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Introduction

One of the most fundamental concepts in Geometric Measure Theory is Rectifiability.
Given a curve in R?, for example a C'! function v: I C R — R? with I interval, we say
that it is rectifiable if this has finite length. The length is here defined as the supremum
of the sum of segments’ lengths with endpoints lying on the curve.

We now could try to generalize this concept to a larger family of subsets of R™. This
is done by saying that a set is rectifiable if it can be approximated, in some sense, by
rectifiable sets. Let us be more precise: let k& be an integer with 0 < k < n, then a set
E C R" is called k-rectifiable if there are at most countably many C' submanifolds of
R” I'; with dimension k such that

MW (E\(UF)) —0,

where H* is the k-Hausdorff measure.

Hence a k-rectifiable set can be seen, not considering a set of null H*-measure, as
a union of at most countably many C! submanifolds with dimension k in R™. It can
be proved that, instead of taking C'' submanifolds in the definition of rectifiability, one
can take images of Lipschitz functions, and the two definitions are equivalent. This can
be done because any Lipschitz function can be approximated by C! functions: given
f : R* — R" Lipschitz, we can find for all e > 0 a C! function ¢ : R¥ — R” such that

Hr({z e R¥ | f(2) # g(2)}) <e.

The opposite concept of k-rectifiable sets are purely k-unrectifiable sets, which don’t
contain k-rectifiable sets of positive H#*-measure. It can be proved that any set of finite
measure can be decomposed in an "unique" way as the union of a rectifiable set and
a purely unrectifiable set, see Theorem 4.3. Rectifiable sets could be more complicated
than a simple curve of finite length in R2. For example, let Q* = {g;}i=1.., [0,27]NQ =
{6;}i=1... and let [g;] be the closed segment with midpoint g;, length 27 and angle 6;
with respect to the z-axis; the set E C R? defined as

E= U[Qi]
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is 1-rectifiable, and H!(E) < +oc i.e. it has finite length. We can note that the set E we
have defined does not have a tangent at any point, when instead rectifiable curves have

it almost everywhere. Therefore we need to change also the notion of tangent in a point
x of E rectifiable. Let

X(x,L,0) = {y € R [ |Pi(y — 2)| <sinbly —z[}

which represents a two-sided cone in R? with vertex x, and direction L. @ is the angle
formed by the boundary of the cone with L. If E had a tangent L, in the usual sense at
x, one would see that for all § € (0,7/2), E N B(x,r) is entirely contained in X (x, L, )
for r > 0 small enough and for all . Therefore we may ask that a line L is "tangent" at
x € Eif EN B(xz,r) is mostly contained in X (z, L, #) for r small, i.e.

}%r‘lHl(EﬂB(x,r) \ X (z,L,0)) = 0. (1)

With this new notion of "tangent" line, one could verify that for H'-almost all x € E
the equation referred by (1) is verified. The opposite holds for purely 1-unrectifiable sets:
at almost all of their points there is not a "tangent" line. We will give an example of
a set with finite positive H'-measure that is purely l-unrectifiable. A first example we
can give is the set defined as follows: we take at first By = B(0,1) and 79 = 1. Then we
define By as the union of 4 disjoint balls inside By of radius r; = 1/4ry and disposed as
in Figure 1. Proceeding in this way for each ball at each iteration, we can define B; as
union of 4¢ balls of radius 47, Then

is purely l-unrectifiable.

Figure 1: First 4 iterations of A



In this thesis our main objective is to prove the "Besicovitch-Federer projection theo-
rem", which gives a characterization for k-rectifiable sets of R™ in terms of their orthog-
onal projections on k-dimensional subspaces. It is possible to define a measure =, ; on
the grassmanian of k-planes of R" G(n, k). We shall indicate with Py the orthogonal
projection on V € G(n, k).

Let E C R™ with H*(E) < +o0. The Besicovitch-Federer Theorem states that:

1. E is k-rectifiable if and only if H¥(PyB) > 0 for each B C E of positive measure
and for v, p-almost all V' € G(n, k).

2. E is purely k-unrectifiable if and only if H*(PyE) = 0 for Ynk-almost all V' €
G(n, k).

The two assertions are equivalent, and we will prove the following:

1. if E is k-rectifiable and with positive H*-measure then H*(PyE) > 0 for Y o
almost all V' € G(n, k)

2. if F is purely k-unrectifiable then H*(Py 1 E) = 0 for v,, ,_-almost all V € G(n,n—

To prove the first assertion we first need to show that E is k-rectifiable if and only if
it is k-weakly linearly approximable (see definition 4.3); from this the first assertion will
follow. The difficult part is to show that, if F is k-weakly linearly approximable, then E
is k-rectifiable. We present here below a sketch of the proof:

1. We select a compact subset F' C F such that
0 < cer® <HK(ENB(a,r)) < Cr* < +00

for 0 < r < rp and a € F, and where the conditions of definition 4.3 hold uniformly.
Taking a smaller r, we can consider a ball B(a, r) such that »—*H*((E\ F)NB(a,r))
is small and FNB(a,r) is close toa W € A(n, k), i.e. an affine k-plane with a € W.

2. We shall assume, by contradiction, that the projection of E'N B(a,r) on some
V € G(n, k) is small.

3. We will find many disjoint open cylinders C; of radii p; < r and orthogonal to V'
such that the same cylinders, but with radii 5p;, are disjoint, such that FNB(a,r)N
C; = 0 and such that B(a,r) N dC; contains a point e; of F.

4. For some large N > 0, E N B(e;, Np;) are approximated by a k-affine plane W;.
Since in B(a,r) N C; there is a little of E, W; must be almost orthogonal to V.
This will give us so many disjoint balls B(x;j,p;) C B(a,r) with x;; € F that
rRpk (E NU,; B(zij, pi)) will be much greater than C, and this will lead to a

contradiction.

The second statement will be proved in this way:
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1. Let V € G(n,n — k) be fixed; we will define E; 5(V), E25(V), E35(V) C E and
show that H* (P (E;s5(V))) =0 for i = 1,2,3 and for all V € G(n,n — k).

2. We shall prove that E = EyU Ey 5(V) U Ey5(V) U E3 (V) with H¥(Ep) = 0 for
Ynn—k-almost all V' € G(n,n — k). This will be the most difficult part of the proof.

3. Taking V € G(n,n — k) such that 2. holds for all § = 1/i with i = 1,2,..., we
show that H*(P, . (FE)) = 0.

A sort of generalization can be proved for the Besicovitch-Federer Theorem: as is showed
in [H], given E C R™ purely k-unrectifiable then for all f € C*(U, R*) with Jacobian of
constant rank k exists f. € CF(U,RF) with Jacobian of constant rank k such that

Hf - fa”Cl <e

and

HH(f-(E)) = 0.

The thesis use [A] as main reference. The basic notions of the Measure Theory are
presented in Chapter 1 . In Chapter 2 we discuss about the differentiation of measures,
and we define a measure on G(n, k), the set of all the k-dimensional subspaces of R". In
Chapter 3 we define the Hausdorff measures H® and study some properties for Lipschitz
functions and some density Theorems. In Chapter 4 we will introduce the concept of
Rectifiability and prove some important properties. In Chapter 5 we shall prove the
Besicovitch-Federer Theorem and to conclude we will use it to show some examples of
1-rectifiable and purely 1-unrectifiable sets in R2.



Chapter 1

Basic notions on measure theory

1.1 Measures

In this first Chapter we will introduce the basic notions of Measure Theory, and we will
enunciate and prove some covering Theorems of Besicovitch and Vitali.

Definition 1.1. Let X # () be a set. We will call p : P(X) — [0, 400] a measure on
X if:

1. u® =0
2. u(A) < p(B) for all A, B € P(X) such that A C B
3. 1(Uiew Ai) <2 iew p(Ai) for all {A}iew € P(X).

We shall call (X, 1) measure space.

The easiest examples of measures on a space X are
1. 4 =0 i.e. the null measure, which is for istance 0(A) =0 VA C X.
2. The Dirac measure: let © € X be fixed, then d, : P(X) — [0, +00] is defined for
all AC X as
1 ifzed
0z(A) :== _ .
0 ifz¢gA

3. The Lebesgue measure £" in R™ which is one of the most famous measure. It is
defined as follows: let R be the family of n-rectangles; a n-rectangle is a set of the
form [T, (a;,b;). We define V(A) := T[]}, |a; — b;| and then finally

AC U E; and {E;}ien are rectangles}.
i€IN

+o00
L7(A) := inf { N V(E)
=1

Definition 1.2. Let A C P(X). A is a o-algebra if:
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1.0eA
2. Ac A= A°=X\Ac A
3. {Ai}iEINCA:UiE]NAiGA

Remark 1. If A is a o-algebra of X, it can be easily proved that A is closed also under
countably many intersection.

Proposition 1.1. Let B C P(X) be closed under complement and finite union; a family
like B is called an algebra. If B is closed also under countably union of pairwise disjoint
sets, then B is a o-algebra.

Proof. Fy := Agp and F,, := A, \ (Uisn_1 A;). Then F; € B for all i € IN and they are
pairwise disjoint. So ;e Ai = Ujenw Fi € B O
Definition 1.3. We will say that A C X is y-measurable if

W(E) = p(ENA)+ pu(E\ A)
for all £ C X.

Remark 2. Of course, £\ A= EN A°. If we want to show that a set A is y-measurable
we just need to show that u(E) > u(ENA)+ u(E\ A) for all E C X because the other
inequality always holds.

The concept of "u—measurable" is important: we can see that in the definition of measure
we want to have pu(U,e Ai) = e #(Ai) for all {A;}iew € P(X) such that A, A; =0
for ¢ # j. This, with the definition of measure we provided, in general is false. But if the
family {A; }iew is composed by p-measurable disjoint sets, our previous equation holds.
More precisely, the following theorem holds.

Theorem 1.2. Let p be a measure on X and let M C P(X) be the set of all the
u-measurable sets. Then

1. M is a o-algebra
2. If AC X and u(A) =0 then A e M
3. uw(Uienw Ai) = 2 iew 1(A;) for all {Ai}iew € M which are pairwise disjoint
4. If {A;}iew € M is such that A; C A1 for all i € N then
I (U Ai) = lim p(A;)
ZEIN 1— 00
5. If{A;}ienw € M is such that A; O A;y1 for all i € IN then
1 (ﬂ Az‘) = lim p(4;)
ZE]]\I 1—00

provided j1(A;) < 400 for some j € IN.
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Proof. 1. Let us prove that M is an algebra, and that it is closed under union of countably
pairwise disjoint sets. Then by proposition 1.1 we conclude. If A € M then

p(E) = pW(ENA)+p(ENAY) =p(ENAY)+p(ENA)

and so A° € M ((A°)¢ = A). Let A, B € M, let us see that AU B € M: we have for all
ECX,

W(E) =p(ENA)+pu(ENA%) =
=uw(ENANB)+u(ENANB)+ pw(ENA°NB)+ u(ENA°N B°) >
>u(EN(AUB))+u(EN(AUB)9)
where the last inequality holds because A°N B¢ = (AU B)¢ and by the equality
EN(AUB)=(EN(ANB))U(EN(A°NB))U(EN(ANBY))

we get the last inequality by subadditivity (third property of measure, see definition 1.1).

Therefore, by induction, we can say that M is closed under finite unions. Hence M is an

algebra Let now {A;}ie;w € M be a family of pairwise disjoint sets and define the set
= UL A;. We have that A, € M for all n € IN as well as B,, = |J_, Ai, therefore

w(ENBy)=uwENB,NA,) +u(ENB,NAS) =
=uw(ENAp) +p(ENBp-1) = wW(ENAp) + (BN Ap—1) + u(E N By—g) =
and by induction we get

> HENA) = p(E 0 By).

Moreover, because B¢ C By, we obtain that
n
WE) = u(E N By) +w(ENB;) > > u(EN Ay) + u(E N B°)
i=0

and taking the limit as n tends to infinity, we obtain

+o0o
W(E) > wENA)+u(ENBY) > w(ENB)+ u(EN B
i=0

because u(ENB) < >°1% uw(ENA;). This proves that B € M and that M is a o-algebra.
2. Let A such that pu(A) =0 and E C X; then u(EN A) < p(A) =0 and

W(E) < p(ENA)+ p(ENA%) = p(ENA°) < p(E).
3. By L. , taking E = B = J 5 4

+oo
,u(UAZ) Z,uBﬁA)—I—,UBﬂBC Z,u
i=0

=0



4. The limit exists because {y(A4;)}i=o,... is a monotone sequence of real numbers and we
can suppose that pu(A4;) < +oo (otherwise the conclusion holds trivially). Let Ey = (),

E; = A;\ Ai_1, then U B = U5 As and Y0 o p(Ei) = Y0 (u(A) — p(Aimr)) =
wu(Ay), and so

+o0 +o0
g (U Az’) =2 B = nBTOOZM =l o)
1=0 =0

5. We can suppose p(Ag) < +oo. Let F; = Ag \ A; for i € N. Then F; C F;1; for all g;
moreover pu(F;) = u(Ag) — u(A;), therefore

400
g (U F) =t ZM Av) =l i(4n)

and (U5 F) = (Ao \ NZF Ai) = 1(Ao) — u(Mi5 Ai); then
<ZUOF>MA0 (ﬂA) Aog) = lim pu(An)

and we conclude that

+oo
g (ﬂ Az’) =l o)

Remark 3. If A is a y-measurable set with p(A) < 400 and A C B, then

w(B) =B\ A)+ u(A)
and since u(A) < +oo we get pu(B\ A) = u(B) — p(A). In 4. and 5. of Theorem 1.2 we
were allowed to use this formula.

Given F C P(X), one can easily show that exists a o-algebra that contains F and it
is the smallest o-algebra containing F. If u is a measure defined on a topological space,
the family of the Borel sets is the smallest o-algebra that contains the open sets of X, or,
equivalently, the closed sets of X. This family will be indicated by Bx, and its elements
will be called Borel sets.

Definition 1.4. Let 1 be a measure on a metric space X. We shall say that y is
1. locally finite if Vo € X, 3r > 0 such that p(B(x,r)) < +o0.
2. a Borel measure if every Borel set is y-measurable.

3. reqular if VA € P(X) exists B with A C B p-measurable such that u(A) = p(B).
If B is also a Borel set, then u is Borel regular.
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4. a Radon measure if it’s a Borel measure and:

(a) u(K) < 400 VK compact subset of X
(b) pu(U) =sup{u(K) | K C Ucompact} for all open subsets U.
(c¢) p(A) =inf{u(V)| A C Vopen} for all A C X.

The Lebesgue measure L£" is a Radon measure on R"™. In Theorem 1.2 in statements
(4) and (5), {4;}iew do not need to be p-measurable if y is regular/Borel regular; let us
briefly prove this. Given {4;};ew as in (4) of Theorem 1.2 (the sets are increasing) but
not measurable, exists B; such that pu(A;) = p(B;) for each i. Then we set C; := |J;~,; Br;
therefore A; C C; and u(A;) = u(C;). Using {C;}ien the reader can show the thesis. We
recall that, given A, B C X metric space with d metric, d(A, B) = inf{d(a,b) | a € Ab €
B}.

Theorem 1.3 (Carathéodory criterion). Let u be a measure on X metric space. Then
w is a Borel measure if and only if

u(AU B) = pu(A) + p(B)
for all A, B C X such that d(A, B) > 0.

Proof. Let pu be a Borel measure. Let A, B C X with d(A, B) > 0; then there is an open
set U such that A C U and U N B = (). Then

(AU B) = u(AUB\U) + u((AUB) N U) = u(A) + u(B).

Let us show the converse. Let A C X and U and open set that contains A; define Ag = 0,
Ay = An{x € Uld(z,U¢) > 1/n}; note that A; C A;11 and the union of them gives
A. We first show that p(A) = limy, 400 u(A,). We define D1 := Apy1 \ 4y so that
d<D2i7D2(7;—1)) > (0. Then we have

p(Agpg1) > ZM Dy;) p(Asap) > ZM(DQi—1)§

=1

if one of the series is divergent the desired conclusion is trivial, otherwise we can conclude
by this relation

1(A) < p(Azn) +ZMD2Z+ Z (D2i-1)
i=n-+1

and by the fact that pu(A4,) < p(A4). So p(A) = limy— 400 p(Ay). Let us take E C X
and U open subset. Let A= ENU, so d(A,, E\ A) > 0 and we have

W(E) > u(Ay U(E\ A) = p(Ay) + p(E\ A).

Taking the limit as n tends to infinity we get the p-measurability of U open, and p is a
Borel measure. O



This criterion will be useful to show in particular that H?®, the s-Hausdorff measure
on R™, is a Borel measure. Given a measure p on X we can define for any A C X a new
measure restricting p to A:

Definition 1.5. For y measure on X and A C X we define a measure L A by
(L A)(B) = (AN B)
for BC X. ulL A is called the restriction of u to A.
wand pl A are related as we can imagine, as the next proposition tells us:
Proposition 1.4. Let p be a measure on X, A C X. Then:

1. every p-measurable set is uL A-measurable.

2. if p is Borel regular and pu(A) < +oo with A u-measurable then pulL A is Borel
reqular.

Proof. The first statement is easy to show, and we leave it as an exercise. Let u Borel
regular, then exist B Borel set such that contains A and u(A) = u(B). Let now C C X
and let D be a Borel set such that (BN C) = pu(D) and BNC C D. Now we set
E = DU (X \ B) which contains C. So

(WL A)(E) < u(B N E) = u(B D) < (D) = p(BNC) = y(AN C) = (uL A)(C)
and so (uL A)(C) = (uL A)(E) and pL A is Borel regular. O

Let us point out that the measurability of A in the last proof is used in the equation
w(BNC)=pu(ANC). In fact,

w(BNC)=p(BNC)\A)+pu(BNCNA) < pu(B\A)+u(ANC) =p(ANC).
Next we shall enunciate an approximation theorem which will be useful for us.

Theorem 1.5. Let p be a Borel regular measure on X, A C X a u-measurable set and
€ > 0. Then:

1. If u(A) < o0 exists a closed set C C A with p(A\ C) < e.

2. If ewist {U;}icw open sets such that A C |J;en Ui and p(Us) < 400 for all i € N,
then exists U open such that A C U and p(U \ A) < e.

Remark 4. When X = R"™ and p = L£", in the first statement C can be taken compact,
because every closed subset of R™ can be written as countable union of compact sets. In
2. if X is a separable metric space and p is locally finite, every subset can be covered by
countably many open balls of finite measure, therefore the hypotheses are verified.

