

M(f)(x) ≥ 1

m(B|x|(x))

∫
B
δ0(y) dy =

1

m(B)
=

1

C |x|n
.

In this case

λ(α) = m{x | 1

|x|n
> C α} = m(B 1

C α
)(0) = V ol(B1(0))

1

Cnαn
=

1

Cn−1αn
.

Now we put n=1 and we have concluded.

Now we can prove the Theorem 1.5.

Proof. b) We define Eα = {x |M(f)(x) > α} so forall x ∈ Eα exists Br(x)
such that: ∫

B
|f(y)| dy ≥

∫
B
αdx ≥ αm(Br(x)).

This implies:

m(B) ≤ ‖f‖1
α

.

Thanks to the Vitali’s 5 covering lemma we can extract some disjointed balls
such that

∞∑
k=0

mBk ≥ Cm(Eα).
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So

‖f‖1 ≥
∫
∪Bk
|f(y)| dy ≥ α

∞∑
k=0

m(Bk) ≥ αC m(Eα)

LetA = 1
C then we find

‖f‖1A
α

≥ m(Eα) = λ(α).

Now let’s prove a) and c):
If f ∈ L∞ then

sup
r>0

1

m(Br(x))

∫
B
|f(y)| dy ≤ ‖f‖∞

m(B)

m(B)
= ‖f‖∞

and so
‖M(f)‖∞ = ‖f‖∞.

Now we consider p ∈ (1;∞) :
Let be

f1(x) =

{
f(x) if |f(x)| > α

2

0 otherwise

It’s obvious that
|f(x)| ≤ |f1(x)|+ α

2
; ∀ x ∈ R

and
M(f)(x) ≤M(f1 + α)(x) = M(f)(x) + α.

That implies:

{x |M(f)(x) > α} ⊂ {x |M(f1)(x) +
α

2
> α} = {x |M(f1)(x) >

α

2
}

Now we can use point b):

m(Eα) = m{x |M(f)(x) > α} ≤ 2A ‖f1‖∞
α

which mean
m(Eα) ≤ 2A

α

∫
{x | |f(x)|>α

2
}
|f(x)| dx.

Let g = M(f) and λ the distribution function of g:∫
Rn
|g(x)|p dx = p

∫ ∞
0

αp−1 λ(α) dα



11

(Observation 1.3).
So

‖g‖pp =p

∫ ∞
0

αp−1m(Eα) dα ≤ p
∫ ∞

0
αp−1

(
2A

α

∫
|f |>α

2

|f(x)| dx

)
dα =

=p

∫ ∞
0

αp−1

(
2A

α

∫
Rn
|f(x)|χ|f |>α

2
(x) dx

)
dα = ∗

=p 2A

∫
Rn
|f(x)|

(∫
|f |>α

2

αp−2 dα

)
dx = p 2A

∫
Rn
|f(x)|(2|f(x)|)p−1

p− 1
dx =

=
2pAp

p− 1

∫
Rn
|f(x)|p dx = Ap ‖f‖p.

*=In this passage we used Tonelli-Fubini.
So we managed to prove that:

‖M(f)‖pp ≤ A ‖f‖pp.

There is a very important corollary of this theorem called the Lebesgue
differentiation Theorem:

Corollary 1.8. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞; or if f is locally integrable then:

lim
r→0

1

m(Br)(x)

∫
B
f(y)dy = f(x) (1.4)

Proof. Let define

fr(x) =
1

m(Br(x))

∫
B
f(y) dy; r > 0.

It’s easy to prove that:

r → 0⇒ ‖fr − f‖p → 0.

We know that C0
c is dense in Lp so we can write f = f1 + f2 with f1 ∈ C0

c

and ‖f2‖p < ε, forall ε ∈ R.
Define ∆(y) = ‖f(x − y) − f(x)‖p and writing ∆(y) with f = f1 + f2 we
find ∆ ≤ ∆1 + ∆2.
Notice that ∆1 → 0 for y → 0 as an immediate consequence of the uniform
convergence (f1 is continuous with a compact support) and ∆2 ≤ 2ε so
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∆(y)→ 0 for y → 0.
Let be

φr(y) =
1

m(Br(x))
χB(y)

and notice that ∫
Rn
φr(y) dy = 1.

