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Introduction

One of the most fundamental concepts in Geometric Measure Theory is Recti�ability.
Given a curve in R2, for example a C1 function γ : I ⊂ R → R2 with I interval, we say
that it is recti�able if this has �nite length. The length is here de�ned as the supremum
of the sum of segments' lengths with endpoints lying on the curve.
We now could try to generalize this concept to a larger family of subsets of Rn. This
is done by saying that a set is recti�able if it can be approximated, in some sense, by
recti�able sets. Let us be more precise: let k be an integer with 0 < k < n, then a set
E ⊂ Rn is called k-recti�able if there are at most countably many C1 submanifolds of
Rn Γi with dimension k such that

Hk
(
E \

(⋃
i

Γi

))
= 0,

where Hk is the k-Hausdor� measure.

Hence a k-recti�able set can be seen, not considering a set of null Hk-measure, as
a union of at most countably many C1 submanifolds with dimension k in Rn. It can
be proved that, instead of taking C1 submanifolds in the de�nition of recti�ability, one
can take images of Lipschitz functions, and the two de�nitions are equivalent. This can
be done because any Lipschitz function can be approximated by C1 functions: given
f : Rk → Rn Lipschitz, we can �nd for all ε > 0 a C1 function g : Rk → Rn such that

Hk({x ∈ Rk | f(x) 6= g(x)}) < ε.

The opposite concept of k-recti�able sets are purely k-unrecti�able sets, which don't
contain k-recti�able sets of positive Hk-measure. It can be proved that any set of �nite
measure can be decomposed in an "unique" way as the union of a recti�able set and
a purely unrecti�able set, see Theorem 4.3. Recti�able sets could be more complicated
than a simple curve of �nite length in R2. For example, let Q2 = {qi}i=1,..., [0, 2π]∩Q =
{θi}i=1,... and let [qi] be the closed segment with midpoint qi, length 2−i and angle θi
with respect to the x-axis; the set E ⊂ R2 de�ned as

E =
⋃
i

[qi]
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is 1-recti�able, and H1(E) < +∞ i.e. it has �nite length. We can note that the set E we
have de�ned does not have a tangent at any point, when instead recti�able curves have
it almost everywhere. Therefore we need to change also the notion of tangent in a point
x of E recti�able. Let

X(x, L, θ) = {y ∈ R2 | |PL⊥(y − x)| < sin θ|y − x|}

which represents a two-sided cone in R2 with vertex x, and direction L. θ is the angle
formed by the boundary of the cone with L. If E had a tangent Lx in the usual sense at
x, one would see that for all θ ∈ (0, π/2), E ∩B(x, r) is entirely contained in X(x, L, θ)
for r > 0 small enough and for all θ. Therefore we may ask that a line L is "tangent" at
x ∈ E if E ∩B(x, r) is mostly contained in X(x, L, θ) for r small, i.e.

lim
r→0

r−1H1(E ∩B(x, r) \X(x, L, θ)) = 0. (1)

With this new notion of "tangent" line, one could verify that for H1-almost all x ∈ E
the equation referred by (1) is veri�ed. The opposite holds for purely 1-unrecti�able sets:
at almost all of their points there is not a "tangent" line. We will give an example of
a set with �nite positive H1-measure that is purely 1-unrecti�able. A �rst example we
can give is the set de�ned as follows: we take at �rst B0 = B(0, 1) and r0 = 1. Then we
de�ne B1 as the union of 4 disjoint balls inside B0 of radius r1 = 1/4r0 and disposed as
in Figure 1. Proceeding in this way for each ball at each iteration, we can de�ne Bi as
union of 4i balls of radius 4−i. Then

A :=
⋂
i

Bi

is purely 1-unrecti�able.

Figure 1: First 4 iterations of A
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In this thesis our main objective is to prove the "Besicovitch-Federer projection theo-
rem", which gives a characterization for k-recti�able sets of Rn in terms of their orthog-
onal projections on k-dimensional subspaces. It is possible to de�ne a measure γn,k on
the grassmanian of k-planes of Rn G(n, k). We shall indicate with PV the orthogonal
projection on V ∈ G(n, k).

Let E ⊂ Rn with Hk(E) < +∞. The Besicovitch-Federer Theorem states that:

1. E is k-recti�able if and only if Hk(PVB) > 0 for each B ⊂ E of positive measure
and for γn,k-almost all V ∈ G(n, k).

2. E is purely k-unrecti�able if and only if Hk(PVE) = 0 for γn,k-almost all V ∈
G(n, k).

The two assertions are equivalent, and we will prove the following:

1. if E is k-recti�able and with positive Hk-measure then Hk(PVE) > 0 for γn,k-
almost all V ∈ G(n, k)

2. if E is purely k-unrecti�able thenHk(PV ⊥E) = 0 for γn,n−k-almost all V ∈ G(n, n−
k).

To prove the �rst assertion we �rst need to show that E is k-recti�able if and only if
it is k-weakly linearly approximable (see de�nition 4.3); from this the �rst assertion will
follow. The di�cult part is to show that, if E is k-weakly linearly approximable, then E
is k-recti�able. We present here below a sketch of the proof:

1. We select a compact subset F ⊂ E such that

0 < crk ≤ Hk(E ∩B(a, r)) ≤ Crk < +∞

for 0 < r < r0 and a ∈ F , and where the conditions of de�nition 4.3 hold uniformly.
Taking a smaller r, we can consider a ball B(a, r) such that r−kHk((E\F )∩B(a, r))
is small and F ∩B(a, r) is close to aW ∈ A(n, k), i.e. an a�ne k-plane with a ∈W .

2. We shall assume, by contradiction, that the projection of E ∩ B(a, r) on some
V ∈ G(n, k) is small.

3. We will �nd many disjoint open cylinders Ci of radii ρi � r and orthogonal to V
such that the same cylinders, but with radii 5ρi, are disjoint, such that F ∩B(a, r)∩
Ci = ∅ and such that B(a, r) ∩ ∂Ci contains a point ei of F .

4. For some large N > 0, E ∩ B(ei, Nρi) are approximated by a k-a�ne plane Wi.
Since in B(a, r) ∩ Ci there is a little of E, Wi must be almost orthogonal to V .
This will give us so many disjoint balls B(xi,j , ρi) ⊂ B(a, r) with xi,j ∈ F that

r−kHk
(
E ∩

⋃
i,j B(xi,j , ρi)

)
will be much greater than C, and this will lead to a

contradiction.