The proof of the following corollary follows from Theorem 1.5 and by the last remark
and is left as exercise.

Corollary 1.6. A measure on R"™ is a Radon measure if and only if it is locally finite
and Borel reqular.



1.2 Integrals

In this section we shall give the basic notions of integral on a set X with a measure pu;
the details are explained in many text books. Given a measure g on X and a suitable
f X — R we can define the integral of f on X with respect to p whose notation is

[ f@dute) = [ @) duta).

In order to define it however, we need to introduce some further notions.

Deﬁnition(_l.G. Let (X, p) be measure space. We'll say that f : X — R is a measurable
function if f (B) is p-measurable for all B € Bx.

In the definition of measurable function, B can be replaced by (—o0, a), (a, +00), (a, b)
and their closure; this is tru(e_ because Br is generated by EIOSQ sets. So for example, f
is measurable if and only if f ((—o0,a)) for all a € R. If f((—o0,a)) is a Borel set for
all @ € R we will say that f is a Borel function.

Proposition 1.7. If f : X — R is upper semicontinuous, which means

limsup f(y) < f(),

Y=

then f is a Borel function. The same holds for lower semicontinuous functions: liminf,_,, f(y) >

f(z).

Proof. We show that A = {z € X|f(x) < t} is open. By hypothesis, Ve > 0 exists ¢ such
that if [z —y| < 0 = f(y) < limsup,_,, f(y)+e < f(z)+e. Then choosing e =t — f(z)
for x € A we find § such that |z —y| <d = f(y) < f(x)+e=t <= B(z,0) CA. O

Corollary 1.8. If f : X — R is a continuous functions then it is a Borel function.

Proposition 1.9. Let f,g: X — R be measurable functions. Then f + g is measurable
and, provided that g(x) # OVx € X, f/g is measurable.

Proposition 1.10. Let {f;}jcn be a sequence of measurable functions f; : X — R.
Then

Fi(x) =sup fj(z) F3(z) = limsup f;(x)

JEN j—+oo
Fafa) = nf fi(a)  Fy(a) = limjut J;()

are measurable functions.

Proposition 1.11. Let f : X — R be a measurable function. Then fT and f~ are
measurable. It follows that |f| is measurable.
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One of the simplest example of function we can give is the characteristic function of
a subset A of X, defined as

(2) 1 fzeAd
xXr) = .
xa 0 ifodA

Functions like this are measurable if and only if A is measurable. Then a simple function
is a finite sum of characteristic functions of disjoint measurable sets, for instance

n
Y = Z CiXFE;
i=1

where {F;};en are pairwise disjoint measurable sets and ¢; > 0. We can define for
positive simple functions

| ot dnte) = | > e ) uta) =3

For a general simple function g : X — R we say that is "integrable" if either [, g du <
+o00 or fX g~ dp < 400 and

/ng/t(x) :Z/deu—/xg‘dy.

Definition 1.7. Let f: X — R. The upper integral of f is

/ f(z)du(x) := inf {/ gdu(x) | g > f with g simple and integrable} :
b's

The lower integral:

/f(a;) du(z) ;= sup {/ gdu(z) | g < f with g simple and integrable} .
* X

If upper and lower integral coincide we say that f is integrable and

/f ) dpu(z /f Jdu(e) = [ 1o duta

If f is a positive measurable function then it is integrable. For more properties and
details on the argument the reader is referred to [C], or [B]. We shall make vast use of
the following results.

Theorem 1.12 (Fubini). Let X,Y be separable metric spaces and u, v locally finite Borel
measures on X,Y respectively. Let f: X xY — R>¢ be a Borel function. Then

[ [ ) duta) avty //fxydu ) dja(z).



Given A a Borel set of X x Y, A, :={z € X | (z,y) € A} is p-measurable, so x4, is
a measurable function on X. The same holds for A := {y € Y | (z,y) € A}. Then by
Fubini theorem we get

//XAy ) dp(x) dv(y //XAU )dv(y) dp(x) =
/ / xa=(y) dv(y) du(z / / xa=(y) dv(y) dp(x)
which means that

/ p{z e X | (z,y) € A})dv(y) = / v({y €Y | (z,y) € A}) du(y).
Y X

We are now ready to prove a useful formula:

Proposition 1.13. Let p be a Borel measure on X separable metric space and f: X —
R>o a Borel function. Then

+oo
/f@mwmz/ ({z € X | f(z) > 1)) dt
X 0

Proof. The proof is quite simple: let A; := {(x,t) | f(x) > t}, then

+o0 +oo
/ ;MweX|ﬂmZﬁnw=/“ (e € X | (,0) € A})dt =
0 0
2/5WWWﬁWH@ﬂ&mﬁ=/U@J@WM@=
X X

:Lﬂmwm

We shall now introduce the notion of image measures:

Definition 1.8. Let p be a measure on X and f: X — Y a map. Then the image of
p under f, fyp, is the measure on Y defined by

Fa(A) == u(F (A))

forall ACY.
Aset ACY is fyu-measurable if <?(A) is p-measurable: let F' C Y, then we get
— —
Jep(F) = p(f (AN EF) + pu(f(F\A) = fip(ANF) + fyu(F\ A).

Then if f is a Borel function and ;1 a Borel measure, them f;u is a Borel measure on Y.
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Definition 1.9. Let p be a Borel measure on X metric space. We call the support of
i the smallest closed set S such that (X \ S) = 0 and we indicate it with sptu. For
instance

sptpp =X \{z € X |Ir >0 s.t u(B(z,r)) =0}

A measure could have the whole space as support as is the case of the Lebesgue
measure in R™; let’s give another example: let X be a separable metric space and F' C X
a countable set such that F' = X. Let’s say F' = {f;}i;>1. Then

+oo
pi=6/m? Z 1/i%5;,

=1

is a measure on X (easy exercise) whose support is X. If sptu is compact then we’ll say
that p has compact support.

Theorem 1.14. Let X, Y be separable metric spaces, f : X — Y be a continuous map,
and v be a Radon measure on X with compact support. Then fyu is a Radon measure
on Y with compact support and spt(fyu) = f(sptp).

Proposition 1.15. Suppose f : X — Y is a Borel function, i a Borel measure and g a
non negative Borel function. Then

/Ygdfﬁu:/XQOfdu-

1.3 Covering Theorems

In this section we will prove two fundamental covering theorems by Vitali and Besicovitch.
Let X be a metric space; we shall denote with B(x,r) the closed ball of centre x and
radius r, with U(x,r) the open one.

Recall that d(B) denotes the diameter of B ball, for instance, d(B) := sup, ,ep 4, d(z,Y).
Let us also notice that, in a generic metric space X, it is not always true that d(B(z,r)) =
2r. If B := B(z,r) then 5B := B(xz,5r). In general we can set

5B := | J{C | Cis a closed ball with C' N B # @ and d(C) < 2d(B)}.

Theorem 1.16. Let X be a boundedly compact metric space and B a family of closed
balls in X such that

sup{d(B) | B € B} < 4oc.

Then there is a countable (or finite) sequence {B;}iew C B of disjoint balls such that

U Bc |JsB.

BeB €N
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Proof. Let C :={x € X | B(z,r) € B 3r} the set of centres. Then, for each z € C' we
take r(x) such that

14
r(z) > 1—58up{7‘ | B (x,r) € B}.
Then, from now on, we will work on balls of B of the form B(z,r(x)) for x € C. Let

c € C be fixed and let
M =sup{r(z) | x € C}

and 5
01::{:1:60\4M<r($)§M}.

M is finite because r(x) < d(B(z,r(x))) and M < sup{d(B) | B € B} < +0co. Now
choose 21 € C; arbitrarily and set I(x1) := 2d(z1,c). Choose x5 € C1 N B(c,i(x1)) \
B(z1,3r(z1)), and then by induction

z € 10 Ble )\ | B (x ?(@) .

=1

The balls B(z;,r(x;)) are disjoint: let x € B(x;
d(zj,z) < r(x;) and d(z, ) < r(x;) but d(xj,xl

x;)) N B(xj,r(z;)) with j > 4; then
(x;). It follows that

\_/u
\/ /\
OJ\OO@
=3

which implies 3r(z;) < r(z;) => 5M < r(x;) contradiction. The centres of these balls
are in B (c,{(z1)) which is compact, then the process must stop for a certain index k;
because a compact set cannot be filled with infinitely many disjoint balls of radius greater
than %M. So we get

CiN B (c,l(x1)) UB(%‘Z, Z).

Now, let Cy1 = {z € Cy | B(z,r(z)) N B (zj,r(x;)) =0 Vi = 1,--- ,k1} and take
Ty +1 € Ci1 \ B (¢, (x1)); if such x, 41 does not exist then Vo € C1 \ B (¢, l(z1)) exists
i such that B (z,r(z)) N B (x;,r(x;)) # 0, then, since r(zx) < 5/4M < 5/3r(z;),

8
d(z,z;) < r(z) +r(x) < gr(x,)
and z € Uf;l B (z;, §7(x;)) and we can cover C; with the disjoint balls we found (note

that r(x) < 5/4M = (5/3)(3/4)M < 5/3r(z;)). So, as we did, we found k2 — k; balls
such that

ko 8
CLn (B lalon )\ Bleta) e U B (s 5r0)

j=ki1+1

11



and so
ks 3
CiN B (e, (zky4+1)) C U B <a;i, 3r(mi)> .
i=1

Proceeding in this way we find a countable, or finite, collection of disjoint balls { B (z;, 7(;)) }iez,

such that
8
Ci C U B <HTZ‘, 37"(.%)) .
i€y

Because r(z) < 3M < 2r(z;) for all z € C; we get

U B r@)c | B (:gi,l;r(xi)).

zeCh i€y
M}

Cy={x e Cy| B(x,r(x)) N B (x;,r(z;)) =0 VieL}.
If z € Cy \ Cj then for some i € Z; B (x,7(x)) N B (z;,7(x;)) # 0 and so

Now let

B o

CQZ{:cecy (i>2M<r(x)§

and

d(z,x;) <r(z)+r(x) < =r(x)

3
because r(z) < (5/4)M < (5/3)r(x;); then

\Ce | B (xi,ir(a:i)> | (1.1)

i€Z1
Then we can work on Cé as we did on (' and find a countable, or finite, family of disjoint
balls such that

cyc|JB <x ir(xi)> (1.2)

i€lo

and so, combining 1.1 and 1.2 we find that

;e | B(azi,gr(xi)>.

i€Z1 ULy
Let be T := |J;25 Zp,, then
14
U B (z,r(x)) C U B (:L'Z', r(:cz)> . (1.3)
, 3
xeC 1€

12



Let us call S(z) := sup{r | B (z,r) € B}; then we have that
U Bc | B S@)
BeB xeC
and by the inclusion 1.3 we get
14 14
U B <£L’, 155(@) C U B (z,r(x)) C U B (xi, 37"(:1%))
zeC zeC €T
and scaling by a factor of % we get exactly the thesis
| Bc |J B(x,S()) c | B (i 5r(=:))
BeB zeC i€T

and the proof is complete. O

At this point we can prove Vitali’s covering theorem for the Lebesgue measure £™ on
R™.

Definition 1.10. Let B be a family of closed balls in R". B is a fine cover of a set

ACRif
Ac|JB
BeB
and Vz which is a centre of some B € B

inf{d(B) | x € B and B € B} = 0.

Theorem 1.17. Let A C R"™ and let B be a fine cover of A. Then there are disjoint balls

B; € B such that
cr <A\UBZ»> = 0.

Moreover, given € > 0 the balls can be chosen such that Y ;77 L"(B;) < L"(A) + €.

Proof. We can assume A to be bounded. In fact, if we prove the theorem in this case, then
noting that R" = J; Q; where {Q;}; are disjoint open cubes and that £"(A\J, Qi) =0,
we can apply the theorem on A N @; which is bounded and conclude. A is bounded,
so L"(A) < +oo and we can choose an open set such that £*(U) < (14 77™)L"(A).
Now, considering the subfamily of closed balls of B which are contained in U, we can
apply Theorem 1.16 and find countably many disjoint balls B; = B (x;,7;) € B such that
B; C U and
AC UB(:E“E)T‘Z) .

Then 57"L"(A) < 57" . LB (xi,515)) = Y, L*(B (x;,7;)), and we can take k; such
that

k1
6 "L"(A) <Y L(B).
=1
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Let A;:= A\ Uf;l B;; we have that
k1
L"(A) < L" (U\ U Bi) Zﬁ" (14+7"—-6"")L"(A) =eL"(A)
i=1

where we have set e = 1+ 77" — 67" < 1. Now we work on A; which is contained in
the open set R™ \ M, B;. We can find an open set U; ¢ R™\ U™, B; such that, like
before, L"(Uy) < (14 77")L"(A;) and again applying theorem 1.16 we get

L(Ag) < eL™(Ar) < 2L™(A)

where Ay = A; \ UZ w1 Bi = AN Ufil B; and all the balls are disjoint. Now after ¢
steps we get

Lr A\UB < 1L (A)

and since € < 1 we can find the required disjoint balls {B; };en such that

n (A\LiJBZ) =0

The last assertion follows from the proof we presented. O

If instead of L™ we had a general Radon measure on R", the theorem we proved could
not be valid anymore. Take for example 1 a Radon measure on R" defined as follow:

wA) =L ({z e R | (2,0) € A})

then the family B{B((z,y),y) | * € R and 0 < y < 400} covers A = {(z,0) | z € R}

but
—+o00
M (A nJ BZ) =0
=1

for any countable subcollection of B. But if we assume that each point of A is the centre
for a certain closed ball of B fine cover of A, then the result holds. To prove this we need
another covering theorem.

Theorem 1.18 (Besicovitch covering Theorem). Let A C R™ be bounded, and B a family
of closed balls such that each point of A is the centre of some ball in B. Then exist P(n)
and Q(n) constants depending only on n such that:

1. there is a countable, or finite, collection of balls B; € B such that they cover A and
each © € R™ belongs to at most P(n) balls B;; more precisely,

xa < ZXBi < P(n)

7
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2. there exist By, -+, Bgy) subfamilies of B such that B; is formed by disjoint balls

and
Qn)
Acly U B
i=1 BeB;

In order to prove this we need the following two lemmas.

Lemma 1.19. Let a,b € R?, 0 < |a| < |a—b| and 0 < |b| < |a —b|. Then

a b
— - —|>1
a \br'>

Proof. We can see that a ¢ B(b, |b|) and b ¢ B(a, |a|). Then one can see that the angle

« is grater than 7/3 (see figure 1.1). Then calling ¢ = ‘ﬁ - %

ca =% and ¥V = & we
la] [b]
get
()2 =2 —2cos(a) > 1.

If the reader is not happy with this proof, there’s another way to prove it; we will now
indicate the length of the vectors a,b,a — b with a, b, ¢ respectively; let a be the angle
between a,b and let us suppose that cosa > 1/2. Then ¢ = a? + b — 2abcosa <
a? +b? — ab and since a? < ¢? and b? < ¢? we get that a(a —b) > 0 and b(b —a) > 0, a
contradiction. Therefore cosa < 1/2 and a > 7/3. O

Figure 1.1: Geometric proof of lemma 1.19
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Lemma 1.20. There ezist a positive integer N(n) depending only on n with this property:
let {a;}i=1,.. x CR"™ and {r;}i=1 ...  such that

a; ¢ B(aj,rj) for j #i and m B(aj,r;) # 0,

then k < N(n).

Proof. We can assume that

k
0¢c ﬂ B(ai, i)
i=1
and so a; # 0 for all ¢. Then
lai| <7 <la; — aj| for i # j.

Working in the 2-dimensional plane containing 0, a;, a; we have by Lemma 1.19 that

a; a;
— — —LI>1 fori# j.
|ai| |yl

Since S™~! is compact there is a number N(n) such that if z1,--- ,2; € S" ! and

|z; — x| > 1 for i # j, then k < N(n). That N(n) is the integer we were looking for. [J

Proof. (of Theorem 1.18) By hypothesis, for each € A we pick a ball B (z,r(x)] € B.
Then, since A is bounded, we can suppose that

My = supr(z) < 400
z€A

otherwise we conclude taking P(n) = Q(n) = 1. We can then choose z; € A such that
r(x1) > M;/2 and inductively

k—1
xp € A\ U B (zj,r(z;)] with r(xy) > My/2.
i=1

Since A is bounded, the process terminates after ki iterations. Let now

k1
My = sup {r(aj) |z A\ JB (xi,r(a:i))}

i=1

and choose
k1

Tp4+1 € A\ U B (zj,r(x;)) with r(xg,+1) > Ma/2.
i=1
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Again, inductively

k1+1—1

T+l € A\ U B (a;,,r(mz)) with r(xk1+l) > M2/2.
i=1

Following this process, we obtain a sequence of numbers k; < ko < --- and a decreasing
sequence of numbers 2M; 1 < M;. In fact, each point taken in A\ Uf; B (z;,r(z;))
has radius less than M;/2. Therefore taking the supremum for all the centres in A \
U?;lB(xi,r(wi)) we get M1 < M;/2. Moreover, we get a sequence of balls B; =
B (z,7(z;)) € B such that the following properties hold:
let Ij = {kj_l +1,--- ,kj} with j > 1 (and ko = 0) then

M]/QST(I])SMJ fOI"iEIj
J
:L‘jJrléA\UBifOl"jZl
=1
vie A\ |J | Bjforie.
m#£k j€Tm

The first two are trivial by construction. For the third: let k& be fixed , m # k, j € Z,,,
and i € Zj. Then, either m < k, or m > k. In the first case we have z; ¢ B; by
construction (or by 2.), in the second case we have r(z;) < r(z;), z; ¢ B; and so x; ¢ B;
(d(xi, ) > r(x;) > r(x;)). Since lim; 400 M; = 0, it follows that

+o0o
Ac|JBi
i=1
Suppose that
P
T € ﬂ By,
i=1
then we will show that p < 10"N(n) =: P(n), where N(n) is the number in lemma 1.20.
Let us consider {j > 1| Z; N {m1,--- ,mp} # 0} then, for each block we can select one

index my,; € Z;. By the third property, we can apply lemma 1.20 and find out that
21120 fma, - my} £ 0} < N(w). (1.4)

Now fix j and Z; N {mq,--- ,mp} = {p1,-,pq}, then the balls B (xpz., ir(mpi)) for i =
1,---,q are disjoint. In fact if this does not hold for some indices ¢ < j we get

Mj/2 < T(xpz) < d<$pi7xpj) < 1/4(r(xp¢) + T(mpj)) < Mj/2

a contradiction. Moreover for each index we have B (zp,,1/4r(z)p,)) C B (x,5/4M;): let
Yy € B (xp;, 1/4r(xp,)), then

d(z,y) < 5/4r(zp,) < 5/4M;.