Now we have

fr(x− y) =

∫
B
f(x− y)

1

m(B)
dy =

∫
Rn
f(x− y)

χB(y)

m(B)
dy =

=

∫
Rn
f(x− y)φr(y) dy = (f ∗ φr)(x).

Clearly

f ∗ φr − f =

∫
Rn

[f(x− y)− f(x)]φr(y) dy,

because ∫
Rn
φr(x) dx = 1.

So

‖fr − f‖p =‖f ∗ φr − f‖p ≤
∫
Rn

∆(y)|φr(y)| dy =

=

∫
Rn

∆(ry)|φ1(y)| dy → 0 for r → 0

where in the first inequality we used Minkowsky and in the last limit we
used the Lebesgue dominated convergence theorem.
What remains to be seen is that limr→0 fr(x) exists almost everywhere: for
this purpose we denote forall g ∈ L1 and x ∈ Rn,

Ωg(x) = | lim sup
r→0

gr(x)− lim inf
r→0

gr(x)|.

(We reduce the consideration to the case p=1).
If g is continuous with compact support, then gr→→g so Ωg = 0.
If g ∈ L1 we can use b) of Theorem 1.5:

m{x| 2M(g)(x) > ε} ≤ 2A

ε
‖g‖1.

Clearly Ωg ≤ 2M(g), thus

m{x|Ωg(x) > ε} ≤ 2A

ε
‖g‖1.
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Figure 1.1: this is the limit case where diam(Bi) = 1
2 diam(Bj) and they are

tangent

Finally we can write g as g1 + g2 with g1 ∈ C1
c and g2 such that ‖g2‖1 < ε2

so
m{x|Ωg(x) > ε} ≤ 2A

ε
ε2 → 0 for ε→ 0.

Now we must study the Vitali’s 5 covering Lemma that we used for the
proof of the Theorem 1.5 and we will explain why the constant A of the 1.5
Theorem is 2(5n p

p−1)
1
p .

Lemma 1.9. Let E be a measurable subset of Rn which is covered by the
union of a family of balls {Bi}, of bounded diameter. Then from this family
we can select a disjointed subsequence, B1, ..., Bn, ... (finite or infinite) such
that:∑

nm(Bn) ≥ Cm(E).

Proof. Let’s take B1; ...;Bk such that diam(Bk+1) ≥ 1
2{sup(d(Bj) | Bj is

disjointed with B1; ...;Bk)}.We call {1; ...; k} = K.
This sequence could be finite or infinite: if it’s finite then it’s impossible to
find Bk+1 disjointed with B1; ...;Bk so we have to show that if we define
B∗i = 5Bi forall i ∈ {1; ...; k} we find

⋃
i≤k B

∗
i ⊃ E.

Let’s show that forall j ∈ N Bj ⊂ ∪i≤kB∗i :
We know that forall Bj exists i ≤ k such that diam(Bi) ≥ 1

2 diam(Bj) and
Bi ∩Bj 6= ∅, otherwise we would have taken Bj in K.
So 5Bi ⊃ Bj .
The same proof works for an infinite set of index K with

∑
km(Bk) <∞;

if it’s equal to ∞ the proof is trivial.
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Figure 1.2: we multiplied the radius of the small ball by 5.

Now a legitimate question is: what if we try to apply the theorem 1.5
with a different family of sets? We will see that it works if the family has a
properties:

Definition 1.10. A family of sets F is regular if forall S ∈ F exists Br(0)
such that S ⊂ Br(0) and m(S) ≥ Cm(B).