The second statement will be proved in this way:
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1. Let V ∈ G(n, n − k) be �xed; we will de�ne E1,δ(V ), E2,δ(V ), E3,δ(V ) ⊂ E and
show that Hk(PV ⊥(Ei,δ(V ))) = 0 for i = 1, 2, 3 and for all V ∈ G(n, n− k).

2. We shall prove that E = E0 ∪ E1,δ(V ) ∪ E2,δ(V ) ∪ E3,δ(V ) with Hk(E0) = 0 for
γn.n−k-almost all V ∈ G(n, n−k). This will be the most di�cult part of the proof.

3. Taking V ∈ G(n, n − k) such that 2. holds for all δ = 1/i with i = 1, 2, . . . , we
show that Hk(PV ⊥(E)) = 0.

A sort of generalization can be proved for the Besicovitch-Federer Theorem: as is showed
in [H], given E ⊂ Rn purely k-unrecti�able then for all f ∈ Ck(U,Rk) with Jacobian of
constant rank k exists fε ∈ Ck(U,Rk) with Jacobian of constant rank k such that

‖f − fε‖C1 < ε

and
Hk(fε(E)) = 0.

The thesis use [A] as main reference. The basic notions of the Measure Theory are
presented in Chapter 1 . In Chapter 2 we discuss about the di�erentiation of measures,
and we de�ne a measure on G(n, k), the set of all the k-dimensional subspaces of Rn. In
Chapter 3 we de�ne the Hausdor� measures Hs and study some properties for Lipschitz
functions and some density Theorems. In Chapter 4 we will introduce the concept of
Recti�ability and prove some important properties. In Chapter 5 we shall prove the
Besicovitch-Federer Theorem and to conclude we will use it to show some examples of
1-recti�able and purely 1-unrecti�able sets in R2.
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Chapter 1

Basic notions on measure theory

1.1 Measures

In this �rst Chapter we will introduce the basic notions of Measure Theory, and we will
enunciate and prove some covering Theorems of Besicovitch and Vitali.

De�nition 1.1. Let X 6= ∅ be a set. We will call µ : P(X) −→ [0,+∞] a measure on
X if:

1. µ(∅) = 0

2. µ(A) ≤ µ(B) for all A,B ∈ P(X) such that A ⊆ B

3. µ(
⋃
i∈NAi) ≤

∑
i∈N µ(Ai) for all {Ai}i∈N ∈ P(X).

We shall call (X,µ) measure space.

The easiest examples of measures on a space X are

1. µ ≡ 0 i.e. the null measure, which is for istance 0(A) = 0 ∀A ⊆ X.

2. The Dirac measure: let x ∈ X be �xed, then δx : P(X) −→ [0,+∞] is de�ned for
all A ⊆ X as

δx(A) :=

{
1 if x ∈ A
0 if x /∈ A

.

3. The Lebesgue measure Ln in Rn which is one of the most famous measure. It is
de�ned as follows: let R be the family of n-rectangles; a n-rectangle is a set of the
form

∏n
i=1(ai, bi). We de�ne V (A) :=

∏n
i=1 |ai − bi| and then �nally

Ln(A) := inf
{ +∞∑
i=1

V (Ei)
∣∣∣A ⊆ ⋃

i∈N
Ei and {Ei}i∈N are rectangles

}
.

De�nition 1.2. Let A ⊆ P(X). A is a σ-algebra if:

1



1. ∅ ∈ A

2. A ∈ A =⇒ Ac = X \A ∈ A

3. {Ai}i∈N ⊂ A =⇒
⋃
i∈NAi ∈ A

Remark 1. If A is a σ-algebra of X, it can be easily proved that A is closed also under
countably many intersection.

Proposition 1.1. Let B ⊆ P(X) be closed under complement and �nite union; a family

like B is called an algebra. If B is closed also under countably union of pairwise disjoint

sets, then B is a σ-algebra.

Proof. F0 := A0 and Fn := An \ (
⋃
i≤n−1Ai). Then Fi ∈ B for all i ∈ N and they are

pairwise disjoint. So
⋃
i∈NAi =

⋃
i∈N Fi ∈ B

De�nition 1.3. We will say that A ⊆ X is µ-measurable if

µ(E) = µ(E ∩A) + µ(E \A)

for all E ⊆ X.

Remark 2. Of course, E \A = E ∩Ac. If we want to show that a set A is µ-measurable
we just need to show that µ(E) ≥ µ(E ∩A) + µ(E \A) for all E ⊆ X because the other
inequality always holds.

The concept of "µ−measurable" is important: we can see that in the de�nition of measure
we want to have µ(

⋃
i∈NAi) =

∑
i∈N µ(Ai) for all {Ai}i∈N ∈ P(X) such that Ai

⋂
Aj = ∅

for i 6= j. This, with the de�nition of measure we provided, in general is false. But if the
family {Ai}i∈N is composed by µ-measurable disjoint sets, our previous equation holds.
More precisely, the following theorem holds.

Theorem 1.2. Let µ be a measure on X and let M ⊂ P(X) be the set of all the

µ-measurable sets. Then

1. M is a σ-algebra

2. If A ⊂ X and µ(A) = 0 then A ∈M

3. µ(
⋃
i∈NAi) =

∑
i∈N µ(Ai) for all {Ai}i∈N ∈M which are pairwise disjoint

4. If {Ai}i∈N ∈M is such that Ai ⊆ Ai+1 for all i ∈ N then

µ

(⋃
i∈N

Ai

)
= lim

i→∞
µ(Ai)

5. If {Ai}i∈N ∈M is such that Ai ⊇ Ai+1 for all i ∈ N then

µ

(⋂
i∈N

Ai

)
= lim

i→∞
µ(Ai)

provided µ(Aj) < +∞ for some j ∈ N.
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Proof. 1. Let us prove thatM is an algebra, and that it is closed under union of countably
pairwise disjoint sets. Then by proposition 1.1 we conclude. If A ∈M then

µ(E) = µ(E ∩A) + µ(E ∩Ac) = µ(E ∩Ac) + µ(E ∩A)

and so Ac ∈M ((Ac)c = A). Let A,B ∈M, let us see that A ∪B ∈M: we have for all
E ⊆ X,