17



Hence,

i

)8 < 3 LB (o 14r(ap)) < £7(5 (:5/4M) = a(m)(5/436,)"

where a(n) := L£"(B(0,1)). This implies ¢ < 10" which means
|Ijﬂ{m1,--- ,mp}| < 10™. (1.5)

Now let N the set of indices j such that Z; N {m1,--- ,mp} # 0. Because we have

b= Z |{Ij N{ma, -, mp}}]

JEN

we get by 1.4 and 1.5 that p < 10" N (n) and the first part of the proof is concluded.
By construction of the balls B; = B (x;,r;) from the first part, we can assume that
the sequence {r;};=1.. is decreasing (r; = r(x;)). Let By; = By; if we have chosen
Bi1, -+, Bim, then By 41 = By, where k is the smallest integer with

J
BN U BLJ = 0.
=1

We continue this process as long as possible, until we get a countable, or finite, disjoint
subfamily By := {Biy,1,B1,2,...} of {By,...}. If Ais not covered by UBelsl B we define
By = By, where h is the smallest index with By, ¢ B; and again we repeat the process
as we did for By now finding B>. We claim that

m
AcC U U B for some m < 4"P(n) +1
k=1 BeBy,

Suppose m such that 3z € A\ UyL, Upep, B; then m < 4"P(n). The balls B; cover A,
so x € B; for some i. Therefore B; ¢ By, for all 1 < k < m which means by construction
that B; N By, # 0 and r; < ry;, (the radii of B; and By, respectively). Hence there
are By, balls of radius ri/2 contained in (2B;) N By ;, (see figure 1.2. The details are left
to the reader).

18



Figure 1.2: A ball of radius r;/2 is contained in (2B;) N By, ;,

Since every point of R™ is contained in at most P(n) balls By, ;, this is also true for
Bj.. Therefore

> X5, < Pxye 5
k=1

and we get

2"a(n)ry = L"(2B;) > L" (

s
=
~—
I

k=1
_ ~ n -1 ~ n o__ -1 np\ _
_ / \up, 5 48" > Pln) / ;XBk 4L = P(n) ;z (By) =

This leads to m < 4" P(n) and thus the proof is complete. O

Before stating Vitali’s covering theorem for Radon measures on R let us first state
another lemma:

Lemma 1.21. Let p be a Radon measure on R™ and let {H)}xen a family of disjoint
Borel sets such that A is an uncountable set. Then |{\ € A | u(Hy) > 0}| is at most
countable.
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Proof. Write R" = ;;Of K; where {K;};>1 is an increasing sequence of compact sets.
Let A; :={\ | u(K; N Hy) > 1/i}, then

+o0o
{Ae Al u(Hy) >0} =] A (1.6)

i=1
One inclusion is trivial. Let us show that {\ € A | u(Hy) > 0} € U A;. Then
w(H)y) > 1/ip for some ig, but since lim; o0 u(Hx N K;) = p(H)y) we have
1/i < 1/ig —e < u(Hy) —e < u(Hy N K;)

for £ small and i big enough, and we conclude. By 1.6 we just need to show that |A;| is
finite for all i. Let J C A; be finite, this implies that

p(K) > p [ Kin (| Ha) z/A(Kim(UHA)) = wEinH) > |J|/i

AEA; AeJ AeJ

and then |J| < p(K;)i < 400 which means that |A;| < p(K;)i < +00. We conclude that
only at most countably many H) have positive measure. O

Theorem 1.22. Let i1 be a Radon measure on R™, A C R"™ and B a fine cover of A, such
that each point of A is the centre of some ball of B. Then exist {B;}iew C B pairwise

disjoint such that
“+oo
i=1

Proof. We may assume p(A) > 0 (otherwise the theorem is trivially true); we can also
suppose that A is bounded, otherwise one can proceed as in theorem 1.17 noting that we
can take n-rectangles with the union of the boundaries of measure zero by Lemma 1.21.
Since p is a Radon measure we can find U open such that A C U and

p(U) < (14 (4Q(n) ") u(A)
where Q(n) is the number as in Besicovitch’s Covering Theorem 1.18. Therefore we have
that

i=1 BeB;
leading to
u(A) < Q(n) > u(B) for some i € {1,---,Q(n)}.

BeB;
Therefore exists a subfamily B; of B; such that u(A) < 2Q(n) > peg M(B). We get then

M(A\ U~B> §M<U\ U~B) <uU)—= > u(B) <

BeB; BEB; BeB;
< (14 1/4Q(n) ™" = 1/2Q(n) " Hu(A) = (1 — 1/4Q(n) ™) u(A).
Setting e = 1 —1/4Q(n)~! < 1 we conclude as did for Theorem 1.17. O
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Chapter 2

Differentiation of measures and the
Grassmannian of m-planes

In this chapter we will use covering theorems proved in the last chapter to discuss the
differentiation of measures on R™. Later we will see some properties of G(n,m) the set
of all the m-dimensional vectorial subspace of R™ and we will define a measure on this set.

In general we will say that a property P holds for py-almost all x € X if there exists
a set N C X with p(N) = 0 such that P holds Vo € X \ N.

2.1 Differentiation of measures

Definition 2.1. Let p an v be locally finite Borel measures on R™. The upper derivative
of p with respect to v at x € R™ is defined as

lim sup ’;Egg:g; if v(B(z,r) > 0 for all r small enough

D(p,v,z) :=q =0
+00 if v(B(z,r) =0 for some r > 0

The lower derivative of p with respect to v at x € R™ is

o inf AB@)
Dipv.z) = hIrIl_}(I)lf B I v(B(z,r) > 0 for all  small enough ‘
B +o0 if v(B(x,r) =0 for some r > 0

If for some z € R™ we have that D(u,v,x) = D(u,v, ), we define the derivative of p
with respect to v at = as

D(p,v,x) = D(u,v,x) = D(u,v, ).
Lemma 2.1. Let p and v be Radon measures on R™, 0 < a < +00 and A C R".

1. If D(p,v,z) < « for all x € A, then u(A) < av(A).
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2. If D(u,v,x) > « for all x € A, then u(A) > av(A).

Proof. 1. Let € > 0 ; because v is a Radon measure, we find U open with A C U such
that v(U) < v(A) + . Then, by Vitali’s covering theorem, and using the definition of
liminf, we find B; disjoint balls contained in U such that
u(Bi) < (a+ €)v(B;) and M(A\ U BZ-> = 0.
€N
So we get
wA) <Y u(Bi) < (ate)d w(Bi) < (a+ew(U) < (a+e)(v(A) +¢)
i€N i€N

and letting € — 0 we get pu(A) < av(A).

w(B(z,r)) V(g(%

2. limsup, o g7y = @ implies liminf, Wx,:gg <1/a. O

Definition 2.2. Let p and v be measures on R™. We say that p is absolutely continuous
with respect to v if VA C X

v(A) =0= p(A4) =0,
and we will write pu < v.
Theorem 2.2. Let i1 and v be Radon measures on R™. Then:
1. The deriwative D(p, v, x) exists and is finite for v-almost all © € R™.
2. x— D(u,v,x) is a Borel function.

3. For all Borel sets B C R",

| Dl v a)ivta) < u(B)
and the equality holds if u < v.
4. << vif and only if D(p,v,x) < +oo for u-almost all x € R™.
Proof.
1. Let us consider for 0 < a < 8 < 400 the sets
I={x€eR"| D(u,v,z) =400} Esp={xeR"|Duv,z)<a<p<Duvz)}
We have that I C {z € R" | D(u,v,z) > k} = I, for all k € IN; then by lemma 2.1
u(l) > k(D)

which means v(I) < 1/ku(I) and letting k — 400 we get v(I) = 0. Again, by lemma
2.1 we have

#(Eap) < av(Bap)  i(Eap) > Bv(Eap)
which implies that v(FE,g) = 0 for all 0 < o < § < +00. Now take «, § as before, but
rational. Then {z € R™ | D(u, v, x) does not exist } = I'U <U0<a<5<+oo Eaﬁ) which as

v measure null.
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2. For a fixed r > 0, x — u(B(x,r)) is upper semicontinuous, and so is x — v(B(z,r)).
Let xp — @, fr *= XB(xy,r) and f = XB(z,r)- Then limsupy_, | fr < f, implying

hmmf(l —fr)>1—1.
k—+00

Since (1 — fi) are positive measurable functions we can apply Fatou’s Lemma (see [C]
2.18) and we obtain

/ (1= f)du< / liminf(1 — fx) dp < hmlnf/ (1— fx)du
B(z,2r) B(z,2r) k=00 —+00 JB(z,2r)

which means u(B(x,2r)) — u(B(z,r)) < p(B(x,2r)) — limsupy,_, ;o p(B(xg, 7)) =
limsupy,_, o u(B(xg, 7)) < p(B(x,r)). Then & — p(B(x,r)) is Borel regular, as z +—
v(B(z,r)); therefore for all r > 0

d(z) == w(B(z,r))/v(B(z,r)) if v(B(z,r)) >0
T +00 if v(B(z,7)) =0

are Borel functions, but since

(v, ) = lim dy () = lim inf d ()

we conclude that D(u, v, z) is a Borel function.

3. Let 1 < a < 400 and By, := {z € Bla? < D(u,v,x) < aP™'} for p € Z. Then, except
for a set of v-measure zero, B = UpEZ B, and we get by lemma 2.1

/D w, v, x) dv(x Z / D(p,v,z)dv(x Z aPTly( Z w(Bp) < ap(B).

p=—00 p=—00 p=—00

(B). If p < v then D(u, v, z) exists for

Letting a — 1 we obtain [z D(u,v,z)dv(z) < p
= p(B). Therefore,

p-almost € R™ and then ;f’ioo w(Bp)

+oo +oo
1 1
/ D(p,v,x)dv(z Z D (v, x)dv(z) > Z a’v(Bp) > o Z wu(Bp) = EM(B)
p=—00 p=—00 p=—00

and letting a — 1 we obtain the other inequality.

4. Let p < v then D(u,v,z) < 400 v-almost everywhere = D(u, v, z) < +00 p-almost
everywhere. Let A C R"™ such that v(A) = 0; if D(u,v,z) < +oo p-almost everywhere,
then

u({z € A| Di,v,2) < a}) < av(4) =0

for all @ € IN and since pu(A) = p(Uyenir € A | D(p,v,7) < a}) = 0 we conclude. [
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Remark 5. In point 2. of Theorem 2.2 we did not say what is the domain of the Borel
function; the reader can imagine that if we have f : X \ N — R a measurable function
with ©(N) = 0 then this can be easily extended to a measurable function f with domain
X (f(x) = 0¥z € N).

Corollary 2.3 (Lebesgue Density Theorem). Let v be a Radon measure on R™.

1. If A C R" is v-measurable, then

hmu(AﬂB(m,r))_ 1 ifzeA
r—0  v(B(x,r)) o ifre R"\ A

for v-almost all x € R™.
2. If f : R® — R is locally v-integrable, then

1

}ig(l) V(B /B(m’) f(z)dv(z) = f(x) for v-almost all z € R".

: (AnB(z,r))
Remark 6. In order to show that lim,_.q ﬁ

of A is not required.

= 1 when x € A the measurability

Proof. 1. Follows from 2. with f = x4.

2. Since f = f* — f~ we can suppose that f > 0, then p(A) := [, f(x)dv(x) is a Radon
measure (defined on the o-algebra of all the v-measurable sets), and u < v. Then by
Theorem 2.2 we have

[ D) ivie) = ) = [ f(@)dvo)
B B

for all Borel sets B. Then lim,_, me(x ") f(z)dv(z) = D(p,v,x) = f(x) for
v-almost all z € R"™. O

Definition 2.3. Given p, v Radon measures on R™ we say that they are mutually singular
if there is a Borel set A C R™ such that v(A) = u(R™\ A) = 0. In this case we will write
vl p.

Theorem 2.4. Let v and v be finite Radon measures on R™. Then there is a Radon
measure A and a Borel function such that v 1L X and

u(B) = [ J@)dvi@) +7(5)
for all B Borel sets. Moreover, D(A\,v,x) =0 for v-almost all x.
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Proof. Set A= {x € R"|D(u,v,z) < o0} and
pr=pl A A=pL(R"\A).

We have that up and A are Radon measures and g = pg + A. Because D(uj,v,x) <
D(p, v, ) < 400 py-almost everywhere we have py < p, so u1(B) = [5 D(p1, v, x) dv(z)
and we can take f = D(u1,v,) which is a Borel function. Of course, A(A) = 0, and
because of Theorem 2.2 1. we have that v(R™\ A) = 0 and v L A. Then we can see that
considering the set

C={xecA|D\v,x)>n}

we have

V(C)n < A(C) < A(A) =0

so that D(\,v,z) = 0 v-almost everywhere and then D(u,v,x) = D(u1,v,x) v-almost
everywhere. 0

2.2 Haar measure and The orthogonal group

In the next chapters we will need to compare a set with its orthogonal projection on a
m-dimensional subspace of R™ and most statements do not hold for every subspace. We
could ask ourself if some kind of property does it hold for almost all m-subspaces. In
this section we shall give some definitions and some properties of O(n), the n-orthogonal

group.

Definition 2.4. A topological group G is a group with a structure of topological space
such that the group operations
f1GxG—=G a:G—=>G
(9,h) = gh g g
are continuous.

Definition 2.5. A measure on G is invariant if for all A C G and g € G

p(A) = p(gA) = p(Ag)
where gA = {ga | a € A} and Ag = {ag | a € A}.

Theorem 2.5. If G is a compact topological group, there is a unique invariant Radon
measure (1 on G such that u(G) = 1.

A measure on a compact topological space like the one described in Theorem 2.5 is
called Haar measure. Given p Haar measure on G, we see that v(A) := p({a™! | a € A})
also defines an Haar measure on G, hence

w(A) = p({a~" |a € A}). (2.1)

At this point we will make a small digression on uniformly distributed measures, which,
however, will be useful for us.
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Definition 2.6. A Borel regular measure p on a metric space X is uniformly distributed
if

0 < p(B(z,r)) = u(Bly,r)) < +o0
for all x,y € X and r > 0.

Theorem 2.6. Let p,v be uniformly distributed Borel reqular measures on a separable
metric space X. Then there exists a constant ¢ > 0 such that p = cv.

Proof. Let g(r) = p(B(x,r)) and h(r) = v(B(z,r)) functions defined for all » > 0 and
for x € X. Let U # () be a bounded open subset of X. Then for almost all z € U
the limit lim, o v(U N B(z,r))/v(B(x,r)) exists and it is equal to 1. Hence, by Fatou’s
Lemma and Fubini’s Theorem,

p(0) = [ T (U Bl ) (Bl ) due) <

r—0

im i L = limin 1 z,r))dv(z) =
<hm1nf/XU(UﬂB(:U,r))du(x)—lT_>th<T)/UM(B( ,1)) dv(x)

r—0 h(r)
i 907)
= hgn_}lglf h(T)V(U)'
Interchanging p and v we get
h
v(U) < lim in g(:;u(U).
This shows that lim,_ % = c exists and so u(U) = cv(U) for all U open subsets of X

(details are left to the reader). Let E C X, then, because X is separable, we are able
to find V; open bounded sets such that £ C |J; V;. Then, since u,v are Borel regular,
u(E) =sup{u(U) | E C Uopen} = csup{v(U) | E C Uopen} = cv(E), so p = cv. O

Now we shall discuss about the properties of orthogonal group O(n), which consist of
all linear maps g : R® — R" preserving the inner product, or, equivalently, the distance:

9(x) - g(y) =2y = g(x) — g(y)| = |z — ¥

for all g € O(n) and z,y € R". O(n) is closed and limited in the normed space of the
endomorphism of R", £L(IR™), which is of finite dimension. Therefore O(n) is a compact
subspace of L(R™), and the norm is the usual operator norm:

9|l = sup |g(z)]

lz|=1
therefore

d(g,h) = llg = hll = sup [g(z) — h(z)|.

|z|=1
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Considering also the composition as operation on O(n), this becomes also a topological
group, and we shall denote the unique Haar measure on O(n) as 6, (0,(O(n)) = 1).
Since d(gk, hk) = d(g, h) for all g, h,k € O(n), we have that

en(B(gaT)) = en(B(gar>k) = en(B(gk’T))

and 6, is uniformly distributed. In order to define a g € O(n) we can take two different
ordered orthonormal bases of R"™ {vy, -+ ,v,}, {u1, - ,u,} and define g such that it
sends one basis in the other, g(v;) = ;. It is easy to check that O(n) acts transitively

on S" ! the action is defined as g(z) for g € O(n), z € S" ! and for all z,y € S"1
there exists g € O(n) such that g(x) = y.

With 0"~ we will denote the normalized surface measure on S"~1, for instance, 0"~ (5"~ 1) =
1 and it can be defined as follows: recall that a(n) = L™"(B(0,1)), then

o HA) =an) L"{te |z € A,0 <t <1}) for AcC S" L.

o1 can be viewed as H" 1L S"~! where H" ! is the n — 1-Hausdorff measure, which
is Borel regular.

Theorem 2.7. For any x € S" ! and A C S" 1,
0n({g € O(n) | g(z) € A}) = o""1(A).

Proof. Let us consider f, : O(n) — S"~! defined as f.(g) = g(x) for a fixed x € S"~L.
Since 0, is a Radon measure with compact support and f, is a continuous function, f;40,
is a Radon measure with compact support and fxﬁen(Snfl) = 1. We have that

fa3bn(A) = On({g € O(n)|g(x) € A}).