Definition 1.11. We can define a different maximal function:

MF (f(x)) = sup
S∈F

1

m(s)

∫
S
|f(x− y) dy. (1.5)

Observation 1.12. MF (f(x)) ≤ C−1M(f(x)) soMF satisfies the same
conclusions of Theorem 1.5.
In particular, if f is locally integrable we have:

lim
S∈F ; m(S)→0

1

m(S)

∫
S
f(x− y) dy = f(x) (1.6)

Proof. We know that exists Br(0) such that B ⊃ S and Cm(B) ≤ m(S) so

sup
S∈F

1

m(S)

∫
S
|f(x− y)| dy ≤ sup

S∈F

1

Cm(B)

∫
S
|f(x− y)| dy ≤

≤ 1

Cm(B)

∫
B
|f(y)| dy ≤ C−1M(f(x)).

Observation 1.13. The equation 1.4 is true almost everywhere but the
exeptional set where 1.4 is not valid depends on F . Our goal is to find the
exeptional set depending on f ; we consider the relation:

lim
r→0

1

m(Br(0))

∫
B
|f(y)− c| dy = |f(x)− c| (1.7)
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It’s valid almost everywhere except on a set Ec such that m(Ec) = 0.
Now forall c ∈ Q be E =

⋃
c∈QEc : obviously m(E) = 0 and forall x /∈ E

the relation 1.5 works.

Definition 1.14. An element x ∈ E is called "point of density" of E if:

lim
r→0

m(E ∩Br(0))

m(Br(0))
= 1 (1.8)

Observation 1.15. If we apply (1.5) to x "point of density" of E with
f = χE we find:

lim
r→0

1

m(Br(0))

∫
B
χE(y) dy = χE(x) = 1 = lim

r→0

m(E ∩Br(0))

m(Br(0))
(1.9)

Proposizione 1.16. For almost every x ∈ E the limit (1.5) holds then
almost every x ∈ E is a point of density.

From now we will consider E = E and it’s not restrictive because m is a
regular measure.
δ(x;F ) will be the distance from x to F closed set. Obviously
δ(x;F ) = 0 ⇐⇒ x ∈ F ;
∀x ∈ F, δ(x+ y;F ) ≤ |y|;
∀ε > 0, ∃η | |y| < η such that δ(x+ y;F ) < ε|y|.

Proposizione 1.17. Let F a closed set. For almost every x ∈ F

δ(x+ y;F ) = o(|y|).

Proof. Let x ∈ F be point of density.
Obviously B(x+ y; ε |y|) ⊂ B(x; |y|+ ε |y|).
We claim that exists z ∈ F such that z ∈ B(x + y; ε|y|) if |y| is ’small’.
Otherwise:

m(F ∩B(x; |y|+ ε |y|))
m(B(x; |y|+ ε |y|))

≤ m(B(x; |y|+ ε |y|))−m(B(x+ y; ε |y|))
m(B(x; |y|+ ε |y|))

≤ 1−
(

ε

1 + ε

)n
6= 1

so x is not a point of density. ⊥
Thus exists z ∈ F such that z ∈ B(x+ y; ε |y|) forall ε small, therefore:

δ(x+ y;F ) ≤ δ(x+ y; z) ≤ ε |y|.

The last thing that we present in this chapter is the Marcinkiewicz inte-
gral:

I(x) =

∫
{|y|≤1}

δ(x+ y;F )

|y|n+1
dy (1.10)
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Figure 1.3

Theorem 1.18. Let I(x) be the Marcinkiewicz integral and F a closed set
in Rn.
a) If x ∈ F c then I(x) =∞.
b) For almost every x ∈ F : I(x) <∞

Proof. a) Obviously exists c > 0 such that δ(x+ y) > c; this implies

I(x) > c

∫
Rn

1

|y|n+1
dy =∞

b) this result is a simple consequence of the following lemma.