µ(E) = µ(E ∩A) + µ(E ∩Ac) =

= µ(E ∩A ∩B) + µ(E ∩A ∩Bc) + µ(E ∩Ac ∩B) + µ(E ∩Ac ∩Bc) ≥
≥ µ(E ∩ (A ∪B)) + µ(E ∩ (A ∪B)c)

where the last inequality holds because Ac ∩Bc = (A ∪B)c and by the equality

E ∩ (A ∪B) = (E ∩ (A ∩B)) ∪ (E ∩ (Ac ∩B)) ∪ (E ∩ (A ∩Bc))

we get the last inequality by subadditivity (third property of measure, see de�nition 1.1).
Therefore, by induction, we can say thatM is closed under �nite unions. HenceM is an
algebra. Let now {Ai}i∈N ⊂ M be a family of pairwise disjoint sets and de�ne the set
B =

⋃+∞
i=0 Ai. We have that An ∈M for all n ∈ N as well as Bn =

⋃n
i=0Ai, therefore

µ(E ∩Bn) = µ(E ∩Bn ∩An) + µ(E ∩Bn ∩Acn) =

= µ(E ∩An) + µ(E ∩Bn−1) = µ(E ∩An) + µ(E ∩An−1) + µ(E ∩Bn−2) = · · ·

and by induction we get
n∑
i=0

µ(E ∩Ai) = µ(E ∩Bn).

Moreover, because Bc ⊆ Bc
n, we obtain that

µ(E) = µ(E ∩Bn) + µ(E ∩Bc
n) ≥

n∑
i=0

µ(E ∩Ai) + µ(E ∩Bc)

and taking the limit as n tends to in�nity, we obtain

µ(E) ≥
+∞∑
i=0

µ(E ∩Ai) + µ(E ∩Bc) ≥ µ(E ∩B) + µ(E ∩Bc)

because µ(E∩B) ≤
∑+∞

i=0 µ(E∩Ai). This proves that B ∈M and thatM is a σ-algebra.
2. Let A such that µ(A) = 0 and E ⊆ X; then µ(E ∩A) ≤ µ(A) = 0 and

µ(E) ≤ µ(E ∩A) + µ(E ∩Ac) = µ(E ∩Ac) ≤ µ(E).

3. By 1. , taking E = B =
⋃+∞
i=0 Ai

µ

(
+∞⋃
i=0

Ai

)
=

+∞∑
i=0

µ(B ∩Ai) + µ(B ∩Bc) =
+∞∑
i=0

µ(Ai).
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4. The limit exists because {µ(Ai)}i=0,... is a monotone sequence of real numbers and we
can suppose that µ(Ai) < +∞ (otherwise the conclusion holds trivially). Let E0 = ∅,
Ei := Ai \ Ai−1, then

⋃+∞
i=0 Ei =

⋃+∞
i=0 Ai and

∑n
i=0 µ(Ei) =

∑n
i=1(µ(Ai) − µ(Ai−1)) =

µ(An), and so

µ

(
+∞⋃
i=0

Ai

)
=

+∞∑
i=0

µ(Ei) = lim
n→+∞

n∑
i=0

µ(Ei) = lim
n→+∞

µ(An).

5. We can suppose µ(A0) < +∞. Let Fi = A0 \ Ai for i ∈ N. Then Fi ⊆ Fi+1 for all i;
moreover µ(Fi) = µ(A0)− µ(Ai), therefore

µ

(
+∞⋃
i=0

Fi

)
= lim

n→+∞

n∑
i=0

µ(Fi) = µ(A0)− lim
n→+∞

µ(An)

and µ(
⋃+∞
i=0 Fi) = µ(A0 \

⋂+∞
i=1 Ai) = µ(A0)− µ(

⋂+∞
i=1 Ai); then

µ

(
+∞⋃
i=0

Fi

)
= µ(A0)− µ

(
+∞⋂
i=1

Ai

)
= µ(A0)− lim

n→+∞
µ(An)

and we conclude that

µ

(
+∞⋂
i=1

Ai

)
= lim

n→+∞
µ(An).

Remark 3. If A is a µ-measurable set with µ(A) < +∞ and A ⊂ B, then

µ(B) = µ(B \A) + µ(A)

and since µ(A) < +∞ we get µ(B \A) = µ(B)− µ(A). In 4. and 5. of Theorem 1.2 we
were allowed to use this formula.

Given F ⊆ P(X), one can easily show that exists a σ-algebra that contains F and it
is the smallest σ-algebra containing F . If µ is a measure de�ned on a topological space,
the family of the Borel sets is the smallest σ-algebra that contains the open sets of X, or,
equivalently, the closed sets of X. This family will be indicated by BX , and its elements
will be called Borel sets.

De�nition 1.4. Let µ be a measure on a metric space X. We shall say that µ is

1. locally �nite if ∀x ∈ X, ∃r > 0 such that µ(B(x, r)) < +∞.

2. a Borel measure if every Borel set is µ-measurable.

3. regular if ∀A ∈ P(X) exists B with A ⊆ B µ-measurable such that µ(A) = µ(B).
If B is also a Borel set, then µ is Borel regular.

4



4. a Radon measure if it's a Borel measure and:

(a) µ(K) < +∞ ∀K compact subset of X

(b) µ(U) = sup{µ(K) | K ⊆ Ucompact} for all open subsets U .

(c) µ(A) = inf{µ(V ) | A ⊆ V open} for all A ⊆ X.

The Lebesgue measure Ln is a Radon measure on Rn. In Theorem 1.2 in statements
(4) and (5), {Ai}i∈N do not need to be µ-measurable if µ is regular/Borel regular; let us
brie�y prove this. Given {Ai}i∈N as in (4) of Theorem 1.2 (the sets are increasing) but
not measurable, exists Bi such that µ(Ai) = µ(Bi) for each i. Then we set Ci :=

⋃
k≥iBk;

therefore Ai ⊂ Ci and µ(Ai) = µ(Ci). Using {Ci}i∈N the reader can show the thesis. We
recall that, given A,B ⊂ X metric space with d metric, d(A,B) = inf{d(a, b) | a ∈ Ab ∈
B}.

Theorem 1.3 (Carathéodory criterion). Let µ be a measure on X metric space. Then

µ is a Borel measure if and only if

µ(A ∪B) = µ(A) + µ(B)

for all A,B ⊂ X such that d(A,B) > 0.

Proof. Let µ be a Borel measure. Let A,B ⊂ X with d(A,B) > 0; then there is an open
set U such that A ⊂ U and U ∩B = ∅. Then

µ(A ∪B) = µ(A ∪B \ U) + µ((A ∪B) ∩ U) = µ(A) + µ(B).