Since both 6™~ and f.46,, are Borel regular measures on S"~! with same value on the
whole space, we just need to show that f,40, is a uniformly distributed measure; then
fetbn = co™ ! with ¢ = 1 and we conclude. Given y,z € S"! there exists h € O(n)
such that y = h(z); then

fuyOn(B(y, 7)) = On({g € O(n) | g(z) € B(y,7)}) =
=0.({g |lg(z) = ()| <7}) =0.({g |Ih " og(x) —z]<r}) =
=0n({g € On) [ lg(x) — 2| <7}) = fasbn(B(z,7))

and we are done. O
Lemma 2.8. For x,y € R"™, £ #0, and 6 > 0,

n—1
6u({g € O@) | |z — gly)| < 8}) < ;

where ¢ 1s a constant depending only on n.
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Proof. If |lz| — [yl > 6 then {g | |z — g(y)| < 6} =0, s0 6. ({g | [z —g(y)| < 0}) = 0. We
can assume that ||z| — |y|| < 0, x # 0 and y # 0. Then |z — g(y)| < ¢ implies

| —g(@iy) <z =g+ = lzl/lyNgW)] = = = g(w)] + [ly| = ||| <20

which means that |z/|z| — g(y/|y|)| < 26/|z|. Therefore

0u({g | |2 — 9(u)| < 8)) < 0u{g | 9(u/ly)) € BlafIa],8/]])}) =
— " (B(x/lal. 6/lel) n 5"} < e

’x‘n—l

where ¢ is a constant depending only on n. O

2.3 The Grassmannian of m-planes

Let 0 < m < n. As we anticipated G(n,m) := {V < R" | dimrV = m} and in this
section we shall define a measure on G(n,m).
We can identify every element V € G(n, m) with

PvtRn—>Rn

the orthogonal projection on V € G(n,m). Then we can define for VW € G(n,m) a
distance, using the operator norm:

d(V,W) = ||Py — Pw|| := sup |Py(z) — Pw(z)|.

|z|=1
Proposition 2.9. (G(n,m),d) is a compact metric space.

Proof. Since G(n,m) = {Py : R® — R"} C GL(n), |Py| < 1, and dimg (GL(n)) = n?
we just need to show that G(n,m) is closed in GL(n). Let then {Py, } a converging
sequence in GL(n). Since S"7! is compact we can choose v;j orthonormal vectors
such that Vi, = ({vx;}1<j<m) and such that v, ; — v; for & — +oo. Limits are also
orthonormal vectors. Let V = ({v;}1<j<m). Let us show that

1Pvi = Pl =0

as k — +oo. Since any norm in GL(n) is equivalent, we just need to show that the entries
of the matrix Py, converge to the entries of the matrix of Py (matrices are written here
with respect to the canonical base). Let {e1,...,e,} the canonical base of R™. We have
that

e; = ka (ez) + PVkL (62) = Q11+ - T Y mVkm + ka% (61)

We can easily see that ay ; = e; - v ; — €; - v; =: a; for k — +00. Therefore

lim Py, (e;) = civr + ... + amoy
k——+o0
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and

lim ij_ (61) =e; — a1Vl + ...+ anvm
k——+o0 k

for all ¢ = 1,...,n. It is trivial that ajv1 + ... 4+ vy, € V. Noting that

0= PVI@L (6,) “ Vg, — kEI-iI-loo kai (61) Uy

we can deduce that limy_, o PVkL(ei) € V1. We have proved that

lim Py, (e;) = Py (e;)

k——+o0

for all 7 = 1,...,n. Since each entry of vy ; converges to the corresponding entry of v;
we can conclude that the entries of the i-th column of the matrix of Py, converge to the
entries of the matrix Py,. This holds for all ¢ = 1,...,n we conclude that

[Py, — Pyl =0
and the proof is complete. O
Omne can also easily see that G(n,m) is also a separable metric space, since it is a

subset of a separable metric space. We can see that O(n) acts on G(n, m) and this action
preserves the distance:

d(gV,gW) =d(V,W) for g € O(n), V,W € G(n,m).

Moreover, by standard linear algebra, the action is transitive: V V, W € G(n, m) we have
gV = W. Finally we are ready to define a Radon measure on G(n,m): fix V€ G(n,m)

’Yn,m(A) = 071({9 ’ gv € A})
Taking fy : O(n) — G(n,m) such that fy-(g) = gV we have that v, = fv46,. Since
{9 |9V € hA} ={hg | gV € A} and 6, is invariant then =, ,, is O(n) invariant, that is
Fyn,m(gA) = 7n,m(A)

for all g € O(n) and A C G(n,m). Therefore we can notice that the transitivity and
the distance preservation of the action of O(n) imply that 7, », is uniformly distributed.
The invariant measure is unique, and in particular 7y, ,, does not depend on the choice
of V€ G(n,m). In order to prove equalities with v, ,,, it will be sufficient to prove that
the other side of the equation is O(n) invariant. For example

Vn,m(A) = Vn,?%m({vL |V € A}) (2.2)
or, for A C G(n,1),

Yn1(A) = o™ ( Uzn 5"—1>

LeA
and again, for A C G(n,n — 1),

Ynm_1(A) = o™ ! ( YJvtn s"—1> :

VeA
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Lemma 2.10. For any x € R™\ {0} and 0 < 0 < 400,

6n—m

with ¢ = 2"a(n)~t. Moreover, from equation 2.2, we have that

m

Yam ({V | [Py (2)] < 6}) < c|x|m

Proof. Fix z € R"\ {0}, and W = {x € R" | 41 = ... = 2, = 0} € G(n,m). Then
d(xz,V) = |z|d(z/|x|,V) and by equation 2.1,

o (fr i < 5) = (s < 1) -

=0 ({1t @ w) < b} =0 ({1 dtotariah. w) < 5 1) =

=0" ' ({ye " | d(y, W) <6/|z[}) = 0"

< a(n)*lﬁn({y | |yil <1fori<m,|y| </|x|fori>m})=
= a(n)~'2"(5/||)" .
]

Corollary 2.11. For0<s<m
/ Py (2)|* dynmV < cla|~*

where ¢ 1s a constant depending only on m,n and s.

Proof. V +— |Py(z)| is a measurable function because it is continuous. Another way to
see this is the following : fix W € G(n,m), and recalling the comment after definition

1.8, we have to show that
{VI1Pv(z)] > o}

is Yp,m-measurable for all x € R™ \ {0}. This is true since {g | |Pw(gx)| > a} is 0,-
measurable, since it is open in O(n). To see it one can consider Py o f; : O(n) = Ry,
where f.(g) = g(x). By proposition 1.13 we get

+o00
/ 1Py ()| ~% dypmV = /0 Yo ({V | | Py (2)] < t—l/S}) di —
|| ~* +o00
:/ dt*/ Yo ({V | [Py ()| < 7V/°}) dt <
0 s

$m/S gt — <1+ s >‘x|—s

T
+oo
m — S

<o+ claf ™ |
\

x| s
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where the third equalities hold since if ¢ < |z|™% <= |z| < t~'/% then |Py(x)| <t~/
for all V € G(n,m) and $0 Ypm({V | |Py(2)| < t7/5}) =1 for t < |z|~>. O

When m = 0, then G(n,0) = {0} and ;0 = dp on G(n,0).
Lemma 2.12. Let V € G(n,m) for 0 <m < n. Then
Tnam({V}) = 0.

Proof. The proof is trivial: fix {v;}i=1,. m an orthonormal base of V. Then

’Yn,m({v}) = 0n<{g ’ gV = V}) =

=0, (ﬁ{g | g(v;)) €V N 5"1}> <o"H{vns*1} =o.

i=1
O

Lemma 2.13. Let k,m € N such that 1 <k <n—-1,0<m<n—-1,k+m <n, and
let W € G(n,m). Then

Yam({V | VAW #{0}}) = 0.

Proof. For n = 2 the lemma is true. We can proceed by induction on n. We may assume
m > 1 and that the lemma is true for n — 1. Then

o (A) = / e (U C LY | L4+ U € AY) dynaL (2.3)

where the variable is L € G(n,1), and 1 ,,_; is the invariant measure on the subspaces
of L+ of dimension m — 1 < n — 2.
Let us prove 2.3. By Proposition 1.15,

/ it ms({U € LY | UL € gA}) dragL = / Yortmor({U € gLt | UL € gA}) dyns L =

- / (g™ U € LY | g7 \UHL € gA}) dynaL = / Yt mr({U € L* | LU € A}) dys L

where with 7,1 gL we intend g4y,,1, with g defined from G(n, 1) into itself and g(V') = gV'.
Moreover gyyn,1 = Yn,1. Now take A = {V € G(n,m) | VN W # {0}} By hypothesis,

Mmi{L € G(n,1) | LC W}) =0,

so we can integrate over the lines L such that L € W. Then assuming that L € W, the
conditions (L +U)NW # {0} <= (W + L)NU # {0} and U C L+ imply that

L*Nn(W+L)nU=(W+L)NnU # {0}.
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Noting that dimg (L*+ N (W + L)) < k and supposing that k¥ < n — 2, by induction we
have that

Vet me1 ({U C L [ (L+U)NW #{0}) < 370 1 ({U C LH | LEA(L+W)NU # {0}) = 0.

If Kk =n—1then m —1 = 0 and the above inequality holds true without using the
inductive hypothesis. Finally integrating 2.3 over the lines L such that L ; W we
conclude. O

Taking V,W € G(n,m), V- N W = {0} if and only if Py |y : W <— V is injective.
Therefore

Corollary 2.14. Let W € G(n,m). Then Py|w : W — V is injective for vy m-almost
all Ve G(n,m).
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Chapter 3

Hausdorfl measures and Lipschitz
maps on R"

3.1 Carathéodory’s construction

The Caratheodory’s construction is useful in order to define measures starting from a
family of sets F C P(X). The construction is very similar to the definition of Lebesgue
measure L on R". The idea is to approximate areas of generic sets by covering them
with sets of known area (for example n-rectangles in the case of L"), subsequently sum
them and taking the infimum over all the possible coverings. Let us do this in general
and precisely.

Let X be a metric space and F C P(X) such that:
1. V6 > 0 there are {E;};>; C F such that X = ;X E; and d(FE;) < § for all
i=1,2,...
2. V8 > 0 there exist Es € F such that ((Fs) < 0 and d(Es) < 0.
where ¢ : F — R is a non negative function. Let £ C X. We define for 0 <4 < 400

+o0 +oo
¥5(E) = inf {Z C(E:) | EC | E, d(E) <4, E € f} . (3.1)
=1

i=1
Proposition 3.1. s, defined in 3.1, is a measure.
Proof. 15(0) = 0: let 0 < &€ < §. Taking E. such that ((E.) < ¢ and d(FE.) < ¢ we
have 1s(0) < e. Let A C B; a cover of B of elements in F is also a cover for A, then

Ys5(A) < 1hs(B). A similar argument holds for the last property of measure, see definition
1.1. O

Let e < d < +oo and F C X. Since

+00 too
{{Ei}z‘zl CF|IEC|JE, dE) < e} C {{Ei}izl CF|IEC|JE, dE) < 5}

i=1 i=1
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we have that ¢5(E) < ¢.(E). We can define a measure

Y(E) = %K%%(E) = sup ¢s(E)

>0

for all E C X. It is easy to see that 1 is a measure. If we want to specify F and (, we
will write ¥ = ¥(F, ().

Theorem 3.2. Let F and ¢ as above, and v = ¢(F,(). Then
1. ¢ 1s a Borel measure.
2. If F is formed by Borel sets, 1 is Borel regular.

Proof.

1. Recalling Theorem 1.3, let A, B such that d(A, B) > 0. We can then choose 0 < § <
d(A, B)/2. If we take a cover {E;}i—1,.. of AU B with d(E;) < ¢ forall i =1,..., then
there are no sets of this cover that meet both A and B. Therefore

DB = >0 E)+ D () = Us(A) + us(B). (3.2)

ANE;#£0 BNE;#0

The inequality 3.2 holds for all the covers of AU B. Taking the infimum we get ¥5(A4) +
Y5(B) < 15(AU B) and since 15 is a measure, 5(A) + ¥s(B) = ¢¥s(A U B). Taking the
limit as 0 tends to zero we conclude.

2. Let A C X and choose for 1 < i € IN sets Ej; ; such that A C ;Of E;;, d(E;j) < %

and
1

+o0
D ((Eiy) < vi(A)+ =
j=1

Let B =(),_; U; Ei;. Then B is a Borel set such that A C B. ¢(A) < ¢(B) and

1

+oo
1(B) < ZC(E”) < w%(A) + -
j=1
Letting i — +oo we get ¥(A) = ¢ (B). O

3.2 Hausdorff measures

Let X be a separable metric space, 0 < s < 4+o00. Let also F = P(X) and (,(E) = d(E)*.
We will interpret 0° = 1 and d(#)® = 0. Then the measure ¥(F,(s) is called the s-
dimensional Hausdorff measure and it will be denoted by H*. H*(E) = lims_,o H3(E)

where
mf{Zd S|ECUEZ,d 1) < 5}

=1
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for all E C X. H is the counting measure, for instance H°(A) = |A|. H! can be viewed
as a generalized length measure. In many textbooks the definition of Hausdorff measure
is slightly different when X = R"™. For instance see B, 2.1]. It is defined analogously but
with a factor a(n)/2°%, so that H™ = L™ in R™. The equality is not trivial, for a proof
see [B, 2.2]. With our definition we have

H" = 2"a(n) "L

and therefore
H"(B(z,r)) = (2r)".

Definition 3.1. Given A C R"”, we define the convez hull of A, 19A as

L()A = ﬂ C.

CDA convex

The convex hull of a set can be defined also as the smallest (and unique) convex set
containing A.

Proposition 3.3. Let A C R™. Then d(A) = d(1pA).

Proof. Since A C 19A then d(A) < d(1pA). Let z,y € 1A, then there exist z1,...,2, € A
and y1,...,yq € A such that

p q
IE:Z)\z‘UCi Z/:ZM%
i1 i—1

with \i, p1; € Ry and Y0 N = 2321 pj = 1.Then
P q
d(z,y) <> Nd |z, Y pyy; | <
i=1 j=1

p q
< ZAZ' Zujd(%yj) < d(A) Z Ai Y pj | =d(A).
=1 j=1 j

i=1 j=1
O

Theorem 3.4. Let 0 < s < 400 and ((E) = d(E)® for E C X with X separable metric
space. Then, if

1. F={U C X | U is open} or

2. F={C C X | C is closed} or

3. if X =R", F={K C R"| K is convex}
we have that Y(F,(s) = H®.
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Remark 7. The hypothesis that X is separable is necessary, because otherwise the families
of sets we consider in Theorem 3.4 could not be used to define ¥(F, (s).

Proof.

1. Let E C X and E. = {x € X |d(z,F) <e}. E. is open and d(E;) < d(E) + 2¢. It
is true that ¢5(E) > Hj(E), therefore the inequality /(E) > H*(E) is verified. Let
Ej, Es, ... with d(E;) < ¢ such that E C U F;, and

“+o0o
D d(E;)* < HY(E) + 0.
i=1

Therefore

+oo
E C U Ei 50,72,
i=1
where v; > 0. Then d(E; 5,,/2)° < (d(E;)+0v;)°. Since (d(E;)+6v;)° — d(E;)® asv; — 0
we can choose, for each i, v; small enough to have (d(E;) + 6v;)° < d(E;)® + /2", Let
v := 2sup;{v;}, we can suppose that v — 0 as § — 0. Then, since d(E; s,,/2) < 6 + v,
we obtain

—+oco —+o0
Yoror(BE) O d(Eygy,00)° <Y d(E;)* +06/2" <H3(E) +20
=1 =1

which means that 1514, (E) < HF(E) + 20. Letting 6 — 0 we obtain ¢(E) < H*(E).
2. True, since d(E) = d(E) where E is the closure of E.
3. Trivial, since d(F) = d(wE). O

Remark 8. If X = R" for n > 2, F = {B(z,r)|lx € R", r > 0} and (;(F) = d(E)® the
resulting measure from the Caratheodory’s construction is not H® for 0 < s < n. It is
called the s-spherical measure and it is indicated by S*.

Corollary 3.5. Let 0 < s < 400 and A C R". Then
1. H? is Borel regular
2. H*(aA) = a®H*(A) where aA = {ax | x € A}
3. H*(LA) = H*(A) for all L : R™ — R"™ rigidities of R" (|Lz| = |z|).

Proof. The first point follows from 3.4 and 3.2 even when X is a generic separable metric
space. The last two assertions are easy to show (see also Theorem 3.13). O

The following lemma is very useful to see if a set has H® null measure for some s.

Lemma 3.6. Let E C X, 0 < s < 400 and 0 < § < +oo. Then, the following are
equivalent:
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1. H*(E) =0.

2. H3(E) = 0.

3. Ve >0 3F1, By, ... C X such that E C U Ei and Y55 d(E;)® < e.
Proof. 1 == 2is trivial, as 2 = 3. Let us assume 3 and let & > 0; since ;"7 d(E;)® < ¢
is convergent, let v* = sup;~; d(E;)°. We have that v < /5 then

—+o00
M (EB) <) d(E:)* <e.
=1

Letting € — 0 we obtain H*(E) = 0. O]

The next theorem will be fundamental to define the Hausdorff dimension of X:
Theorem 3.7. Let 0 < s <t < 400 and E C X then:

1. H5(E) < 400 = HY(E) =0,

2. HY(E) > 0= H*(E) = +o0.
Proof. Of course 2 <= 1. Let us show that the first assertion is true. Take E; such that
E C U B, d(E;) <6 and Y5 d(E;)® < Hi(E) + 1. Therefore

“+o00 —+00
HE(E) <Y d(E)' <87 d(E)* <8 (H3(E) + 1),
=1 =1

which gives, as § — 0, H!(E) = 0. O
Now we can give the definition of Hausdorff dimension.

Definition 3.2. Let £ C X. Then the Hausdorff dimension is defined as

dimFE :=sup{s | H*(E) > 0} =sup{s | H*(E) = +o0} =
=inf{s | H*(F) < +oo} =inf {s | H’(E) = 0} .

The Hausdorff dimension has some natural properties:
Proposition 3.8. Let E C X. Then

1. dimE < dimF for EC F

2. dim U;of E; = sup; dimFE; for E; C X.
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Proof. The first statement is easy and it is left as exercise. Let d = sup, dimE;. The
case d = 0 is left to the reader. If d < +o00 let ¢, e such that ¢ < d < e. Then there exists
E; such that

+0o0
+ 00 = H(Ej) < HE (U E)

i=1
“+oo “+oo
He <U E> <> HUE) =0.
i=1 i=1
Therefore d = dim ;' E;. If d = 400 the proof is similar. O

Remark 9. In general, for a set A C X, if we find an s such that 0 < H*(A) < +oo then,
s = dimA.