Lemma 1.19. Let F be a closed set whose complement has finite measure.
Let

I∗(x) =

∫
Rn

δ(x+ y)

|y|n+1
dy. (1.11)

Then I∗(x) <∞ for almost every x ∈ F . Moreover:∫
F
I∗(x) dx ≤ cm(F c). (1.12)

Proof. Clearly is sufficient to prove (1.10) since the integrand is positive:∫
F
I∗(x) dx =

∫
F

∫
Rn

δ(x+ y)

|y|n+1
dy dx =

∫
F

∫
Rn

δ(y)

|x− y|n+1
dy dx =

=

∫
F

∫
F c

δ(y)

|x− y|n+1
dy dx =

∫
F c
δ(y)(

∫
F

dx

|x− y|n+1
) dy.

Let’s consider the integral on F :
y ∈ F c implies |x− y| ≥ δ(y) thus:∫

F
I∗(x) dx ≤

∫
|x|≥δ(y)

dx

|x|n+1
=

∫ ∞
δ(y)

c rn−1

rn+1
dr =

c

δ(y)
.
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So ∫
F
I∗(x) dx ≤

∫
F c
c δ(y) δ(y)−1 dy = cm(F c).

Now we can finish the proof of the theorem 1.18:
Fm = F ∪Bm(0)c.
Fm is closed and (F ∪Bc

m)c ⊂ Bm.
We can apply the lemma 1.19 to Fm with δm the distance from Fm.
Forall F existsm > 0 such that δ(x+y) = δm(x+y) if |y| ≤ 1 and x ∈ Bm−2.
For the lemma 1.19: I(x) <∞ for almost every x ∈ Bm−2 ∩ F.





Chapter 2

The study of Lebesgue
Differentiation Theorem on
doubling metric spaces

In this chapter we will redefine the structures as in the previous chapter but
generalizing the definition of Maximal Function on some particular metric
spaces: doubling metric spaces. Let’s start defining the properties of the
measure that we need for this chapter:

Definition 2.1. Let µ be a outer measure on (X, d) metric space.
It’s called a Borel regular measure if:
1) For every B Borel set and for every A ⊂ X we have: (Borel condition)

µ(A) = µ(A ∩B) + µ(A ∩Bc).

2) For every set A ⊂ X there exists an open set B ⊃ A such that: (regular
condition from above)

µ(A) = µ(B).

3) For every set A ⊂ X there exists a compact set K ⊂ A such that: (regular
condition from below)

µ(A) = µ(K).

Definition 2.2. Let (X, d, µ) be a metric measure space, it is said to be
doubling if there exists a constant C > 0 such that:

0 < µ(B2r(x)) ≤ C µ(Br(x)) ∀x ∈ X, r ∈ R. (2.1)

Looking at the properties of the Lebesgue measure that we used for the
Vitali’s covering lemma we notice the importance of the previous property
of m:
we said that if we multiply the diameter of the selected balls for 5 we found

19
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that every balls is contained in this new set and this implied the thesis:∑
nm(Bn) ≥ Cm(E).

It’s looks like very trivial that m(B5r(x)) = Cm(Br(x)) but if we change
measure and we chose µ as a non positive measure we could even find
µ(B5r(x)) < µ(Br(x)). So if finding C such that 0 < µ(B2r(x)) ≤ C µ(Br(x))
is impossible, the proof of the Vitali’s covering theorem falls apart.

Now we can define the maximal function in (X,µ) doubling space with
µ regular and Borel measure.

Definition 2.3. Let f ∈ Lp(X), we define the maximal function of f :

M(f)(x) = sup
δ>0

1

µ(Bδ(x)

∫
Bδ(x)

|f | dµ. (2.2)

From now we will use the following notation:

sup
δ>0

1

µ(Bδ(x)

∫
Bδ(x)

|f | dµ = sup
δ>0

∫

\

B

|f | dµ.

Observation 2.4. IfX = Rn andM(f) is lower semi-continuous thanM(f)
is measurable but this claim is not true with a general metric space.
For this reason we define the following "decentralized" maximal function:

M̃(f)(x) = sup
B |x∈B

∫

\

B

|f | dµ. (2.3)

We observe that M̃(f) ≥ M(f) and M̃ is lower semi-continuous, in fact
{x|M̃(f)(x) > α} is open forall α ∈ R.