Let us show the converse. Let A ⊆ X and U and open set that contains A; de�ne A0 = ∅,
An := A ∩ {x ∈ U |d(x, U c) ≥ 1/n}; note that Ai ⊆ Ai+1 and the union of them gives
A. We �rst show that µ(A) = limn→+∞ µ(An). We de�ne Dn+1 := An+1 \ An so that
d(D2i, D2(i−1)) > 0. Then we have

µ(A2n+1) ≥
n∑
i=0

µ(D2i) µ(A2n) ≥
n∑
i=1

µ(D2i−1);

if one of the series is divergent the desired conclusion is trivial, otherwise we can conclude
by this relation

µ(A) ≤ µ(A2n) +
+∞∑
i=n

µ(D2i) +
+∞∑
i=n+1

µ(D2i−1)

and by the fact that µ(An) ≤ µ(A). So µ(A) = limn→+∞ µ(An). Let us take E ⊆ X,
and U open subset. Let A = E ∩ U , so d(An, E \A) > 0 and we have

µ(E) ≥ µ(An ∪ (E \A) = µ(An) + µ(E \A).

Taking the limit as n tends to in�nity we get the µ-measurability of U open, and µ is a
Borel measure.
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This criterion will be useful to show in particular that Hs, the s-Hausdor� measure
on Rn, is a Borel measure. Given a measure µ on X we can de�ne for any A ⊆ X a new
measure restricting µ to A:

De�nition 1.5. For µ measure on X and A ⊆ X we de�ne a measure µ A by

(µ A)(B) = µ(A ∩B)

for B ⊆ X. µ A is called the restriction of µ to A.

µ and µ A are related as we can imagine, as the next proposition tells us:

Proposition 1.4. Let µ be a measure on X, A ⊂ X. Then:

1. every µ-measurable set is µ A-measurable.

2. if µ is Borel regular and µ(A) < +∞ with A µ-measurable then µ A is Borel

regular.

Proof. The �rst statement is easy to show, and we leave it as an exercise. Let µ Borel
regular, then exist B Borel set such that contains A and µ(A) = µ(B). Let now C ⊂ X
and let D be a Borel set such that µ(B ∩ C) = µ(D) and B ∩ C ⊂ D. Now we set
E = D ∪ (X \B) which contains C. So

(µ A)(E) ≤ µ(B ∩ E) = µ(B ∩D) ≤ µ(D) = µ(B ∩ C) = µ(A ∩ C) = (µ A)(C)

and so (µ A)(C) = (µ A)(E) and µ A is Borel regular.

Let us point out that the measurability of A in the last proof is used in the equation
µ(B ∩ C) = µ(A ∩ C). In fact,

µ(B ∩ C) = µ((B ∩ C) \A) + µ(B ∩ C ∩A) ≤ µ(B \A) + µ(A ∩ C) = µ(A ∩ C).

Next we shall enunciate an approximation theorem which will be useful for us.

Theorem 1.5. Let µ be a Borel regular measure on X, A ⊂ X a µ-measurable set and

ε > 0. Then:

1. If µ(A) < +∞ exists a closed set C ⊂ A with µ(A \ C) < ε.

2. If exist {Ui}i∈N open sets such that A ⊆
⋃
i∈N Ui and µ(Ui) < +∞ for all i ∈ N,

then exists U open such that A ⊂ U and µ(U \A) < ε.

Remark 4. When X = Rn and µ = Ln, in the �rst statement C can be taken compact,
because every closed subset of Rn can be written as countable union of compact sets. In
2. if X is a separable metric space and µ is locally �nite, every subset can be covered by
countably many open balls of �nite measure, therefore the hypotheses are veri�ed.

The proof of the following corollary follows from Theorem 1.5 and by the last remark
and is left as exercise.

Corollary 1.6. A measure on Rn is a Radon measure if and only if it is locally �nite

and Borel regular.
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1.2 Integrals

In this section we shall give the basic notions of integral on a set X with a measure µ;
the details are explained in many text books. Given a measure µ on X and a suitable
f : X −→ R we can de�ne the integral of f on X with respect to µ whose notation is∫

X
f(x) dµ(x) =

∫
f(x) dµ(x).

In order to de�ne it however, we need to introduce some further notions.

De�nition 1.6. Let (X,µ) be measure space. We'll say that f : X −→ R is a measurable

function if
←−
f (B) is µ-measurable for all B ∈ BX .

In the de�nition of measurable function, B can be replaced by (−∞, a), (a,+∞), (a, b)
and their closure; this is true because BR is generated by those sets. So for example, f

is measurable if and only if
←−
f ((−∞, a)) for all a ∈ R. If

←−
f ((−∞, a)) is a Borel set for

all a ∈ R we will say that f is a Borel function.

Proposition 1.7. If f : X −→ R is upper semicontinuous, which means

lim sup
y→x

f(y) ≤ f(x),

then f is a Borel function. The same holds for lower semicontinuous functions: lim infy→x f(y) ≥
f(x).

Proof. We show that A = {x ∈ X|f(x) < t} is open. By hypothesis, ∀ε > 0 exists δ such
that if |x−y| < δ =⇒ f(y) ≤ lim supy→x f(y)+ε ≤ f(x)+ε. Then choosing ε = t−f(x)
for x ∈ A we �nd δ such that |x− y| < δ =⇒ f(y) ≤ f(x) + ε = t ⇐⇒ B(x, δ) ⊂ A.

Corollary 1.8. If f : X −→ R is a continuous functions then it is a Borel function.

Proposition 1.9. Let f, g : X −→ R be measurable functions. Then f +g is measurable

and, provided that g(x) 6= 0∀x ∈ X, f/g is measurable.

Proposition 1.10. Let {fj}j∈N be a sequence of measurable functions fj : X −→ R.

Then

F1(x) = sup
j∈N

fj(x) F3(x) = lim sup
j→+∞

fj(x)

F2(x) = inf
j∈N

fj(x) F4(x) = lim inf
j→+∞

fj(x)

are measurable functions.

Proposition 1.11. Let f : X −→ R be a measurable function. Then f+ and f− are

measurable. It follows that |f | is measurable.
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One of the simplest example of function we can give is the characteristic function of
a subset A of X, de�ned as

χA(x) :=

{
1 if x ∈ A
0 if x /∈ A

.