If we take X = R", since 0 < H"(B(0,7)) = (2r)" < 400, we have that dimB(0,r) =
n. Then, because R" = U;:g B(0,n), it follows that dimR™ = n. In R it is interesting
to consider Hausdorff measures only when 0 < s < n. Moreover one can show that for
each 0 < s < n there is E C R" such that dimFE = s.

Remark 10. H® is a Borel regular measure, but in general it is not locally finite and
therefore Radon. For example take s < n, then H*B(x,r) = 400 for each x € R™ and
r > 0. But, if £ C X is H*-measurable and H*(E) < +oo then H*L E is a Radon
measure.

3.3 Cantor set in R

In general it is not easy to compute the Hausdorff dimension of a set. In this section
we will briefly calculate the dimension of the Cantor set. First of all let us define it:
let 0 < A < 1/2 and Ip; = [0,1]. From now on, with the first index of the intervals
we will indicate the "iteration" and the second index will serve us to enumerate the
intervals. Remove from Ip; an open ball with centre 1/2 and diameter (1 — 2)); we
obtain I; 1 = [0, A] and I; » = [1 — A, 1] each of length A\. Then we can iterate this process
for I 1,11 2 by removing an open interval of length (1 —2A)A and midpoint the midpoint
of each I;; for ¢ = 1,2. We obtain I 1,122,123, 124 closed intervals of length A2, In
this way at the k-th iteration we have {I;;};_; o intervals of length M see figure 3.1.
Note that (J; Ix,; C U, Ix—1,;- We can now define the A\-Cantor set C'()) as

+oo ok

C(\) = ﬂ Ulkﬂ-.

k=01=1

C()) is non-empty and compact, because in a metric space if K1 D Ko D K3 D ...
are compact then K = N;K; is a non-empty compact set. Moreover C'(\) has no interior
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Figure 3.1: Cantor set (5 iterations) with \ = %

points and Lebesgue measure equal to 0: in fact the length of the intervals that we are
removing is

+oo

>N (123 =1

J=0

Moreover C(A) is uncountable. Taking {Ij;},—; _or as a cover of C(\) we have that

-----

2k
w(CN) < Zd([kﬂ-)s = 2F(\F)s = (20%)*. (3.3)
i=1

If s = log(2)/log(1/A) then 2X\° = 1 and therefore, letting &k — 400, we get that
H(C(N)) < 1 and so dimC(\) < s. Now we will show that H*(C(\)) > 1/4 and it
will follow that @

. log(2

dimC(\) = log (1))

Let s = log(2)/log(1/\). Since C(A) is compact we can cover it with finitely many
intervals J; with = 1,...,n. We will show that Y ;" ; d(J;)®* > 1/4. C()) has no interior
points, then we can assume that the endpoints of each interval J; are outside C(\)
(otherwise C'(A) would have a non-empty interior). Then each endpoint has distance at
least, for instance, § > 0. Choosing k big enough (so that § > A\¥), we have that each
{Ix;i}iz1,. or is contained in some J;. Now fix a general I open interval which intersect
(0,1), then I contains some Iy, ;. Let n be the smallest integer such that I, ; is contained
in I for some 4. Let I, ..., I, intervals contained in I. Then p < 4, otherwise there
exists an I,,_1; contained in /. Then

4d(1)* 3

Y

d(Ini,,)* = Z Z d(Ly,i)® > Z d(Lw,i)®
1 I

m= m=1 Iw,icln,im w,iC]

where the equality holds since there are 2~ intervals I, ; in I,,;,, of length A. This
leads to

2’11)777,()\11})5 — )\Sn(2AS)w — )\STL — d(InJm)S
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Therefore, since each {Iy;};—; o« is contained in some Jj,

n 2k
43 d(1) =D d(Ik)* = 2PN =1
=1 =1

which gives us
> d(g)* > 1/4.
=1

We can choose the intervals J; such that
1/4 <) " d(J)* < H(C(N) +¢
=1

and letting ¢ — 0 we obtain that 1/4 < H*(C(\)). Moreover one can show that
H(C(N)) = 1.

3.4 Density Theorems for Hausdorff measures

In this section we will present a couple of theorems on Hausdorff density.

Definition 3.3. Let 0 < s <n, F C R" and x € R". The upper s-density of E at x is
defined by

©*(E,x) := limsup H(ENB(@,r))
r—0 (2T)S

and the lower s-density of E at x is

s i (BN Bz, 7))
O;(E,z) = 11%51f oy :

Naturally, ©%(F, z) < ©*(E, z) and if they are equal we define the s-dimensional density
of E at x as
©°(E,x) =05 (E,z) = 0" (E,x).

Remark 11. For s > n one could define upper and lower densities, but they are always
equal to 0. For s = n we obtain the usual Lebesgue densities. By Corollary 2.3 we have
that O"(E,z) = 1if x € F and, if E is Lebesgue measurable, ©"(E,x) =0if z ¢ E.

Theorem 3.9. Let E C R™ H*-measurable with H*(E) < +00. Then
1. 279 < O*(E,z) <1 for H®-almost all x € E.
2. ©(E,x) =0 for H*-almost all z € R™ \ E.

Remark 12. The measurability of E is not required to show that 27° < ©*(FE, x);
moreover we can notice that H%L E is a Borel regular measure (and Radon) and so
x— O%(E,x),05(F, ) are Borel functions.
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Proof.

1. We first prove that 27% < ©*%(E,z). Let B={x € E | 27° > ©*(E,x)}; using the
definition of ©*° as limsup the reader can see that, setting

Bi:={x € E|H(ENB(x,r)) < (k/k+ 1)r® for 0 <r < 1/k}
for k=1,2,...,
+o0
B=|JBs.
k=1
Therefore we only have to show that H*(By) = 0 for all £ > 1. We can cover By, with
E; such that d(E;) < 1/k and

“+o00
> d(E;)* < H(By) +e.
=1

We can suppose that By N E; # ) for all 4, then let x; € By N E; and r; = d(E;). Since
By N E; C B(z, ;) N E we have that

+00 +o00
Ho(Br) < > H (BN E;) <Y H(Blwi,r) NE) <

i=1 i=1

“+oo
k k
< S < S(B
—Zizlkﬂrlr’ S gt B +e)

By hypothesis H*(By) < +oo, then letting ¢ — 0, and since 0 < k/(k+1) < 1 we
conclude that H*(By) = 0. Now we prove that ©*(E, z) < 1 for H*-almost every = € E.
Let

C:={zeE|O¥(E,x)>a}

for & > 1. Since E is H®-measurable of finite H*-measure and ©*(E,z) is a Borel
function, we can find an open set U that contains C' and such that H*(ENU) < H*(C)+e
(Theorem 1.5). For every x € C' we have that

a < inf supH*(E N B(z,r))/(2r)°.
6>0 r<§

Then we can find an arbitrarily small r such that 0 < r < ¢/2, that B(z,r) C U and
such that
a<H(ENB(z,r))/(2r)°.

We can then apply Vitali’s covering Theorem 1.22 to H®* L U and find disjoint balls
{B;}i=1,.. of radius less than §/2 such that

+o0
H* (C\ UBZ»> =0.
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We can notice that Hi(C) = H(C' N UST B;). Therefore

+oo +00 +oo
Ho(C)te > H(ENU) > Y H(ENB;) > a Y d(B)* > oH; (c nJ Bi> = aH3(C).

i=1 i=1 i=1

Letting €, — 0 we conclude that H*(C) > aH*(C) and since a > 1 we conclude that
H*(C) =0.
2. Let B={zx € R"\ E | ©*(E,z) > a} for a > 0. Let € > 0. Since (H°L E)(B) = 0 we

can find U open such that B C U and H*(ENU) < e. Again, we can find 0 < r < §/2
small enough such that for each x € B, B(z,r) C U and

H(E N B(x,r)) > a(2r)’.
By Theorem 1.16 we can find B; = B(x;,r;) disjoint with z; € B, such that 5B; covers
B. Therefore
+oo +oo
MH3(B) < d(5By)* =5 d(B)* <
i=1 i=1

+o0o

5° 5° 5
< 2N H(ENB) < ZH(ENU) < 25,
[0 im1 (6% (6

Letting € — 0 we obtain H: (B) = 0 which implies H*(B) = 0 by Lemma 3.6. If in place
of H5 (B) we had estimated HZ.;(B), we would have reached the same conclusion. [J

Corollary 3.10. Let E, F' be H*-measurable subset of R"™ with E C F and H*(F) < +00.
Then for H*-almost all x € E

0" (E,z) = 0*(F, )

and

O (E,z) = O (F, x).
Proof. For H*-almost all z € E ©*(F \ E,x) = 0. Therefore
©"(E,z) < O™ (F,z) <O©"(F\ E,z)+ ©*(E,z) = 0"(E, x).
O

The last corollary tells us somehow that densities are preserved if the set is enlarged.
Moreover, if A, B are measurable and both are of finite measure, then A U B has the
same density as AN B for almost all z € AN B.
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3.5 Lipschitz functions

In this section we will discuss about Lipschitz functions and some of their properties.

Definition 3.4. A function f: D — R" for D C R™ is a Lipschitz map if there is a
constant L such that

[f (@) = f(2)] < L]z —yl, (3-4)

for all x,y € D. The smallest constant such that 3.4 holds will be called the Lipschitz
constant of f and it will be denoted by Lip(f).

There is another definition of function that extends the property of being Lipschitz:

Definition 3.5. A function f: D — R” for D C R™ is Hélder continuous of parameter
0 < a <1 if there is a constant C' such that

[f(z) = f(@)] < Cle—y|%, (3.5)

for all x,y € D. The smallest constant C' such that 3.5 holds will be called the Hélder
constant of f and it will be denoted by Lq(f).

If a function is Holder continuous then it is continuous, and if @« = 1 we have that f
is Lipschitz. Every Lipschitz function f: D — R™ defined on a proper subset of R™ can
be extended to R™:

Theorem 3.11. Let f: D — R™ be a Lipschitz map with Lipschitz constant Lip(f) and
D C R™. Then there exists g : R™ — R™ such that f = g)p, and Lip(g) < v/nLip(f).

Proof. Let f = (fi1,..., fn), where f; are the coordinate functions for i = 1,...,n. We
define

(fi(z) + Lip(fi)|z — d|).

of course g;(x) = fi(x) for all z € D. Then

0(2) = juf
gi(z) < C}g]fj (fily) + Lip(fi)|x =yl + Lip(fi)ly — dl) = gi(y) + Lip(fi)|z — y|

and similarly, g;(y) < gi(z) + Lip(f;)|x — y| and g¢; is Lipschitz with Lip(g;) < Lip(f;) <
Lip(f) for all i. Finally, setting g = (g1, --,9n),

9(@) = 9)I> = lgi(x) = g:(W)* < nLip(f)*|z — yI*
=1

O

This last theorem can be adapted also for a Hélder continuous map. From the above
proof, when n = 1, we can conclude that Lip(g) = Lip(f). If n > 1 we can just say
that Lip(g) < «/nLip(f). It is however true that f can be extended in such a way that
Lip(f) = Lip(g) but it is not easy to show it (Kirszbraun’s theorem); for a proof see [E,
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2.10.43].

One of the most important property for Lipschitz maps is that they are differentiable
almost everywhere. This is the so-called Rademacher’s Theorem. Let us first recall

Definition 3.6. A map f: R™ — R" is differentiable at x € R™ if there is a (unique)
linear map

L:R™ —R"

such that
i W) = f(@) = Ly — )|

—0.
y—a ly — z|

We call L the derivative of f at = and it is denoted with D f[z].

Theorem 3.12 (Rademacher’s Theorem). Let f: R™ — R™ be a Lipschitz map. Then
f is differentiable L™ -almost everywhere.

Proof. We can assume that n = 1, since we could study the coordinate functions. We
shall also consider the case m = 1 to be known since in one dimension Lipschitz functions
are absolutely continuous and so they are differentiable almost everywhere. For e € §7~1
we denote, for z € R™, 0. f(x) the partial derivative of f in the direction of e. Let B,
the set of points such that d. f(x) does not exist. Since f is a continuous function,

Dof(x) = limsup L8 =@ b 0y o= i g FE 1) = 1)

r—0 t r—0 t

are Borel function, and
Be ={z € R™ | D f(z) < Def(x)}

is a Borel set. Let L, = {z +te | t € R}. Applying the one dimensional case to
t — f(x 4+ te), we have

HY(B.N L) = 0.

By Fubini’s Theorem 1.12 we obtain that £™(B.) = 0, therefore 0. f(z) exists for £™-
almost all x € R™.

Now we will show that d.f(z) = e Vf(x) where Vf(x) = (01 f(x),...,0mf(x)) for

L™-almost all x € R™. Here 0, f(x) = O, f(x) where e; is the i-th vector of the canonical
base of R"™. Let ¢ € C5°(R™). Then, for h # 0,

/ BN+ he) — f(@))p(e) de = — / (@) — o(x — he)) f(z) da.

44



Since f is Lipschitz we can apply Lebesgue’s dominated convergence Theorem, (see |C,
2.14]) letting h — 0 and applying partial integration we obtain

[ott@reta)ds =~ [ f@)0.p(a) da =
—— [ @) Vet)do ==Y e e [ f@oipo) de =
=1

=>» e-¢ ()0; f (z) dx = (x)(e-Vf(x))dx.
; /so /so

Then
/ (0o (1) — ¢ - V f(2))pla) d = 0

and since this holds for all ¢ € C§°(R™) we have that 0. f(z) = e - Vf(z) for L™-almost
all z € R™.

Let {v;}i—1,.., be a dense subset of S™=L. For each i, let A; be the set of z € R™ for
which Vf(z) and 0,, f(x) exist and 0y, f(z) = v; - Vf(x). Let A = 5 A;. Therefore
we can say, for what we have proved, that £™(R™\ A) = 0.

Now we will finally show that f is differentiable at all x € A: let x € A and e € 8™}
and h > 0. Let

Q(.’L’,@,h) = h_l(f(x + h@) - f(.ilf)) —€- Vf(ilf)

We are going to show that limj,_,g Q(z, e, h) = 0 uniformly in e. Since |0;f(z)| < Lip(f)
then |V f(z)| < /mLip(f) and by Cauchy-Schwartz inequality we have, for e,v € S™71,
that

‘Q(J}, €, h) - Q(Jﬁ, U, h)| <
< [P f (@ + he) = flz + h))| + (e —v) - V(z)] <
< (L+ vm)Lip(f)le — vl.

Now, since S™ ! is compact, there is an N big enough such that Ve € S™~! there exists
ke {l,...,N} such that

\e—vk]§2

9
(14 v/m) Lip(f)

Moreover, we have that
lim Q(z,vg, h) =0 for all k € {1,..., N},
h—0
which means that there exists § > 0, good for all v, with £k =1,..., N, such that

|Q(z, v, h)| <§for0< |h| <dand k=1,...,N.
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Then for all e € S™~! there is vy with k € {1,..., N} such that, for all 0 < |h| <

|Q(l‘,€, h)’ < |Q($>vk’7h)| + |Q($7ea h) - Q(x7vk7 h)‘ < g(l + \/E)sz(f)]e - Uk‘ <e

and § does not depend on e, which means that the convergence is uniform in e.
We can now conclude: let y € R™ and e := é:i', so y = x +te with ¢t = |y —z|. Tt holds
that

f) = fl@) =Vf(@) (y—=z)=f(z+te) — flx) =tV [f(z) - e=o(t) = o(ly — z|)
which means exactly that f is differentiable at x € A with D f[z]|(y) := Vf(x) - y. O

Proposition 3.13. Let f : R™ — R be a Holder continuous map of parameter 0 < a <
1,0<s<m and A C R™, then

H(f(A)) < La(f)"H**(A),
and therefore dimf(A) < adimA.
Proof. Let L = Lo(f) and let {E;};—1_. such that E C |J; % E;, d(E;) < 6 and

+o0o
> LPd(E)* < LH(E) +e.
=1
Then f(E) c U f(E;) and d(f(E;)) < Ld(E;)® < L§“. Therefore

+oo +oo
Foo (F(E) <D _d(f(E)° <) Ld(E)*™ < LH*(E) + ¢
i=1 1=1

and letting €,0 — 0 we obtain that H*(f(A)) < La(f)*H5*(A). O

When a = 1 we obtain that for a Lipschitz map f, H*(f(A4)) < Lip(f)*H*(A) and
dimf(A) < dimA.

Theorem 3.14. Let f : R™ — R"™ be a Lipschitz map, and let
A={z e R™|dim(Vf(x) R™) <m}.
Then H™(f(A)) = 0.

Proof. First we define Ap = AN B(0,R) for 0 < R < 4+o00. Let ¢ > 0 and L = Lip(f).
Let © € Ag, W, := f(x) + Vf(z) - R™; then for sufficiently small r > 0,

fB(z,r) C B(f(z),Lr)N{y € R" | d(y, W) <er}.

Let k = dimW,. fB(z,r) is contained in a cylinder C' with base an k-ball of radius Lr
and n — k-height 2er:

C:={z e R" [ |Pw,z — f(2)| < Lr,[Qw, — f(z)| <er}.
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Now we cover C' with some balls B; of radius er. Let N be the number of balls we use,
then NL"(B;) > (Lr)*(er)"~*. We get, taking k = m — 1, that

m—1
N>
~ a(n)em1
and, letting ¢ = 2mt

a(n) » We have the following estimate

HT(fB(x,7)) < 2N (2er)™ < cL™ er™,

By Vitali’s covering theorem we can find disjoint balls B; = B(x;,7;) such that

“+o00 “+o00
Lm (AR\ U BZ-) =0, > L™B)<L™(Ag)+e.
i=1 =1

We have that fAg C (U2 fBi) U f(Agr \U;Y B;) and by Proposition 3.13 H™(f(Ag \
1% B;)) = 0. Then

+o0 +oo
HY(fAR) < ZH?O(fBZ) < chfleSZr;” < cL™ Yea(m) N (L™(AR) +¢)
i=1

i=1
and for ¢ — 0 we conclude since L™(ARg) < 400 and since A = (Jp~ AR-

O
Theorem 3.15. Let A C R™ and let f : A — R™ be a Lipschitz map. If m < s < n,
then

[ weman Thacy < atmnit e )

Proof. We cover A with closed sets Ej; with d(E);) < 1/k and

+0o0
> d(Br;) < Hi(A) +1/k.
i=1

F
Let F; ={y e R™ | Ex;N f{y} # 0}. If we take x,y € F}; we can find v,u € E; N A
such that f(v) =« and f(u) =y. Then

|z =yl < Lip(f)lv — u| < Lip(f)d(Ej.)
which means that d(Fj ;) < Lip(f)d(Ey;). Therefore

LM(Fri) < a(m)(Lip(f)d(Epq)™-
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Using Fatou’s Lemma we obtain

[ wman Fpacny -

* . s—m <_ m
:/ lim (AN T {y)) demy <

k——+o00
+oo —
< / limin S d(Ep, 0 F {y))* " demy <

k——4o00 4

“+o00
<liminf} /F d(Epin T ly))mdemy <
1/ Fr

k—4o00 4
i

+oo
<liminf Y d(Ey;) "L (Fy;) <
_gg}ig@; (Bri)” " L™ (Fr) <
+oo
< a(m)Lip(f)™ liminf » d(Ey;)® <
k—+o00 —

< alm)Lip(f)" I inf(4}  (A) + L/k) = a(m)Lip(/)"H'(4).
O

Lemma 3.16. Let f: R™ — R” be a Lipschitz map and let A C R™ be L™-measurable.
Then f(A) is a H™-measurable set.