Proof. Let’s prove that {x|M̃(f)(x) > α} is open:
if x ∈ {M̃(f) > α} then M̃(f)(x) > α so we know that exists B such that∫
B |f | dµ > α now clearly if y ∈ B than M̃(f)(y) > α thus B ⊂ {M̃(f) >
α}.

Now we are ready to state the Maximal Function Theorem:

Theorem 2.5. Let (X, d) be a doubling metric spaces and µ a regular Borel
measure on X.
If p > 1 and f ∈ Lp(X) then M̃(f) ∈ Lp(X) and exists a constant Cp
depending on p such that:

‖M̃(f)‖p ≤ Cp(X)‖f‖p. (2.4)

If p = 1 then:

µ({M̃(f) > α}) ≤ Cp
α
‖f‖1.
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Before proving this theorem we need a new covering lemma, similar to
the Vitali’s one but for compact sets.

Lemma 2.6. Let (X, d, µ) be a doubling metric space. Let K ⊂ X a compact
set and let {Bi | i ∈ I} a finite cover of X. Then there exists a subcover
{B̄j | j ∈ J ⊂ I} such that:
1) B̄j ∩ B̄i = ∅ for i 6= j
2) K ⊂

⋃
3B̄j

Proof. Let be B̄1 ∈ {Bi}i∈I such that diam(B̄i) = max{diam(Bi)|i ∈ I}.
Let be B̄2 such that B̄1∩ B̄2 = ∅ and diam(B̄2) = max{diam(Bi)|i ∈ I 6= 1}.
(Notice that exists because the cover is finite.) With this method we define
a subset of I.
Now it’s easy to see that if we consider A =

⋃p
i=1 B̄i every Bj , j ∈ I is

contained in A.

Now we can prove Theorem 2.5:

Proof. 1) Let’s start with p = 1. We have to prove that if f ∈ L1(X) :

µ({M̃(f) > α}) ≤ C

α
‖f‖1.

Let K be a subset of {M̃(f) > α}, thus:

‖f‖1 =

∫
X
|f | dµ ≥

∫
K
|f | dµ ≥ µ(K)αC.

The last inequality comes from lemma 2.6 and the regularity of µ:
if x ∈ K then M̃(f)(x) > α and so exists Bx such that:

1

µ(Bx)

∫
Bx

|f | dµ > α =⇒ µ(Bx) <
1

α

∫
Bx

|f | dµ.

So if we take {Bi|i ∈ I} a cover of K and we extract {B̄j |j ∈ J ⊂ I} with
the properties of lemma 2.6:

µ(K) ≤
∑
j∈J

µ(3B̄j) ≤ 3
∑
j∈J

µ(B̄j) ≤
3

α

∑
j∈J

∫
B̄j

|f | dµ =
3

α

∫
∪B̄j
|f | dµ ≤ C

α
‖f‖1.

(2.5)
Thanks to the regularity of µ we can conclude.
2) Now let’s consider p > 1 :

We define f1 : X −→ R such that: f1 =

{
f(x) if |f(x)| > α

0 otherwise.
Clearly:

|f | ≤ |f1|+ α; ∀x ∈ X.
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Thanks to the monotony of M̃ we can claim that

M̃(f) ≤ M̃(f1) + M̃(α) = M̃(f1) + α

This implies:

{M̃(f) > 2α} = {M̃(f)− α > α} ⊂ {M̃(f1) > α},

so

µ{M̃(f) > 2α} ≤ µ{M̃(f1) > α} ≤ (∗)C
α

∫
X
|f1| dµ =

C

α

∫
|f |>α

|f | dµ

(*)= this equality comes from the series of inequalities 2.5.
Now we can prove 2.4:

‖M̃(f)‖pp =

∫
X
|M̃(f)|p dµ

= p

∫ ∞
0

αp−1 µ{x| M̃(f)(x) > α} dα

≤ p
∫ ∞

0
αp−1

(
C

2α

∫
|f |>α

|f | dµ

)
dα

=
pC

2

∫ ∞
0

αp−2

(∫
X
|f |χ|f |>α dµ

)
dα

=
pC

2

∫
X
|f |

(∫
α<|f |

αp−2 dα

)
dµ

=
pC

2(p− 1)
‖f‖pp.