Functions like this are measurable if and only if A is measurable. Then a simple function
is a �nite sum of characteristic functions of disjoint measurable sets, for instance

ϕ =
n∑
i=1

ciχEi

where {Ei}i∈N are pairwise disjoint measurable sets and ci ≥ 0. We can de�ne for
positive simple functions∫

X
ϕ(x) dµ(x) :=

∫
X

n∑
i=1

ciχEi(x) dµ(x) =
n∑
i=1

ciµ(Ei).

For a general simple function g : X −→ R we say that is "integrable" if either
∫
X g

+ dµ <
+∞ or

∫
X g
− dµ < +∞ and∫

X
g dµ(x) :=

∫
X
g+ dµ−

∫
X
g− dµ.

De�nition 1.7. Let f : X −→ R. The upper integral of f is∫ ∗
f(x) dµ(x) := inf

{∫
X
g dµ(x) | g ≥ f with g simple and integrable

}
.

The lower integral :∫
∗
f(x) dµ(x) := sup

{∫
X
g dµ(x) | g ≤ f with g simple and integrable

}
.

If upper and lower integral coincide we say that f is integrable and∫
X
f(x) dµ(x) =

∫ ∗
f(x) dµ(x) =

∫
∗
f(x) dµ(x).

If f is a positive measurable function then it is integrable. For more properties and
details on the argument the reader is referred to [C], or [B]. We shall make vast use of
the following results.

Theorem 1.12 (Fubini). Let X,Y be separable metric spaces and µ, ν locally �nite Borel

measures on X,Y respectively. Let f : X × Y −→ R≥0 be a Borel function. Then∫ ∫
f(x, y) dµ(x) dν(y) =

∫ ∫
f(x, y) dν(y) dµ(x).
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Given A a Borel set of X × Y , Ay := {x ∈ X | (x, y) ∈ A} is µ-measurable, so χAy is
a measurable function on X. The same holds for Ax := {y ∈ Y | (x, y) ∈ A}. Then by
Fubini theorem we get∫

Y

∫
X
χAy(x) dµ(x) dν(y) =

∫
X

∫
Y
χAy(x) dν(y) dµ(x) =

=

∫
X

∫
Y
χAx(y) dν(y) dµ(x) =

∫
X

∫
Y
χAx(y) dν(y) dµ(x)

which means that∫
Y
µ({x ∈ X | (x, y) ∈ A}) dν(y) =

∫
X
ν({y ∈ Y | (x, y) ∈ A}) dµ(y).

We are now ready to prove a useful formula:

Proposition 1.13. Let µ be a Borel measure on X separable metric space and f : X −→
R≥0 a Borel function. Then∫

X
f(x) dµ(x) =

∫ +∞

0
µ({x ∈ X | f(x) ≥ t}) dt.

Proof. The proof is quite simple: let At := {(x, t) | f(x) ≥ t}, then∫ +∞

0
µ({x ∈ X | f(x) ≥ t}) dt =

∫ +∞

0
µ({x ∈ X | (x, t) ∈ A}) dt =

=

∫
X
L1({t ∈ [0,+∞) | (x, t) ∈ A}) dt =

∫
X
L1([0, f(x)]) dµ(x) =

=

∫
X
f(x) dµ(x)

We shall now introduce the notion of image measures:

De�nition 1.8. Let µ be a measure on X and f : X −→ Y a map. Then the image of
µ under f , f]µ, is the measure on Y de�ned by

f]µ(A) := µ(
←−
f (A))

for all A ⊆ Y .

A set A ⊆ Y is f]µ-measurable if
←−
f (A) is µ-measurable: let F ⊆ Y , then we get

f]µ(F ) = µ(
←−
f (A ∩ F )) + µ(

←−
f (F \A)) = f]µ(A ∩ F ) + f]µ(F \A).

Then if f is a Borel function and µ a Borel measure, them f]µ is a Borel measure on Y .
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De�nition 1.9. Let µ be a Borel measure on X metric space. We call the support of
µ the smallest closed set S such that µ(X \ S) = 0 and we indicate it with sptµ. For
instance

sptµ = X \ {x ∈ X | ∃r > 0 s.t µ(B(x, r)) = 0}

A measure could have the whole space as support as is the case of the Lebesgue
measure in Rn; let's give another example: let X be a separable metric space and F ⊂ X
a countable set such that F = X. Let's say F = {fi}i≥1. Then

µ := 6/π2
+∞∑
i=1

1/i2δfi

is a measure on X (easy exercise) whose support is X. If sptµ is compact then we'll say
that µ has compact support.

Theorem 1.14. Let X,Y be separable metric spaces, f : X −→ Y be a continuous map,

and µ be a Radon measure on X with compact support. Then f]µ is a Radon measure

on Y with compact support and spt(f]µ) = f(sptµ).

Proposition 1.15. Suppose f : X 7→ Y is a Borel function, µ a Borel measure and g a

non negative Borel function. Then∫
Y
g df]µ =

∫
X
g ◦ f dµ.

1.3 Covering Theorems

In this section we will prove two fundamental covering theorems by Vitali and Besicovitch.
Let X be a metric space; we shall denote with B(x, r) the closed ball of centre x and
radius r, with U(x, r) the open one.

Recall that d(B) denotes the diameter ofB ball, for instance, d(B) := supx,y∈B x6=y d(x, y).
Let us also notice that, in a generic metric spaceX, it is not always true that d(B(x, r)) =
2r. If B := B(x, r) then 5B := B(x, 5r). In general we can set

5B :=
⋃
{C | C is a closed ball with C ∩B 6= ∅ and d(C) ≤ 2d(B)}.

Theorem 1.16. Let X be a boundedly compact metric space and B a family of closed

balls in X such that

sup{d(B) | B ∈ B} < +∞.

Then there is a countable (or �nite) sequence {Bi}i∈N ⊂ B of disjoint balls such that⋃
B∈B

B ⊂
⋃
i∈N

5Bi.
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Proof. Let C := {x ∈ X | B (x, r) ∈ B ∃r} the set of centres. Then, for each x ∈ C we
take r(x) such that

r(x) >
14

15
sup{r | B (x, r) ∈ B}.

Then, from now on, we will work on balls of B of the form B(x, r(x)) for x ∈ C. Let
c ∈ C be �xed and let

M = sup{r(x) | x ∈ C}

and

C1 :=

{
x ∈ C | 3

4
M < r(x) ≤M

}
.