Proof. A set A C R™ is L™-measurable if and only if it can be written as F'U N where
F C Aisa countable, or finite, union of compact sets and L™ (N) = 0. We can suppose A
of finite measure, since R™ = |J>5 B(0,n). Therefore we can find compact sets K; C A
such that £™(A\ K;) < 1/i. Taking F = ;¥ K; and N = A\ F we are done. The
converse is trivially true. This argument holds for generic Borel regular measures, such
as H™ (see Theorem 1.5). Then f(A) = f(F)U f(N). f(N) has H™-measure zero,
because H™(f(N)) < Lip(f)H"™(N) = 0. Since f is Lipschitz, then continuous, sends
compact sets into compact sets, so f(F') is a countable, or finite, union of compact sets.
Then f(A) is H™-measurable. O

Theorem 3.17. Let f : R™ — R be a Lipschitz map and let A C R™ be L™ -measurable.
Then O (fA,x) > 0 for H™-almost all x € fA.

Proof. We may assume that £7(A) < +oo. Let B = fA, ¢ > 0 and F = {z €
E | O"(E,z) < €}. By Lemma 3.16, E is H™-measurable and of finite measure by
Proposition 3.13, therefore F' is measurable and of finite measure. Let C' be a compact
subset of F' and U open set such that A C U and £™(U) < +oc0. Let V be an open set
of finite measure such that £ C V: H™ L V is a Radon measure. We can find for each
x € C a closed ball B = B(z,r) such that H™(E N B) < ed(B)™. With a smaller r,
we can also suppose that D = B(y,r/L) C U with y € A, f(y) = x € C and also that
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B C V. Therefore, using Vitali’s covering theorem on H™ LV we can find B; = B(z;,1;)
disjoint closed balls such that

H™(E N By) < ed(B;)™
Di = B(yZ,T‘Z/L> cU

+oo
H™ (C\ U B@-) =0.
i=1

D; are disjoint because fD; C B;. We have then
+00 +00 +oo
H™C)=> H™CNB)<e) dB)"=ccy L™(D;) < ceL™(U)
i=1 i=1 i=1

where ¢ = (2L)™a(m)~! depends only on m and L. Therefore

H™(C) < ceL™(U)
and, since F'is H"-measurable and of finite measure, we have, by Theorem 1.5, that
H"({x e E|OF(E,z)=0}) <H™(F)=sup{H™(C) | C C F compact } < ccL™(A)

which shows that {r € E | O7(E,z) = 0} has H™-measure zero. O
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Chapter 4

Rectifiability

In this chapter we present one of the most fundamental concept in measure theory:
Rectifiability.

Definition 4.1. A set £ C R" is m-rectifiable if there exist Lipschitz maps f; : R™ — R"
with ¢ = 1,... such that

+o00
H™ (E\ U fi(Rm)> =0.
=1

A set FF C R"™ is called purely m-rectifiable if H™(E N F) = 0 for every E C R™
m-rectifiable.

Another equivalent definition of m-rectifiable is the following: E is m-rectifiable if
there are at most countably many C' submanifolds of R I'; with dimension m such that

H™ (E\ (Ur)) —0.

As a consequence of the extension theorem 3.11 for Lipschitz maps, we have the following
lemma (whose proof is left to the reader).

Lemma 4.1. E C R™ is m-rectifiable if and only if there exist {A;}i—1,.. subsets of R™
and Lipschitz maps f; : A; — R™ such that H™(E\ U fi(A)) = 0.

Note that {A4;};—1,.. can be taken H™-measurable and such that f;(4;) C E. We
leave to the reader also the proof of the following fact, which lists some properties of
rectifiable sets:

Lemma 4.2. Let E C R™ m-rectifiable. Then

1. E has o-finite H™-measure, i.e. E is the union of countably many H" -measurable
sets of finite measure

2. Any subset of E is m-rectifiable
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3. There exists a m-rectifiable Borel set U such that E C U and H™(E) = H™(B)
4. Union of countably many m-rectifiable sets is m-rectifiable.

Theorem 4.3. Let A C R"™ with H™(A) < +oo. There is a Borel m-rectifiable set E
and a purely m-unrectifiable set F such that A = EUF. This decomposition is unique
up to H™ null sets.

Proof. Let S the supremum of {H™(ANB) | B is m-rectifiable and Borel}. Then, there is
E; Borel m-rectifiable contained in A such that H™(FE;) > S— % Let usset B := ;Of E;

which is m-rectifiable, and F := A\ E. F is purely m-unrectifiable: this can be seen by
contradiction, details are left to the reader. Then

A=FUF
and the decomposition is unique up to H™ null sets. O

An important property of m-rectifiable sets is the existence H™-almost everywhere of
tangent planes, which approximate the set in some sense. We will indicate with A(n,m)
the set of all the affine subspaces of dimension m in R™. We recall that W(e) := {x €
R" | d(z, W) < e} for every W € A(n, m).

Definition 4.2 (Linearly approximable). We will say that £ C R"™ is m-linearly approx-
imable if for H™-almost all e € E we have this property: for every n > 0 there exists
ro,A >0 and W € A(n,m), with e € W, such that

H™(ENB(z,nr)) = ™ forz € WnNB(er) (4.1)
H (E N Ble,r)\ W(nr)) <nr’™

for all 0 < r < ry.

For a geometric representation of the properties described in 4.2 see figure 4.1. A
weaker form of this definition can be given, where W € A(n,m) depends on 0 < r < r¢:

Definition 4.3 (Weakly linearly approximable). We will say that E C R" is m-weakly
linearly approximable if, for H"-almost all e € E, we have this property: for every n > 0
there exist rg, A > 0 such that, for all 0 < r < rg, there is W, € A(n,m), with e € W,
such that 4.1 and 4.2 hold with W, in place of W.

If these conditions hold, then ©(E,e) > 0 for H™-almost all e € E. Moreover,
if H™(E) < o0, then properties 4.1 and 4.2 are preserved H™-almost everywhere for
subsets of E (see Theorem 3.9).

Theorem 4.4. Let E be an H™-measurable and m-rectifiable subset of R™ with H™(E) <
400. Then E is m-linearly approzimable.
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N

Figure 4.1: Representation of the sets described in definition 4.2. Condition 4.1 implies
that B(xz,nr) contains a good portion of F for all x € W N B(e,r); 4.2 implies that most
of EN B(e,r) lies in W (nr).

Proof. Let 0 < n < % Let f : R™ — R"™ be a Lipschitz function and let B C R™ be a
measurable set of finite Lebesgue measure with fB C E. We have to verify 4.1 and 4.2
for H™-almost all a € fB. By Theorem 3.17 ©7*(fB,a) > 0 for H™-almost all a € fB,
then we may assume that there is rg > 0 and A > 0 such that

H™(E N B(a,r)) > ™ (4.3)

forall 0 < r < rp and all @ € fB. In fact B is the union of the sets (?{a € fB |
O7(fB,a) > 1/i}) N B and of a set of measure zero. Therefore we may consider each of
them separately. By Theorem 3.12, f is differentiable H"*-almost everywhere in B. Let
L, = Df[z] — Dfx](z)+ f(x) and W, = L,R"™. By Theorem 3.14, we can suppose that
dimW, = m for H™-almost all z € B. Moreover for such x € B there is
0<i(z):= min |Df[z](u),
ueSm-1

which means that |L,y — Lyx| > I(z)]y — x| for all y € R™. Let £ > 0. By the Lebesgue
density Theorem (see Corollary 2.3) H"-almost all z € B have density equal to 1. Let
0 <6 < 1and x € B of density 1; let us suppose that Vr > 0 there exist y, € B(z,r/0)
such that d(y,., B) > 6?r. We have that B(y,,d%r) € R™ \ B for some § < ¢ fixed.
Letting N = 62 + % we obtain

L™(BNB(x,Nr)) _ L™(B(x,Nr)\ B(y,,6°r)) _ _( §0° )m .

L™(B(x,Nr)) — L™(B(z,Nr)) (03+1)
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and x does not have density 1, a contradiction. Therefore we can find a compact subset
C C B and two numbers rg > 0 and 6 < min{n/4,1/L} such that L™(B\ C) < ¢, such
that for almost all z € C,

f(y) = Lay| < 6%y — x| for all y € B(z,ro) (4.4)
l(x) > 25
d(y, B) < 6*r for all y € B(z,r/3), 0<r <.

We then partition C into finitely many Borel subsets C; with d(C;) < rg. Let z € C; for
some i fixed, a = f(z) such that ©™(E \ fC;,a) = 0. We can verify 4.1 and 4.2 in these
points of fC;. Let 0 < r < dr¢g/2 and b € W, N B(a,r) and b = L,y; since I(z) > 24,
y € B(z,7/d). There exists z € B such that |y — z| < §%r, whence |z — 2| < 21/§ < ro.
Therefore, because ||Df[z]|| < L < 1/4,

1£(2) = b] < |f(2) = Loz| + | Loz — b < 82|z — 2| + |Lpz — b < 82|z — x| + L|z — y| < 367
and, since 46 < n, it follows by 4.3 that
H™(ENB(b,nr)) > H"(ENB(f(z),0r)) > X"r™

and 4.1 is verified.
By 4.4 we obtain that

f(Cin B(x,r/6)) C Wy(or) C Wy(nr).
Since d(C;) < 19 and by 4.5, 4.6, we have for z € C; \ B(z,r/J)
la — f(2)| > |Lox — Lypz| — | Loz — f(2)] > 20|z — 2| — 6%|x — 2| > 8|z — 2| > or

whence
f(Ci\ B(x,r/6)) C R" \ B(a, 7).
Therefore fC; N B(a,r) C W,(nr) and since @™ (E \ fC;,a) = 0 we obtain 4.2. O

Before proving that E has almost everywhere an approximate tangent plane (whose
definition still must be given) we need to show some results, and give some notations.
Let V € G(n,n —m) and Qv := Py,.. Then we set

X(a,V,s):={z e R" |d(x —a,V) <slz—a|l} ={z e R" | |Qv(z —a)| < sl —al|}

and
X(a,r,V,s) = X(a,V,s) N B(a,r)

fora € R", 0 < s <1andr > 0. For a representation of X (a,V,s) see figure 4.2.

Lemma 4.5. Suppose E C R", V € G(n,n—m), 0 < s <1, andr > 0. If EN
X(a,r,V,s) =0 for all a € E then E is m-rectifiable.
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Figure 4.2: Representation of X (a,V,s) in R2.

Proof. We can suppose that d(E;) < r. Then |Qvy(b) — Qv (a)| > s|b —al for all b € E.
Hence Qv g is Lipschitz injective and the inverse f = Q;‘IE is Lipschitz. Since Qv F lies
on an m-plane and E = f(Qy E), E is m-rectifiable. O

Lemma 4.6. Let V € G(n,n—m), 0 < s <1, §, A > 0. If A is purely m-unrectifiable
and
H™M(AN X (z,r,V,s)) < Ar'™s™

forallz e A, 0 <r <9, then
H™(AN B(a,d/6)) < 2X20™6™
forall a € R™.
Proof. We can assume that A C B(a,d/6) and that
ANX(z,V,s/4) £ 0

for x € A. The set where this fails, by Lemma 4.6, has H""-measure zero. Let

h(z) =sup{ly —z| |y € AN X(x,V,s/4)}
for z € A. Then 0 < h(x) < 46/3. Letting

Cr = Qy' (QvB(x,sh(z)/4))
and 2’ € AN X (z,V,s/4) with |z — 2’| > 3h(x)/4, we obtain that
ANC, C X(x,2h(x),V,s)U X (2',2h(x),V,s)
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Figure 4.3: Geometric representation, in R?, of the fact that ANC, C X (x,2h(z),V,s)U
X(2',2h(x), V, 5).

for z € A (see figure 4.3). Let us prove it: if z € AN Cy, then |Qy(x — z)| < sh(z)/4,
moreover |z — z| < h(z) since if |z — z| > h(x), then |Qv(z — 2)| < s/4|z — z| and
z € X(x,V,s/4), therefore we obtain h(xz) < h(z) a contradiction. Hence it is true that
|z’ — z| < 2h(z). Suppose that z ¢ X (2/,2h(z),V,s). It follows that

sla’ — 2| < |Qva’ — Qvz| < |Qv(z’ — 2)| +|Qv(z — 2)| <
< slx — 2’| /4 + sh(x)/4 < sh(x)/2,

and knowing that |« — 2’| > 3h(z)/4, we have that
2= 2| > 3h(2)/4 — h(x)/2 = h()/4 > |Qu (& — 2)|/s
which means that z € X (x,2h(x),V,s). Then by hypothesis we have
HT(ANCL) < 2A(2h(z))™s™.

By Theorem 1.16 there exists B C A countable such that the balls Qv B(z, sh(x)/20) C
VL for 2 € B are disjoint and

QvAC | J QvB(x,sh(z)/4),

zeB

which means that A C |J,cp Cs. Therefore, recalling that H™(V+ N B(y,r)) = 2mr™
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for all y € V-, we have that

H™(A) <Y H™MANC,) < A2™Y " (sh(z)™ =

zeB reEB

=2X20™ ) " H™(VE N B(Qv, sh(x)/20)) <
zeB
< 2X20MH™(VE N B(Qva,§/2)) = 2020M6™.
O
Corollary 4.7. If V € G(n,n—m), § > 0 and A C R" is purely m-unrectifiable with
H™(A) < +o0, then

limsup sup (rs)""H™(AN X(a,r,V,s)) >0
s—=0  0<r<o

for H™-almost all a € A.

Proof. Let Z be the set of points in A such that the statement does not hold. Then let
us define

Zi = {a €Al sup (rs)""H™(AN X(a,r,V,s)) <Afor0<s< 1/2}
0<r<sé

We have that Z1 C Z3... and Z C U:;Of Z;. Therefore by the last Lemma we proved,
we have that H"™(Z; N B(a,d/6)) < 2X20™¢™ for all 4, which implies (for ¢ — 4o00) that

H™(Z 0 B(a,§/6)) < 2020m5™.

Letting A — 0 we obtain that H™(Z) = 0 (since Z intersects every ball of radius 6/6 in
a set of measure zero). O

Corollary 4.8. Let V € G(n,n—m), 0 < s <1 and A C R™ a purely m-unrectifiable
set with H™(A) < +o00. Then

Sm

*m >
0" (AN X(a,V,s),a) > 2207+
for H™-almost all a € A.

Proof. The set of points were this fails is contained in the union of A;, where A; is the
set of points a € A such that

H™(ANX(a,r,V,s)) < As"r™
for all 0 < r < 1/i, with A =1207"™/3.

Taking 0 < § < 1/i we have that H™(A; N B(a,d/6)) < 2X20™§™ which implies that

—m+1
<2™m

O (Aj,a) <2-60M\ =
which means, by Theorem 3.9, that H"(A;) = 0 and we can conclude. O
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Definition 4.4 (Approximate tangent plane). Let £ C R", a € R" and V € G(n,m).
We say that V' is an approzimate tangent m-plane for A in a if ©*(A,a) > 0 and

lim r~"H™ (AN B(a,r) \ X(a,V,s)) =0

r—0

for all 0 < s < 1.

We will indicate the set of all approximate m-tangent planes for A in a with apTan™ (A, a).
If the set is formed by just one element V' we will simply write V' = apT'an™ (A, a). Note
that apTan™ (A, a) could be empty in general. The following lemma is a consequence of
Theorem 3.9.

Lemma 4.9. Let A C B C R" be two H"™-measurable sets, with H"™(B) < +oo. Then
apTan™ (A, a) = apTan™(B,a) for H™-almost all a € A.

Now we are ready to state the equivalence of m-rectifiability and existence of an
approximate tangent m-plane, which moreover will be unique. The hypothesis that
H™(E) < 400 is important. Let Q? = {¢;}i=1,.. and I, ; = [g;, q;] the closed segment
with endpoints ¢; and ¢ < j. Then

E=J5,

1<j

is a 1-rectifiable set of R2. Since H!(E N B(z,7)) = +oc for all 7 > 0 and x € E, E does
not have an approximate tangent line at any point € F, even if it is 1-rectifiable.

Theorem 4.10. Let E C R™ an H™-measurable set with H™(E) < +oo. Then the
following are equivalent:

1. E is m-rectifiable.

2. E s linearly approzimable.

3. There is a unique approzimate tangent m-plane for E at e for H™-almost all e € E.
4. There is an approzimate tangent m-plane for E at e for H™-almost all e € E.

Proof. That 1. implies 2. was showed in Theorem 4.4. Let us suppose that 2. holds; by
Theorem 3.9 ©*™(E, e) > 0 for H™-almost all e € E, let W € A(n,m) be as in definition
42 withee W. Let V=W —e={w—e|w e W}, and x € B(e,r) \ X(e,V,s). If
|z —e| > er, then d(z — e, V) > s|x — e| > ser and so = ¢ W (ser). Hence

Ble,r)\ X(e,V,s) C (B(e, "\ W(ssr)) U Ble,er).
We can suppose that ©*"(E, e) < 400, therefore there is § such that

H™(EN Ble,er)) < (07" (E,e) + 1) (2r)mem
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for all 0 < r < 0. Moreover H™(E N B(e,r) \ W(ser)) < esr™ for all 0 < r < ro.
Therefore we can estimate r~™H™(E N B(e,r) \ X(e,V,s)) (for 0 < r < min{d, ro}):

r-"H™(ENB(e,r)\ X(e,V,s)) <r MH™ (e,r)NE\W(ser)) UB(e,er)n E) <
r "H™ (B(e,r) N E\ W(ssr)) +r "H™(E N B(e,er)) <
<es+ (@*m(E, e)+ 1) 2me™m

which means that V is an approximate tangent m-plane for E at e. Let us suppose
that U is another approximate tangent m-plane for E at e, and, by contradiction, that
V # U. Then there are 7, s small enough such that for all » > 0 there is z € W N B(e, )
such that B(z,nr)N X(e,U,s) = 0. Then ENB(z,nr) C ENB(e,r(1+n))\ X(e, U, s).
This leads to

0 <A <limsupr "H™(ENB(z,nr)) < lil%r_m’i-[m (EﬂB(e,r(l+77))\X(e, U, s)) =0,
r—

r—0

which is a contradiction. Then, U =V = apTan™(E,e).