Chapter 3

The study of Lebesgue
Differentiation Theorem on Rn

with Radon measures

In this third chapter we are going to study the same theorem but with a
different type of measures: the Radon measures. Let’s start with a definition:

Definition 3.1. A Radon measure defined on the σ-algebra of Borel sets is
a regular measure that is finite on all of the compact sets of X.

Our goal is to study the differentiation of Radon measures and to do that
we must define some functions:

Definition 3.2. Let µ, ν be Radon measures on Rn.
For each point x ∈ Rn, define:

Dµν(x)

{
lim supr→0

ν(B(x,r))
µ(B(x,r)) ; µ(B) > 0 ∀r > 0

+∞ otherwise

Dµν(x) =

{
lim infr→0

ν(B(x,r))
µ(B(x,r)) ; µ(B) > 0∀r > 0

+∞ otherwise

Definition 3.3. If Dµν(x) = Dµν(x) < ∞ we say that ν is differentiable
with respect to µ at x and we write:

Dµν(x) = Dµν(x) = Dµν(x)

We will call Dµν the density of ν with respect to µ.

We want to study two things about the density function:
1) when exists,
2) when ν can be recovered by integrating Dµν. To reach this goal we must
start with an important lemma:

23
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Lemma 3.4. Fix 0 < α <∞ :

A ⊂ {x ∈ Rn | Dµν(x) ≤ α} =⇒ ν(A) ≤ αµ(A) (3.1)

B ⊂ {x ∈ Rn | Dµν(x) ≥ α} =⇒ ν(A) ≥ αµ(A) (3.2)

Proof. We can assume µ(Rn) and ν(Rn) finite, since we could otherwise
consider these two measures restricted to compact subsets of Rn.
Fix ε > 0 and U open subset of {x ∈ Rn | Dµν(x) ≤ α} such as A ⊂ U .
Let’s define F = {B |B = B(a, r), a ∈ A,B ⊂ U, ν(B) ≤ (a+ ε)µ(B)}.
We notice that inf{r |B(a, r) ∈ F} = 0 ∀a ∈ A so we can use a corollary
of the Besicovitch covering theorem that assures us that exists a countable
collection G of disjoint balls in F such that

ν(A−
⋃
B∈G

B) = 0

Then:
ν(A) ≤

∑
B∈G

ν(B) ≤ (α+ ε)
∑
B∈G

µ(B) ≤ (α+ ε)µ(U).

We can conclude thanks to the regularity of ν and µ.

Now we can enunciate a theorem that answer to the first question we did
after the definition 3.3 about the density function:

Theorem 3.5. Let µ and ν be Radon measures on Rn. Than Dµν exists
and is finite µ-almost everywhere. Furthermore, Dµν is measurable.

Proof. As before we can assume µ(Rn) and ν(Rn) <∞.
1)Dµν exists and is finite µ a.e.:
Let I = {x |Dµν(x) =∞}, and for all 0 < a < b let R(a, b) = {x |Dµν(x) <

a < b < Dµν(x) <∞}.
Now we can apply the lemma 3.4 observing that for each α > 0, I ⊂
{x |Dµν(x) ≥ α}. So we can claim that µ(I) ≤ 1

αν(I).
Sending α→∞ we conclude that µ(I) = 0.
Now we must show that Dµν exists µ a.e.:
Using lemma 3.4 we can claim the following inequalities: ν(R(a, b)) ≤ aµ(R(a, b))
and ν(R(a, b)) ≥ bµ(R(a, b)) but b > a =⇒ µ(R(a, b)) = 0.
Now we can write:

{x |Dµν(x) < Dµν(x) <∞} =
⋃

0<a<b | a,b∈Q

R(a, b)

Obviously a countable union of zero-measure sets is a zero-measure set so
Dµν exists µ a.e.
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2)We will show that x→ ν(B(x, r)) and x→ µ(B(x, r)) are upper semicon-
tinuous and thus Borel measurable:
Let’s prove

lim sup
y→x

µ(B(y, r)) ≤ µ(B(x, r)).

Choose a sequence {yk} ⊂ Rn s.a. yk → x. Set fk = χB(yk,r) and f = χB(x,r).
Then

lim sup
k→∞

fk(z) ≤ f(z) ∀z ∈ Rn (3.3)

because if we fix z ∈ B(x, r) =⇒ f(z) = 1 and we can conclude, otherwise
if we take z ∈ B(yk, r)−B(x, r) =⇒ lim sup fk(z) = 0.
From the 3.3 equality we have

lim inf
k→∞

(1− fk) ≥ (1− f).

Thus by Fatou’s Lemma:∫
B(x,2r)

(1− f) dµ ≤
∫
B(x,2r)

lim inf
k→∞

(1− fk) dµ ≤ lim inf
k→∞

∫
B(x,2r)

(1− fk) dµ.

So
µ(B(x, 2r))− µ(B(x, r)) ≤ lim inf

k→∞
(µ(B(x, 2r))− µ(B(yk, r)))

=⇒ µ(B(x, r)) ≥ lim sup
k→∞

µ(B(yk, r)).

Now we claim that for every r > 0:

fr(x) =

{
ν(B(x,r))
µ(B(x,r)) if µ(B) > 0

+∞ if µ(B) = 0

is µ-measurable because is quotient of measurable functions. But

Dµν = lim
r→0

fr = lim
k→∞

f 1
k
µ− a.e.

and so Dµν is µ-measurable.

This part was indispensable to define the absolutely continuity and the
mutually singularity of measures, definitions that are mandatory to enunciate
the differentiation theorem for Radon measures. In the following pages we
are going to define such things and at the end we will be ready for the
Lebesgue differentiation theorem.

Definition 3.6. The measure ν is absolutely continuous with respect to µ
provided µ(A) = 0 =⇒ ν(A) = 0 ∀ A ⊂ Rn.
Written:

ν � µ.
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Definition 3.7. The measures ν and µ are mutually singular if there exists
a Borel subset B such that:

µ(Rn −B) = ν(B) = 0.

Written:
ν ⊥ µ.

Theorem 3.8. Let ν and µ be Radon measures on Rn, with ν � µ. Then

ν(A) =

∫
A
Dµν dµ (3.4)

for all µ-measurable sets A ⊂ Rn.

Proof. Let A be µ-measurable. Then there exists a Borel set B with A ⊂ B,
and µ(B−A) = 0. Thus ν(B−A) = 0 and so A is ν-measurable. This prove
that each µ-measurable set is also ν-measurable.
Let’s define:

Z = {x ∈ Rn |Dµν(x) = 0}

and
I = {x ∈ Rn |Dµν(x) =∞};

Thanks to the theorem 3.5 I and Z are µ-(thus ν) measurable sets and by
the same theorem µ(I) = ν(I) = 0. Also lemma 3.4 implies ν(Z) ≤ αµ(Z)
for all α > 0; thus ν(Z) = 0. So

ν(Z) = 0 =

∫
Z
Dµν dµ

and
ν(I) = 0 =

∫
I
Dµν dµ.

This works because we are integrating a measurable and well defined func-
tion (the set of point where Dµν is infinite has measure equal to zero) on a
zero-measure set hence the integral is obviously zero.

Now fix 1 < t <∞ and define for each integer m

Am = A ∩ {x ∈ Rn | tm ≤ Dµν(x) < tm+1}.