M is �nite because r(x) ≤ d(B(x, r(x))) and M ≤ sup{d(B) | B ∈ B} < +∞. Now
choose x1 ∈ C1 arbitrarily and set l(x1) := 2d(x1, c). Choose x2 ∈ C1 ∩ B(c, l(x1)) \
B(x1,

8
3r(x1)), and then by induction

xk ∈ C1 ∩B(c, l(x1)) \
k−1⋃
i=1

B

(
xi,

8

3
r(xi)

)
.

The balls B(xi, r(xi)) are disjoint: let x ∈ B(xi, r(xi)) ∩ B(xj , r(xj)) with j > i; then
d(xj , x) ≤ r(xj) and d(xi, x) ≤ r(xi) but d(xj , xi) >

8
3r(xi). It follows that

8

3
r(xi) < d(xj , xi) ≤ r(xj) + r(xi)

which implies 5
3r(xi) < r(xj) =⇒ 5

3M < r(xj) contradiction. The centres of these balls
are in B (c, l(x1)) which is compact, then the process must stop for a certain index k1

because a compact set cannot be �lled with in�nitely many disjoint balls of radius greater
than 3

4M . So we get

C1 ∩B (c, l(x1)) ⊂
k1⋃
i=1

B

(
xi,

8

3
r(xi)

)
.

Now, let C1,1 := {x ∈ C1 | B (x, r(x)) ∩ B (xi, r(xi)) = ∅ ∀i = 1, · · · , k1} and take
xk1+1 ∈ C1,1 \ B (c, l(x1)); if such xk1+1 does not exist then ∀x ∈ C1 \ B (c, l(x1)) exists
i such that B (x, r(x)) ∩B (xi, r(xi)) 6= ∅, then, since r(x) < 5/4M < 5/3r(xi),

d(x, xi) ≤ r(x) + r(xi) <
8

3
r(xi)

and x ∈
⋃k1
i=1B

(
xi,

8
3r(xi)

)
and we can cover C1 with the disjoint balls we found (note

that r(x) ≤ 5/4M = (5/3)(3/4)M < 5/3r(xi)). So, as we did, we found k2 − k1 balls
such that

C1,1 ∩ (B (c, l(xk1+1)) \B (c, l(x1))) ⊆
k2⋃

j=k1+1

B

(
xj ,

8

3
r(xj)

)
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and so

C1 ∩B (c, l(xk1+1)) ⊂
k2⋃
i=1

B

(
xi,

8

3
r(xi)

)
.

Proceeding in this way we �nd a countable, or �nite, collection of disjoint balls {B (xi, r(xi))}i∈I1
such that

C1 ⊂
⋃
i∈I1

B

(
xi,

8

3
r(xi)

)
.

Because r(x) < 3
2M < 2r(xi) for all x ∈ C1 we get

⋃
x∈C1

B (x, r(x)) ⊂
⋃
i∈I1

B

(
xi,

14

3
r(xi)

)
.

Now let

C2 =

{
x ∈ C |

(
3

4

)2

M < r(x) ≤ 3

4
M

}
and

C
′
2 := {x ∈ C2 | B (x, r(x)) ∩B (xi, r(xi)) = ∅ ∀i ∈ I1}.

If x ∈ C2 \ C
′
2 then for some i ∈ I1 B (x, r(x)) ∩B (xi, r(xi)) 6= ∅ and so

d(x, xi) ≤ r(x) + r(xi) <
8

3
r(xi)

because r(x) < (5/4)M < (5/3)r(xi); then

C2 \ C
′
2 ⊂

⋃
i∈I1

B

(
xi,

8

3
r(xi)

)
. (1.1)

Then we can work on C
′
2 as we did on C1 and �nd a countable, or �nite, family of disjoint

balls such that

C
′
2 ⊂

⋃
i∈I2

B

(
xi,

8

3
r(xi)

)
(1.2)

and so, combining 1.1 and 1.2 we �nd that

C2 ⊂
⋃

i∈I1∪I2

B

(
xi,

8

3
r(xi)

)
.

Let be I :=
⋃+∞
h=1 Ih, then⋃

x∈C
B (x, r(x)) ⊂

⋃
i∈I

B

(
xi,

14

3
r(xi)

)
. (1.3)
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Let us call S(x) := sup{r | B (x, r) ∈ B}; then we have that⋃
B∈B

B ⊂
⋃
x∈C

B (x, S(x))

and by the inclusion 1.3 we get⋃
x∈C

B

(
x,

14

15
S(x)

)
⊂
⋃
x∈C

B (x, r(x)) ⊂
⋃
i∈I

B

(
xi,

14

3
r(xi)

)
and scaling by a factor of 15

14 we get exactly the thesis⋃
B∈B

B ⊂
⋃
x∈C

B (x, S(x)) ⊂
⋃
i∈I

B (xi, 5r(xi))

and the proof is complete.

At this point we can prove Vitali's covering theorem for the Lebesgue measure Ln on
Rn.

De�nition 1.10. Let B be a family of closed balls in Rn. B is a �ne cover of a set
A ⊂ Rn if

A ⊆
⋃
B∈B

B

and ∀x which is a centre of some B ∈ B

inf{d(B) | x ∈ B and B ∈ B} = 0.

Theorem 1.17. Let A ⊂ Rn and let B be a �ne cover of A. Then there are disjoint balls

Bi ∈ B such that

Ln
(
A \

⋃
i

Bi

)
= 0.

Moreover, given ε > 0 the balls can be chosen such that
∑+∞

i=1 Ln(Bi) ≤ Ln(A) + ε.

Proof. We can assume A to be bounded. In fact, if we prove the theorem in this case, then
noting that Rn =

⋃
iQi where {Qi}i are disjoint open cubes and that Ln(A\

⋃
iQi) = 0,

we can apply the theorem on A ∩ Qi which is bounded and conclude. A is bounded,
so Ln(A) < +∞ and we can choose an open set such that Ln(U) ≤ (1 + 7−n)Ln(A).
Now, considering the subfamily of closed balls of B which are contained in U , we can
apply Theorem 1.16 and �nd countably many disjoint balls Bi = B (xi, ri) ∈ B such that
Bi ⊂ U and

A ⊂
⋃
i

B (xi, 5ri) .