That 3. implies 4. it is trivial. To show that 4. implies 1. we can show that if F is
purely m-unrectifiable then E does not have an approximate tangent m-plane H"-almost
everywhere; then we can conclude using Lemma 4.9 and Theorem 4.3. Let us assume that
F' is a purely m-unrectifiable H™-measurable set of finite H"-measure. Since G(n,m) is
compact, it can be covered with finitely many balls B(W,1/3). Let us fix W € G(n,m).
It is sufficient to show that the set Dy = {a € F | 3V, € apTan™(F,a) N B(W,1/3)}
has H™-measure zero. Let us suppose that H™(Dy ) > 0. Therefore the set of points
a € C of Dy for which, for some ¢ > 0,

sup " H™(Dw N B(a,r) \ X(a, Vs, 1/3)) <A3™™

0<r<d
has positive H™-measure. For r > 0, if [Py (2 — a)| < §|z — a| implies |Py, (z — a)| <
2|z — a| which implies |Qy, (z — a)| > }|2 — a|: this shows that
X(a,r,W+,1/3) € B(a,r)\ X(a,V,,1/3).
Therefore for a € C,
H™(C N X (a,r, WE,1/3)) < A3~™p™

for all 0 < r < & and choosing 27\ < 240~™~! Corollary 4.8 leads to a contradiction.
Then H™(Dw ) = 0. O

Corollary 4.11. Let FF C R" be H™-measurable with finite H"™ measure. F is purely
m-unrectifiable if and only if apTan™(F,a) = 0 for H™-almost all a € F.

Lemma 4.12. Let V be a vectorial space of finite dimension and S : V. xV — R a
bilinear symmetric map. Then there exists {e1,...,en} orthogonal basis for V such that
S(ei,ej) =0 fori# j. Moreover S(ej,e;) > S(e;,e;) for j > i.
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Proof. Inductively, we choose e; in the compact set C; :={z eV ||z|=1, z-¢;=0j <
i} such that S(e;, e;) > S(z, ) for all x € C;. Then, noting that |e;+te;| ! (e; +te;) € C;
for all t € R with i < j, we can deduce that S(e;,e;) = 0. O

Now we will state a lemma on projections of m-unrectifiable sets that are weakly
m-linearly approximable.

Lemma 4.13. Let A C R" be a H™-measurable with H"™(A) < 4o0o. Then if A is
both purely m-unrectifiable and weakly m-linearly approzimable, H™(PyA) = 0 for all
Ve G(n,m).

Proof. Let 0 <e < 1/2 and V € G(n,m). We can find C' C A such that H™(A\ C’) <
£/2 and such that there exist 0 < § < 1, and r; > 0 for which

H™(AN B(a,r)) > dr™ (4.7)

for all 0 < r < r; and a € C’. This is possible because A is the union of the sets
Ai:={ac A|O7(A,a) > 1/i} and a set of measure zero {a € A | O (A, a) = 0}. This
is true since A is weakly m-linearly approximable. We can find a compact set C c C’
such that the following properties hold: H™(C’\ C) < €/2 and there are two positive
numbers 1 < de and rg < r1 such that for all @ € C' and 0 < r < r¢ we have that there
is W € A(n,m) with a € W for which

H™(AN B(a,2r)\ W(nr/2)) < d(nr/2)™.

Let us assume that there exists z € CNB(a,r) such that d(z, W) > nr. Then B(z,nr/2) C
B(a,2r)\ W(nr/2). Therefore

H™(B(a,2r) \ W(nr/2)) = H™(B(z,nr/2)) = 6(nr/2)™,

which is a contradiction.

Then we have found C' C A compact with H"™(A\C) <eand § > 0,7 >0, 19 >0
such that n < de < € and the following hold:

e the inequality referred by 4.7 holds for all 0 < r < rg and a € C.
e For all 0 <r < rgand a € C there is W € A(n,m) with a € W for which
CnB(a,r)\ W(nr)=10. (4.8)
We also have that
H™ (Py(A\C)) <e (4.9)
and since C is purely m-unrectifiable, we have from Lemma 4.5 that
+oo
H™ (U{a eC|CnX(a,1/i,Vtn) = @}) =0.
i=1
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Then for H™-almost all points a € C there are b € C arbitrarily close to a such that
[Py (b —a)| <nlb—al;

let us take a,b € C' with this property, and r = |a — b| < r9. Let W € A(n,m) with
a € W such that 4.8 holds and ¢ = Py b. Therefore, using 4.8, we have that

lc — b < nr;

we have also that |c—a| < rand |c—a| > [b—a|—|c—=b] > (1—n)r > r/2sincen < e < 1/2.
So r/2 < |¢c — a] < r and one gets easily that |Py(c — a)| < 2nr. By Lemma 4.12 we
can select an orthonormal basis {e, ..., ey} for W —a such that Py (e;) - Py (e;) = 0 for
j # 1. Then for some ¢ we have that

|Pyei| < 2r Y Py(c—a)| <4n

because otherwise

m
1Py(c—a)l* =) |(c—a)-el’[Pvef* > 47| Py(c — a)Plc — af* > |Py(c — a) >
=1

We deduce that Py(W N B(a,r)) is contained in an m-rectangle with m — 1 sides of
length 2r and one of length 8nr. Therefore Py, (C'NB(a,r)) is contained in a m-rectangle
of length 10nr, 2r + 2nr, ..., 2r + 2nr. Since n < 1/2 we have that

H"™(Py(C N B(a,r))) < cenpr™ (4.10)

for a suitable constant depending only by m. Using Vitali’s covering theorem we can
find disjoint balls B(a;, ;) satisfying 4.10 with a; € C such that

+o0o
H™ (C\ U B(ai,ri)> =0.

i=1

Using 4.7 and 4.10 we get

+oo
H™(Py(C)) < Z’Hm(PV(C N B(as,ri))) <
i=1

+o0 +oo
< 01721";” <enot ZH"‘(A N Bl(ai,r)) < ceH™(A).
i=1 i=1

Using also 4.9 we have that H"™(Py(A)) < (1 + ¢H™(A))e and we can conclude letting
e — 0. U

We now prove a Theorem which tells us basically that m-rectifiable sets are related
to m-weakly linearly approximable sets. Moreover, we will see a relation with £ and the
orthogonal projections of F.
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Theorem 4.14. Let E C R"™ be H™-measurable with 0 < H™(E) < 4+o00. Then E is
m-rectifiable if and only if E is m-weakly linearly approximable. Moreover,

O™(E,x) =1 for H™-almost all x € E (4.11)
H™(Py(E)) >0  for ypm-almost all V € G(n,m) . (4.12)

Proof. If E C R"™ is m-rectifiable then it is also m-linearly approximable, in particular
it is weakly m-linearly approximable. Let us suppose that E is weakly m-linearly ap-
proximable and let € > 0. Since E has positive lower density H™-almost everywhere, we

have that
E=JE,
nelN

where E, = {x € E | ©(E,z) > 1/n} for n > 1 and H™(Ey) = 0. Since H™(E) =
lim, 400 H™(Ey,), we can find a compact subset F' of E such that H™(E \ F') < € and
find 6, r¢ such that

H™(ENB(a,r)) > or™ (4.13)
foralla € Fand 0 <r <rp. Letn>0,1/2<u<land 0 <~y <1withn<~y(1—u)/8.
As we did in Lemma 4.13 we can find F} C F and m < rg with H™(F \ F}) < € such

that, for any a € F} and for all 0 < r < ry, there exists W € A(n,m) with a € W for
which

FinBla,r)\W(nr) =0 (
W N B(a,r) C F(nr). (

Let us explain how to obtain the property 4.15. Note that fixed n > 0, A = A(a) in
Definition 4.3 depends only on a and we can choose F' C F large enough such that
Aa) > XNg > 0 for all @ € F'. Let us take Fy; C {& € F' | ©(E \ F) = 0} compact
approximating F’. Let a € F}. Suppose that, Vr > 0, there exists z, € W N B(a,r) such
that d(z,, F) > nr; then B(z,,nr) N F = (). Since z, — a, for r small enough

H"(E\ F)NnB(a,r)) >H"((E\F)NB(z,nr)) > Xa)r™ > Aor™.

This implies that ©*(E \ F,a) > 0 which is a contradiction. Therefore W N B(a,r) C
F(nr). We can notice that for H™-almost all a € Fy, ©*(Fj,a) < 1and O"(E\ Fi,a) =
0. Therefore, as before, for H™-almost all a € F there exists a positive number r9 < ry
such that for all 0 < r < ry there is W € A(n,m) with a € W for which

FinB(a,r)\ W(nr) =190, (4.16)
W N B(a,r) C Fi(nr), (4.17)
H™(E N B(a,r)) < 3™r™, (4.18)
HU(E\ Fy) N B(a,r)) < 400~ t6r™ (4.19)

with t = 279 (u™ — u?™).
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Now, fix such a, r and W and let V' € G(n,m) be such that Pyjy_q: W —a — V is
injective and v < H(PV‘W_Q)_lﬂ_l. Then

|Pye — Pyy| =2 yle—y| forx,y € W. (4.20)
We will show , given 6, u, v, and for 1 small enough, that
H™(Py(E N B(a,r))) > (2yu’r)™. (4.21)

With 4.21 we can show everything: if E were not rectifiable, we would apply Lemma
4.13 to an unrectifiable subset of ' of positive measure, finding a contradiction. Taking
V € G(n,m) with V.=W + a, then 7 = 1 and we have that

H™(E N B(a,r)) > (2ur)™

for all 0 < r < rg; this means that O™ (E,z) = 1 since 0" (E,z) < 1 for H™-almost
all ¥ € E. Then, recalling Corollary 2.14, Py _, is injective (as well as Py ) for
Yn,m-almost all V' € G(n,m) and since ynm({V | [|[(Pyjw—a) 7! <~}) = 0for v =0
we obtain that H™(Py(E)) > 0 for almost all V' € G(n,m).

We now suppose that 4.21 fails H"-almost everywhere in Fj. Set
C=Py(FiNB(a,r)) and D= Py(WnNB(a,ur))\C,
C is compact and by hypothesis we have that
H™(C) < (2yu?r)™.

By inequality 4.20 we have that V N B(Pya,yur) C Py(W N B(a,ur)): let z € V N
B(Pya,~yur), then there is b € W such that Pyb = z and (using 4.20) |a — b| < ur. We
obtain that

H™(D) = H™ (PV(W N B(a, ur))) —H™(C) >
> H™ (V N B(sz,’yur)) — QMM 2T — QMAT (T 2T — g™

which means that
H™(D) > tr™. (4.22)

We now cover D with balls B(b, p) with b € D and CNU(b,p) =0, CNOB(b,p) # 0.
Then we apply Theorem 1.16 to the balls B(b,5p), and we find a finite collection of
disjoint balls B(b;, 5p;) such that B(b;,25p;) covers D. Then, by estimate 4.22, we get

p
> P =50, (4.23)
=1

By 4.17 we have that p; <nrfori=1,...,p. Now we set
Si = Py (B(bi, pi/2)) N W (y(1 = w)r/4)
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and we can suppose that for ¢ = 1,...,¢ S; does not contain any point of F. Let
¢ € FNS;fori=q+1,...,p. We have that b, = Pyb} with b, € W N B(a,ur), and
from the last considerations we obtain that

la —ci| < |a =0+ |V, — Pwei| + |Pwe; — cif <
< ur+ by — Py (Pwei)l /vy + (1 —u)r/4 <
<wur+|b; — Pye|/v+ |Pv(ci — Pwei)|/y+ (1 —u)r/4 <
<ur+pi/(2y)+ (1 —wr/2 <nr/y+ (14 u)r/2.
Since n < (1 —w)/3, this gives
B(ci, pi/4) C B(a,r).

Moreover Py (B(ci, pi/4)) C V. NU(bi,pi) C V' \ C which implies that

p
U ENBlei,pi/4) € (E\ F1)n B(a,r). (4.24)
1=q+1
We can then deduce that the balls B(c;, p;/4) are disjoint, and combining 4.13, 4.24 and
4.19 we obtain that ,
a4 Z pit < 400" ™"tsr™
1=q+1
and by 4.23 that
q
> pf > 1007, (4.25)
i=1
Now we will work for i = 1,...,¢; let v; € 0B(b;,p;) N C then v; = Pye; with e; €
Fy N B(a,r) C W(nr) and we obtain that

ei € Py Y (0B(bi, pi)) N W (nr) N F.
We have n~1p; < r < r; and by 4.15 we obtain
A; = Blei,n (1 —u)pi/16) N W; € F((1 — u)p;/16).

Let us suppose that b; € Py A;, then there is ¢ € A; with Pyx = b; and we can find
a point y € F such that |z —y| < (1 — u)p;/16. Then Pyy € B(b;, pi/2) and since
n <~(1—u)/8, pi < nr. Recalling where we have taken e; we have

d(y, W) < |y—a|+|z—ei|+d(e;, W) < (1—=w)pi/16+n~"y(1—u)pi/16+nr < y(1—u)r/4

and so y € S; N F, which is impossible. Then b; ¢ Py A;.

With 9y we will indicate the boundary relative to V. Let I; be the closed segment with
end-points b; and Pye;, then I; N Oy Py (A4;) # 0, since b; € I; \ Py(4;) and Pye; €
I; N Py(A;). We have that 0y Py (A4;) = Py (0w, A;), so we can select a; € dw, A; such
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that Py (a;) € I;. Let J; the closed segment connecting e; and a;. Therefore J; C A; and
Py J; C I;. Since ¢; € Py, (0B(bs, p;)) N W (npr) N Fy then

|Pvl' — bl| < Pi (4.26)
for all z € J;. Since J; C A; C F((1 — u)p;/16), J; is contained in the union of the balls

B(z, p;) for & € F. The length of J; is n~14(1 —u)p;/16 and we can find a finite number
of these balls, let us say B(x; j,p;) for j =1,...,k, such that

JiN B(xij, pi) # 0 (4.27)
B(x;j, pi) N B(xiy, pi) =0 for j #1 (4.28)
k> ~(1—u)/(160n). (4.29)

To do so, one can use Theorem 1.16.
We set

xl,j?/)’é

IIC?v

for ¢ = 1,...,q. Using 4.26 and 4.27 we have that PyB; C B(b;,3p;) (by standard
estimates). Since B(b;, 5p;) are disjoint then so are the sets Py B;, as well as B;. Since
pi < nr, by 4.27 and since n < (1 —u)/8,

jij—eil < H (Ji)+pi =0 Y (1=u)pi/16+p; < y(1—u)r/16+(1—u)r/8 < (1—u)r/4.

Taking b, € W N B(a,ur) with Pyb, = b;, as before

lei — bi| < |e; — Pwei| + [Pwei — by| <
<nr+ [Py (Pwe;i) — bi| /v <nr + |Py(Pwe;) — Pyei| /v + |Pve; — bi| /v <
<nr+nr/y+pi/y <3nr/y < (1 —u)r/2.
Let z € B(z;, p;), then
lz—al <|z—mij|+|zij—e|+ e = V)| + b, —a| < - < (Tr+ur)/8<r
and we obtain that B; C B(a,r). Now we use 4.28, 4.29 and 4.13 to write
k

H™(ENB;) = ZHm(E N B(wij,pi)) > kép! > 160~ y(1 — u)n~topl"
j=1
for all ¢ =1,...,q from which follows, by 4.18 and 4.25, that

3"r™ > H™(E N B(a,r)) ™(ENB)

I MQ

> 160" (1 —u)p~té Z P > 1007160~y (1 — w)n~totr™
i=1
We come to a contradiction, since we can choose 1 as small as much we desire for given
0, uw and 7. Then the inequality referred by 4.21 holds and the proof is complete. O
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As a consequence of 4.14, a set as in Lemma 4.13 has H™-measure zero. Now we
shall prove a Theorem which will be useful for us in the next chapter. First we prove the
following lemma:

Lemma 4.15. Let p be a measure on R", FF C R" closed and 6, M > 0. If
w(B(z,r)) < Mr"
for all0 <r < § and B(x,r)NF # 0, then

lm r "p(B(zx,r) \ F)=0

r—0

for L"-almost all x € F.

Proof. Let x € F and 0 < r < 6/5. Let s, = d(y,F)/2 for y € B(x,r) \ F. Then
0 < sy <r/2and B(y,sy) C B(z,2r) \ F. By Theorem 1.16 there is a countable set
S C B(z,r) \ F such that B(y, s,) with y € S are disjoint and

B(z,r)\ F C U B(y, 5sy).
yes

Therefore,

p(B(z, 1)\ F) <5"M Y sy <5"Ma(n) ' L"(B(x,2r) \ F)
yes

and by Lebesgue density Theorem
lim r " L"(B(z,2r)\ F) =0

r—0

for £™-almost all x € F. This proves the Lemma. O

Theorem 4.16. Let pi a measure on R™ and E a L™-measurable set with pu(E) = 0.
Then, for L™-almost all x € F, we have that

limsupr "u(B(xz,r)) =0
r—0

or
limsupr~"u(B(z,r)) = 400.

r—0

Proof. We may assume that F is closed and that the set of points x € E for which
limsup,_,o 7~ "u(B(z,r)) = 400 has L™-measure zero. Then we set, for j =1,2,...,

Fj={x e E| u(B(z,r)) < jr" for 0 <r <1/j}.