Then Am is µ-(and ν) measurable (as it’s intersection on measurable sets)
and:

A−
∞⋃

m=−∞
Am ⊂ Z ∪ I ∪ {x |Dµν(x) 6= Dµν(x)}.
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This implies:

µ(A−
∞⋃

m=−∞
Am) = ν(A−

∞⋃
m=−∞

Am) = 0

and consequently:

ν(A) =
∞∑

m=−∞
ν(Am) ≤

∑
m

tm+1µ(Am) (thanks to the lemma 3.4) ∀t ∈ R

= t
∑
m

tmµ(Am) ≤ t
∑
m

∫
Am

Dµν dµ = t

∫
A
Dµν dµ

Similarly:

ν(A) =
∑
m

ν(Am) ≥
∑
m

tmµ(Am) =
1

t

∑
m

tm+1µ(Am) ≥ 1

t

∫
A
Dµν dµ

In conclusion:
1

t

∫
A
Dµν dµ ≤ ν(A) ≤ t

∫
A
Dµν dµ

Sending t→ 1 we prove the theorem.

The last theorem we need to reach our goal: proving the Lebesgue dif-
ferentiation theorem, is the Lebesgue differentiation theorem.

Theorem 3.9. Let µ and ν be Radon measures on Rn.
Then ν = νac + νs where νac, νs are Radon measures on Rn and

νac � µ, νs ⊥ µ

Furthermore
Dµν = Dµνac, Dµνs = 0

and consequently we have:

ν(A) =

∫
A
Dµν dµ+ νs(A).

for each Borel set A ⊂ Rn.

Proof. We assume ν(Rn), µ(Rn) <∞.
Define

Z = {A ⊂ Rn |µ(Rn −A) = 0}

and we chose Bk ∈ Z s.a.

ν(Bk) ≤ inf
A∈Z

ν(A) +
1

k
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Now we call
B =

⋂
k

Bk

so we have:
µ(Rn −B) ≤

∑
k

µ(Rn −Bk) = 0

and
ν(B) ≤ inf

A∈Z
ν(A). (3.5)

Define
νac = ν|B, νs = ν|Bc

It’s easy to verify that νac � µ and νs ⊥ µ:
if we take A ⊂ B we have µ(A) = 0, and we suppose ν(A) > 0 =⇒ B−A ∈
Z and ν(B −A) < ν(B) that is a contradiction to the equation 3.5.
On the other and we can see: µ(Rn −B) = 0 thus νs ⊥ µ. Finally, fix α > 0
and set

C = {x ∈ B |Dµνs(x) ≥ α}

According to lemma 3.4
αµ(C) ≤ νs(C) = 0

and therefore
Dµνs = 0 a.e.

This implies
Dµνac = Dµν, µ a.e.

Now we can start with the Lebesgue differentiation theorem for Radon
measures, let’s begin with some notation:

Definition 3.10. Like in the previous chapter we will denote∫

\

E

f dµ =
1

µ(E)

∫
E
f dµ

Theorem 3.11. Let µ be a Radon measure on Rn and f ∈ L1
loc(Rn, µ).

Then

lim
r→0

∫

\

B(x,r)

f dµ = f(x)

for µ a.e. x ∈ Rn.
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Proof. For Borel B ⊂ Rn, define

ν±(B) =

∫
B
f± dµ

and for A ⊂ Rn

ν±(A) = inf{ν±(B) |A ⊂ B, B Borel}.

Now ν± are Radon measures and so we can apply the theorem 3.8.
Consequently

lim
r→0

∫

\

B(x,r)

f dµ = lim
r→0

∫

\

B

f+ − f− dµ = lim
r→0

1

µ(B)
(ν+(B)− ν−(B))

(by theorem 3.8)

= Dµν
+(x)−Dµν

−(x) = f+(x)− f−(x) = f(x), µ− a.e.





Conclusion
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