Then 5−nLn(A) ≤ 5−n
∑

i Ln(B (xi, 5ri)) =
∑

i Ln(B (xi, ri)), and we can take k1 such
that

6−nLn(A) ≤
k1∑
i=1

Ln(Bi).
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Let A1 := A \
⋃k1
i=1Bi; we have that

Ln(A1) ≤ Ln
(
U \

k1⋃
i=1

Bi

)
= Ln(U)−

k1∑
i=1

Ln(Bi) ≤ (1 + 7−n − 6−n)Ln(A) = εLn(A)

where we have set ε = 1 + 7−n − 6−n < 1. Now we work on A1 which is contained in
the open set Rn \

⋃k1
i=1Bi. We can �nd an open set U1 ⊂ Rn \

⋃k1
i=1Bi such that, like

before, Ln(U1) ≤ (1 + 7−n)Ln(A1) and again applying theorem 1.16 we get

Ln(A2) ≤ εLn(A1) ≤ ε2Ln(A)

where A2 = A1 \
⋃k2
i=k1+1Bi = A \

⋃k2
i=1Bi and all the balls are disjoint. Now after q

steps we get

Ln
A \ kq⋃

i=1

Bi

 ≤ εqLn(A)

and since ε < 1 we can �nd the required disjoint balls {Bi}i∈N such that

Ln
(
A \

⋃
i

Bi

)
= 0.

The last assertion follows from the proof we presented.

If instead of Ln we had a general Radon measure on Rn, the theorem we proved could
not be valid anymore. Take for example µ a Radon measure on Rn de�ned as follow:

µ(A) = L1({x ∈ R | (x, 0) ∈ A})

then the family B{B((x, y), y) | x ∈ R and 0 < y < +∞} covers A = {(x, 0) | x ∈ R}
but

µ

(
A ∩

+∞⋃
i=1

Bi

)
= 0

for any countable subcollection of B. But if we assume that each point of A is the centre
for a certain closed ball of B �ne cover of A, then the result holds. To prove this we need
another covering theorem.

Theorem 1.18 (Besicovitch covering Theorem). Let A ⊂ Rn be bounded, and B a family

of closed balls such that each point of A is the centre of some ball in B. Then exist P (n)
and Q(n) constants depending only on n such that:

1. there is a countable, or �nite, collection of balls Bi ∈ B such that they cover A and

each x ∈ Rn belongs to at most P (n) balls Bi; more precisely,

χA ≤
∑
i

χBi ≤ P (n)
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2. there exist B1, · · · ,BQ(n) subfamilies of B such that Bi is formed by disjoint balls

and

A ⊂
Q(n)⋃
i=1

⋃
B∈Bi

B.

In order to prove this we need the following two lemmas.

Lemma 1.19. Let a, b ∈ R2, 0 < |a| < |a− b| and 0 < |b| < |a− b|. Then∣∣∣∣ a|a| − b

|b|

∣∣∣∣ > 1

Proof. We can see that a /∈ B(b, |b|) and b /∈ B(a, |a|). Then one can see that the angle

α is grater than π/3 (see �gure 1.1). Then calling c′ =
∣∣∣ a|a| − b

|b|

∣∣∣, a′ = a
|a| and b

′ = b
|b| we

get

(c′)2 = 2− 2 cos(α) > 1.

If the reader is not happy with this proof, there's another way to prove it; we will now
indicate the length of the vectors a, b, a − b with a, b, c respectively; let α be the angle
between a, b and let us suppose that cosα ≥ 1/2. Then c2 = a2 + b2 − 2ab cosα ≤
a2 + b2 − ab and since a2 < c2 and b2 < c2 we get that a(a− b) > 0 and b(b− a) > 0, a
contradiction. Therefore cosα < 1/2 and α > π/3.

Figure 1.1: Geometric proof of lemma 1.19
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Lemma 1.20. There exist a positive integer N(n) depending only on n with this property:

let {ai}i=1,··· ,k ⊂ Rn and {ri}i=1,··· ,k such that

ai /∈ B(aj , rj) for j 6= i and

k⋂
i=1

B(ai, ri) 6= ∅,

then k ≤ N(n).

Proof. We can assume that

0 ∈
k⋂
i=1

B(ai, ri)

and so ai 6= 0 for all i. Then

|ai| ≤ ri < |ai − aj | for i 6= j.

Working in the 2-dimensional plane containing 0, ai, aj we have by Lemma 1.19 that∣∣∣∣ ai|ai| − aj
|aj |

∣∣∣∣ > 1 fori 6= j.

Since Sn−1 is compact there is a number N(n) such that if x1, · · · , xk ∈ Sn−1 and
|xi−xj | > 1 for i 6= j, then k ≤ N(n). That N(n) is the integer we were looking for.

Proof. (of Theorem 1.18) By hypothesis, for each x ∈ A we pick a ball B (x, r(x)] ∈ B.
Then, since A is bounded, we can suppose that

M1 = sup
x∈A

r(x) < +∞

otherwise we conclude taking P (n) = Q(n) = 1. We can then choose x1 ∈ A such that
r(x1) ≥M1/2 and inductively

xk ∈ A \
k−1⋃
i=1

B (xi, r(xi)] with r(xk) ≥M1/2.

Since A is bounded, the process terminates after k1 iterations. Let now

M2 = sup

{
r(x) | x ∈ A \

k1⋃
i=1

B (xi, r(xi))

}

and choose

xk1+1 ∈ A \
k1⋃
i=1

B (xi, r(xi)) with r(xk1+1) ≥M2/2.
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Again, inductively

xk1+l ∈ A \
k1+l−1⋃
i=1

B (xi, r(xi)) with r(xk1+l) ≥M2/2.

Following this process, we obtain a sequence of numbers k1 < k2 < · · · and a decreasing
sequence of numbers 2Mi+1 ≤ Mi. In fact, each point taken in A \

⋃k1
i=1B (xi, r(xi))

has radius less than Mi/2. Therefore taking the supremum for all the centres in A \⋃ki
i=1B (xi, r(xi)) we get Mi+1 ≤ Mi/2. Moreover, we get a sequence of balls Bi =

B (xi, r(xi)) ∈ B such that the following properties hold:
let Ij = {kj−1 + 1, · · · , kj} with j ≥ 1 (and k0 = 0) then

Mj/2 ≤ r(xj) ≤Mj for i ∈ Ij

xj+1 ∈ A \
j⋃
i=1

Bi for j ≥ 1

xi ∈ A \
⋃
m 6=k

⋃
j∈Im

Bj for i ∈ Ik.