Each F} is closed: let x;, — x a converging sequence of elements in I} with x € E, and
let0<r<1/j. Let 0<e<1/j—randry—r+eask— +oo. Then

p(B(x,r)) < limsup u(B(wg, i) < j(r+e)™

k—+o0
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which means that pu(B(z,r)) < jr™ for all 0 < r < 1/j, i.e. x € Fj. Moreover

+o0o
{z € E|limsupr "u(B(z,r)) < +oo} = U F;.

r—0 =1

Now we just need to show that the limit is 0 for £"-almost all € F}. Let = € F}, then
B(z,r)NFj # 0 and p(B(z,r)) < jr" for all 0 < r < 1/j. Then, since u(E) = 0 we have

lim r"u(B(z,7)) =
r—0

= limr "u(B(z,r) \ Fj) + limr "u(B(z,r) N F;) =
r—0 r—0
= limr "u(B(z,r) \ F;) =0

r—0

O

The proof of this last theorem, and of the lemma we used, works also when R™ and
L™ are replaced by S*~! and H* 1L S L
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Chapter 5

Besicovitch-Federer projection
Theorem

In this Chapter we enunciate and prove the Besicovitch-Federer Theorem, which gives a
characterization of rectifiable sets in terms of some properties of their orthogonal projec-
tion. The Theorem was proved by Besicovitch for n = 2 and m = 1, while the proof for
the general case is credited to Federer. First we state the Theorem:

Theorem 5.1. Let A C R™ be H™-measurable with H™(A) < +o00. Then

1. A is m-rectifiable if and only if H™(PyB) > 0 for vp m-almost all V € G(n,m) for
all B C A H™-measurable with H™(B) > 0.

2. A is purely m-unrectifiable if and only if H™(PyA) = 0 for vypm-almost all V €
G(n,m).

These statements are equivalent, and in view of Theorem 4.14, we just need to show
that a purely m-unrectifiable set projects in a set of H™-measure zero for v, ,,-almost
all Ve G(n,m). To do so we will divide the proof in 6 Lemmas.

Lemma 5.2. Let A be purely m-unrectifiable. Let 6 >0, V € G(n,n —m) and

A 5(V) = {a € A|limsup sup (rs) ""H™(ANX(a,r,V,s)) = O} .

s—0  0<r<d
Then H™(A15(V)) =0.
Proof. Tt follows immediately from Corollary 4.7. O

Lemma 5.3. Let 6 >0, V € G(n,n —m) and

Ay 5(V) = {a € A|limsup sup (rs)”""H™(ANX(a,r,V,s)) = +oo} .

s—0  0<r<d

Then H™(Qv (Azs(V))) = 0.
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Proof. Let 0 < M < +oc. For all a € Ay 5(V') there are arbitrarily small s > 0 and some
r, 0 <r <9, such that

H™(AN X (a,r,V,8)) > M(rs)™ = M27"H™(Qv X (a,r,V, s)). (5.1)

We can notice that Qy X (a,r,V, s) = U(Qva,rs)NV+. Considering the cover Qv X (a,74,V, 54)
of Qv (A25(V)) where 1y, s, are such that 5.1 holds, we can apply Vitali’s covering The-
orem and find a countably many disjoint balls such that

400
H™ (QV(AQ,é(A)) \ U Qv X(as,r,V, 51’))) =0.

=1

Hence we obtain

+oo
H™(Qv(A25(V)) <Y H™QvX(ai,mi,V;s:)) <

i=1
+oo
< Z M2 H™(AN X (a;, 13, V, ) < M2 H™(A).
i=1
Letting M — +o0o we obtain H™(Qv (A2,s(V))) = 0. =

Lemma 5.4. Let V € G(n,n —m) and
As(V)={a€ A||AN(V +a)| = +o0}.
Then Hm(Qv<A3(V))) =0.

Proof. Recall that |[AN (V + a)| = H*(AN (V + a)). This Lemma follows from Theorem
3.15:

HOAN(V +y)dH™y = / HO(AN Qv i{y}) dH™y < cH™(A) < +o0,
VL VL

and we have that H°(A N (V 4+ y)) < 4oo for H™-almost all y € VL. From this, our
assertion follows . O

Now we will introduce some more notations, which will be useful for us in the next
two lemmas. Let m + 1 < n. We set

Xm0, L, s) = {x € R™ | d(z, L) < s|z|}
for Le Gim+1,1). ForO0<s<1landje {m+1,...,n} we set

m 2
: s
Z(],s):{xE]R"| g x?<1_82mj2}.
i=1
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Noting that

m+1

Zm <o 2+ @Zx e,
we obtain that

Z(m+1,5) = X™(0, Lypy1,s) x RV L
where Ly, 11 = (em+1), the m + 1-axis. Let 0 < s* < 1 such that

5*2 82

Tz Mg
Using the notations we have just introduced, we can now prove the next Lemma
Lemma 5.5. Let V = {0} x R"™ € G(n,n —m), then we have that
n
U 26.s) c X(0,V,5) U Z(j,s*
j=m+1 j=m+1
Proof. We have that
n
— n _ n
X(0,V,s) {mEIR ];x <s; } {:CEIR ]Zm< 321%;1 }

The lemma then follows immediately. O
Lemma 5.6. Let 6 > 0. For H™-almost all a € A either

limsup sup (rs)""H™(AN X(a,r,V,s)) =0

s—0 0<r<é
or
limsup sup (rs)""H™(ANX(a,r,V,s)) =400
s—=0 0<r<é
or

(A\{a}) N (V +a) N B(a,d) # 0,
and this holds for v n—m-almost all V € G(n,n —m).
Proof. We shall prove the assertion for m = n — 1 and then for general m. Since A is
‘H™-measurable of finite measure, by Theorem 1.5 we can assume that A is g-compact.
We can assume, in order to simplify notations, that a = 0. For § € S" ! and B ¢ 8"~}
let

Lo={t0 |t R} and L(B)= ] Lo
0eB

We can now define a measure p on S" 1

w(B) := sup r~ " UH"Y(AN B(r)N L(B))
0<r<é
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for all B C S"1. We then set
C={0e8" | (A\{0}) N B(5) N Ly # 0}

which is o-compact since so is A. Therefore, letting E = S" 1\ C, u(E) = 0. Then, by
theorem 4.16, we obtain that for almost all # € 8"~ either

limsup ¢~ Y (8" ' N B(6,t)) =0

t—0
or
limsupt~ ™D (8" N B0, 1) = +oo
t—0
or

fecC.
We have that for any z,0 € S" 1 withz-60>0

d(x, Lg) < |z — 0| < 2d(x, Lyp).
Therefore we obtain
X(0,7,Lg,s) C B(r)NL(S" N B(#,25))\ {0} € X(0,7, Ly, 3s)

which tells us that the three conditions we found are equivalent to the three condition
of the lemma for m =n — 1. Let now m <n — 1. We can say more from what we have
proved: if A is o-compact and H™(A) < 400 for Y41 1-almost all L € G(m+1, 1) either

limsup sup (rs)”"H™ (A N B(r) N (X™(0, L, s) x ]Rn_m_l)) =0

s—0  0<r<é
or
limsup sup (rs)”"H™ (A NB(r)N (X" (0,L,s) x ]Rn_m_l)) =+oo
s5—0  0<r<d
or

(A\{O}) N B(E) N (L x R # 0.
To get this, we can apply Theorem 4.16, defining

L(B)= (Lo x R* ™ ) CR"
0eB
C={0eS8™|(A\{0})NB(6) N (Le x R"™1) # 0}

w(B) = oiugd r"H™ (AN B(r)N L(B))

for B C 8™ and proceeding as we did for m = n — 1. Using lemma 5.5 we just need to
show that 6,-almost all g € O(n) either

limsup sup (rs)""H™(ANB(r)NgZ(j,s)) =0 or
s—0 0<r<é

limsup sup (rs)”™H™ (A N B(r) N gZ(j, 3)) — 400 or
s—0  0<r<d

(AN{0}) NngV N B(5) # 0.
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We will prove this for j = m + 1. Let x be the characteristic function of those g € O(n)
for which none of the three alternatives hold. Since A is o-compact, x is a Borel function.
We set

O(m+1)={g € 0On)|g|{0} x R""™ ! is the identity }

and since gZ(m + 1,8) = X0, gLy41,8) x R"™~! for g € O(m + 1) we obtain,
from the first part of the proof, that

/ X d0m+1 = 0.
O(m+1)

For any h € O(n), h~!(A) is o-compact and since the characteristic function correspond-
ing to h™1(A) is g — x(h o g) we have

/ X(hog)dfmi1g = 0.
O(m+1)

Then, since 6,41 is invariant, for any g € O(m + 1) we have

/ x(h) d9nh=/ x(hog)donh.
O(n) O(n)

Therefore, using Fubini’s Theorem, we obtain

/ NOT / / (h) dbuh by =
O(n) O(m+1) JO(n)
z/ / (h o g) dbuh dBmirg —
O(m+1) JO(n)

_ / / x(h o g)dbms1g dBuh = 0
O(n) JO(m+1)

and we can conclude. O
We are now ready to prove Theorem 5.1:

Proof of Besicovith-Federer projection Theorem. For all the notations recall Lemmas 5.2,
5.3, and 5.4. Let V € G(n,n —m) and 6 > 0. Let

Ass(V)={a€ A (A\{a}) N (V +a)N B(a,d) # 0}.
By lemma 5.6 we have for v, p—m-almost all V' € G(n,n —m) that
H™ (AN (A15(V) U Ags(V) U A35(V))) = 0. (5.2)

Now we shall show that if V'€ G(n,n —m) is such that 5.2 holds for all §; = 1/i, with
i=1,2,..., then H™(QvA) = 0 and the Theorem will be proved. Since H™(A;5(V)) =
0,

H™ (AN (A25(V) U A35(V))) =0.
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Moreover

Then

7

H™ [ QuA\ QV(UAZ&(V))UQV(A3(V)))) <
S:
H

<H [ Qu(AN (A2 (V) U As(V)) | < DM (AN (A2 (V) U g, (V) ) =
8

but, by lemmas 5.3, 5.4 we have that H™(Qy (U&i As5,(V))) =0and H™(Qv (A3(V))) =
0. It follows that H™(Qy A) = 0. We have then proved the Besicovitch-Federer projection
Theorem. O

5.1 Cantor set in R?

We now focus our attention on a particular subset of R? which has positive and finite
H'-measure and it is purely 1-unrectifiable. We prove first a version of the Besicovitch-
Federer Projection theorem in R? for 1-rectifiable sets. We can notice that when n = 2
and m = 1, every L € G(2,1) forms an angle § € [0,7) with the z-axis. We can then
identify G(2,1) with [0, 7] where 7 is identified with 0 and then o1 = £1L [0, 7). With
Ly we will indicate the element of G(2,1) forming an angle 6 with the z-axis.

Theorem 5.7. Let E C R? be 1-rectifiable and 0 < HY(E) < +oo. Then there exists at
most one direction 0 € [0,7) such that H'(Pr,(E)) = 0.

Proof. Since E is 1-rectifiable it is the union of 1-rectifiable curves I'; and a null set,
then E C |J;I';. Therefore we can suppose that E C I', where I is a 1-rectifiable curve.
Moreover, @™ (E,z) = 1 for H'-almost all 2 € E by Theorem 4.14. Let € E such that
©™(T,z) = 1. Then Ve > 0 we can find an r > 0 small enough such that

HYE N B(z,r) > (1 —&%)2r

and
HY T N B(x,r)) < (1+¢)2r.
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This implies that

HYE N B(z,7)) > (1 —e)H (T N B(x,r))

whence

H'((T\ E) N B(z,r)) < eHY(T' 0 B(z,7)).

' N B(x,r) is the union of at most countably many disjoint arcs and we can choose an
arc I'o C I' N B(x, r) such that

H (To\ E) < eH (To) < 2ely — 2|

where z,y are the endpoints of I'g. We take then an Ly € G(2,1) such that it forms an
angle ¢ with the segment [z, y] for which |cos(¢)| > 2¢. Then

H (P, (B)) > leosglly — 2| — H'(PL, (Do \ E)) >
> Jcosplly — 2| - H (Do \ E) > |coselly — 2| — eH' (To) >
> (| cos()| — 2¢)ly — 2| > 0.

Thus H!(PL,(E)) > 0 for all § € [0, ) except for a set of directions of length 2 cos™!(2¢)
for all € > 0, which means that H!(Pr,(E)) = 0 for at most one direction € [0,7). O

From this theorem we can deduce that if E C R? with 0 < H!(E) < +oc such that it
projects in a set of H'-measure zero for two distinct directions we can conclude that F is
purely 1-unrectifiable. Therefore by Theorem 5.1 we can conclude that H!(Pr(E)) =0
for y91-almost all L € G(2,1). We now present a family of Cantor-type subsets of R*:
@y = C) x Cy where C), is the \-Cantor set presented in Chapter 3, with 0 < A < 1/2.
In order to visualize it we can take, as first step, a square Qg with sides of length 1 and
vertices (0,0),(1,0),(0,1),(1,1). Then (see figure 5.1 for A = 1/4) we proceed to take 4
squares ()1 ; with sides of length A, then of length A2 and so on.
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Figure 5.1: First 4 iterations of /4 X Cy4

We wish first to estimate the dimension of C) x Cy. Let us call {Q;},;—1 4+ the
squares of the k-th iteration; we have that d(Qy ;) = V2XF. Then we can estimate

4k

He e (@2) < D d(Qry)® < V27 (4N
j=1

and choosing s = % we have that

H(Qy) < V2

which tells us that dim@, < bﬁ%- By a similar argument to the one presented in

Chapter 3 one can see also that 0 < H*(Q,), which tells us that
log 4
log(1/3)

Let us consider the Cantor set with A = 1/4. Then, dim@y/4 = 1 and its measure
is positive and finite. It is easy to check that the projections of ()14 on the z and y
axis have H!-measure zero. Then by Theorem 5.1 we can conclude that @ /4 18 purely
l-unrectifiable. It is also possible to find some lines, for instance 4, where the projection
of Q) has positive H!'-measure (see figure 5.2); of course the set of those lines have
Y2,1-measure zero, in particular the set formed by these 4 distinct lines has measure zero.

dimQ@y =
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Figure 5.2: Representation of 4 directions where the projection of ()14 has positive HI-
measure.

To show that ()4 is purely l-unrectifiable we can also show that

apTanl(Q1/4, z)=10

for all € @1/4, which means that for all z we have to find an 0 < s < 1 such that

limsupr'"H'(Q1,4 N B(z,r) \ X(z, L, s)) > 0.
r—0
Let us fix z € 14, and take L € G(2,1). Ifz € (174 we can find a sequence of squares
forming Q1 /4 {Qr.j, }k=1,..., such that = € Qy;, for all k € IN. Then, setting 7 = V247k,
we have that Q/4 N Qgj, C Q14 N B(w, 7). We can then choose 0 < s < 1 small
enough such that there is an Q1 , entirely contained in Q4N Qy j, \ X (z, L, 5). For
instance, we could take 0 < s < 1/4/5. Therefore

7"1;1’H1(Q1/4 N Bz, )\ X(x, L,s)) >
> lelﬂl(Qlﬂ N Qkj, \ X(z,L,5)) > TIC_IHI(Q1/4 N Qri1ips,) =
_HNQuua)AE HY Qi)
4k+1\/§ 4\@

Letting & — 400 we can conclude. Another easier way to see that @)y is purely 1-
unrectifiable, is to notice that given E1, By C R with H'(E;) = H'(E2) = 0 and

> 0.

v:ICR — R?
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a C! function we have (locally) that v(t) = (¢,4(¢)) and so (E1 x E3) Nimy C y(E1).
Therefore
H((E1 x E2) Nimy) < H' (y(Ev)) < (Lipy)H' (E1) =0

and F; x Ej is purely l-unrectifiable. Now we give an example of a set in R? which is
1-rectifiable. We will verify this in three different ways. Let {q1,...,qx,...} the set of
points with rational coordinates contained in B(0,1). Let S; = 0B(g;,27%), and define

+oo
E=Js.
i=1

It is pretty easy to verify that #!(FE) = 27, and it is still easy to check that the orthogonal
projection of this set on every line L € G(2, 1) has positive measure, which means that £
is 1-rectifiable. One can also verify that E has an approximate tangent line in H'-almost
all x € E. Let us fix ¢ € IN; by Theorem 3.9,

r—0

lim »~1H! USj\SZ- NB(x,r) | =0
J

for H!-almost all x € E, and for such x € E, the tangent line through = € S; is our
desired approximate tangent line of E. It is also easy to see that E is the countably
union of Lipschitz curves. For instance, f;(t) = ¢; + 27" (cost,sint) with t € [0, 27).

5.2 Conclusions

The main objective of this thesis was to enunciate and prove the Besicovitch-Federer
Theorem, which is what we did in Chapters 4 and 5. Most of the arguments in Chapters
1-3 were presented for the reader that is approaching for the first time the study of Ge-
ometric measure Theory.

We conclude now presenting some generalizations to what we did, such as the defi-
nition of Rectifiability. Let u be a measure on R™. In [E|, E C R" is called countably
(1, m)-rectifiable if there are Lipschitz maps f; : R”™ — R"™ such that

“+oo
7 (E\ U ﬁ(Rm)) =0

E c R™ will be called (u, m)-rectifiable if u(E) < +oo. F C R™ is purely (p, m)-
unrectifiable if p(FNE) =0 for all E C R™ (u, m)-rectifiable sets. Let us suppose that
u is a Borel regular measure on R™ and A is a Borel set with p(A) < 400 such that

1. |AN Py {y}| < 4oc for H™-almost all y € V and

2. H™(Py(B)) =0 for all B C A and u(B) =0.
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From the proof of Theorem 5.1 we can deduce that if A is purely (i, m)-unrectifiable,
then H™(Py(A)) = 0 for 7, m-almost all V' € G(n,m). This is exactly what Federer
proved. We finish presenting an interesting relation for I-rectifiable sets in R? and the
Menger curvature. Let x,y,z € R? and let R(x,vy,2) be the radius of the circle passing
through these three points. If x,y,z are aligned then R(x,y,z) = +oo. The Menger
curvature of the triple (z,y, z) is

1

c(z,y,2) = W

We can notice that z,y, z are aligned if and only if ¢(z,y, z) = 0. An explicit formula for
c(z,y,z) is
_ 4A(z,y, 2)

[z —yllz — z[ly — 2|

c(z,y, 2)

where A(x,y, z) is the area of the triangle with vertexes x,y, z. Let us set

CQ(A):///c(:c,y,z)gdHldeldelz
AJAaJa

for any H'-measurable set A C R2.
Let £ C R? be a H'-measurable set with H'(E) < +o0. It can be proved that if

c2(E) < 400, then E is 1-rectifiable. This is a Theorem of David and Léger, whose proof
can be found in [I].
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