The �rst two are trivial by construction. For the third: let k be �xed , m 6= k, j ∈ Im
and i ∈ Ik. Then, either m < k, or m > k. In the �rst case we have xi /∈ Bj by
construction (or by 2.), in the second case we have r(xj) ≤ r(xi), xj /∈ Bi and so xi /∈ Bj
(d(xi, xj) > r(xi) ≥ r(xj)). Since limi→+∞Mi = 0, it follows that

A ⊂
+∞⋃
i=1

Bi.

Suppose that

x ∈
p⋂
i=1

Bmi

then we will show that p ≤ 10nN(n) =: P (n), where N(n) is the number in lemma 1.20.
Let us consider {j ≥ 1 | Ij ∩ {m1, · · · ,mp} 6= ∅} then, for each block we can select one
index mnj ∈ Ij . By the third property, we can apply lemma 1.20 and �nd out that

|{j ≥ 1 | Ij ∩ {m1, · · · ,mp} 6= ∅}| ≤ N(n). (1.4)

Now �x j and Ij ∩ {m1, · · · ,mp} = {p1, ·, pq}, then the balls B
(
xpi ,

1
4r(xpi)

)
for i =

1, · · · , q are disjoint. In fact if this does not hold for some indices i < j we get

Mj/2 ≤ r(xpi) < d(xpi , xpj ) ≤ 1/4(r(xpi) + r(xpj )) ≤Mj/2

a contradiction. Moreover for each index we have B (xpi , 1/4r(xpi)) ⊂ B (x, 5/4Mj): let
y ∈ B (xpi , 1/4r(xpi)), then

d(x, y) ≤ 5/4r(xpi) ≤ 5/4Mj .
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Hence,

qα(n)(Mj/8)n ≤
q∑
i=1

Ln(B (xpi , 1/4r(xpi))) ≤ Ln(B (x, 5/4Mj)) = α(n)(5/4Mj)
n

where α(n) := Ln(B (0, 1)). This implies q ≤ 10n which means

|Ij ∩ {m1, · · · ,mp}| ≤ 10n. (1.5)

Now let N the set of indices j such that Ij ∩ {m1, · · · ,mp} 6= ∅. Because we have

p =
∑
j∈N
|{Ij ∩ {m1, · · · ,mp}}|

we get by 1.4 and 1.5 that p ≤ 10nN(n) and the �rst part of the proof is concluded.
By construction of the balls Bi = B (xi, ri) from the �rst part, we can assume that
the sequence {ri}i=1··· is decreasing (ri = r(xi)). Let B1,1 = B1; if we have chosen
B1,1, · · · , B1,m, then B1,m+1 = Bk, where k is the smallest integer with

Bk ∩
j⋃
i=1

B1,j = ∅.

We continue this process as long as possible, until we get a countable, or �nite, disjoint
subfamily B1 := {B1,1, B1,2, . . . } of {B1, . . . }. If A is not covered by

⋃
B∈B1 B we de�ne

B2,1 = Bh where h is the smallest index with Bh /∈ B1 and again we repeat the process
as we did for B1 now �nding B2. We claim that

A ⊂
m⋃
k=1

⋃
B∈Bk

B for some m ≤ 4nP (n) + 1.

Suppose m such that ∃x ∈ A \
⋃m
k=1

⋃
B∈Bk B, then m ≤ 4nP (n). The balls Bi cover A,

so x ∈ Bi for some i. Therefore Bi /∈ Bk for all 1 ≤ k ≤ m which means by construction
that Bi ∩ Bk,ik 6= ∅ and ri ≤ rk,ik (the radii of Bi and Bk,ik respectively). Hence there

are B̃k balls of radius ri/2 contained in (2Bi) ∩Bk,ik (see �gure 1.2. The details are left
to the reader).
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Figure 1.2: A ball of radius ri/2 is contained in (2Bi) ∩Bk,ik

Since every point of Rn is contained in at most P (n) balls Bk,ik this is also true for

B̃k. Therefore
m∑
k=1

χ
B̃k
≤ P (n)χ⋃m

k=1 B̃k

and we get

2nα(n)rni = Ln(2Bi) ≥ Ln
(

m⋃
k=1

B̃k

)
=

=

∫
χ⋃m

k=1 B̃k
dLn ≥ P (n)−1

∫ m∑
k=1

χ
B̃k
dLn = P (n)−1

m∑
k=1

Ln(B̃k) =

= mP (n)−12−nα(n)rni .

This leads to m ≤ 4nP (n) and thus the proof is complete.

Before stating Vitali's covering theorem for Radon measures on Rn let us �rst state
another lemma:

Lemma 1.21. Let µ be a Radon measure on Rn and let {Hλ}λ∈Λ a family of disjoint

Borel sets such that Λ is an uncountable set. Then |{λ ∈ Λ | µ(Hλ) > 0}| is at most

countable.
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Proof. Write Rn =
⋃+∞
i=1 Ki where {Ki}i≥1 is an increasing sequence of compact sets.

Let Λi := {λ | µ(Ki ∩Hλ) > 1/i}, then

{λ ∈ Λ | µ(Hλ) > 0} =
+∞⋃
i=1

Λi. (1.6)

One inclusion is trivial. Let us show that {λ ∈ Λ | µ(Hλ) > 0} ⊆
⋃+∞
i=1 Λi. Then

µ(Hλ) > 1/i0 for some i0, but since limi→+∞ µ(Hλ ∩Ki) = µ(Hλ) we have

1/i < 1/i0 − ε < µ(Hλ)− ε < µ(Hλ ∩Ki)

for ε small and i big enough, and we conclude. By 1.6 we just need to show that |Λi| is
�nite for all i. Let J ⊂ Λi be �nite, this implies that

µ(Ki) ≥ µ

Ki ∩
( ⋃
λ∈Λi

Hλ

) ≥ µ(Ki ∩
( ⋃
λ∈J

Hλ

))
=
∑
λ∈J

µ(Ki ∩Hλ) > |J |/i

and then |J | < µ(Ki)i < +∞ which means that |Λi| < µ(Ki)i < +∞. We conclude that
only at most countably many Hλ have positive measure.

Theorem 1.22. Let µ be a Radon measure on Rn, A ⊂ Rn and B a �ne cover of A, such
that each point of A is the centre of some ball of B. Then exist {Bi}i∈N ⊂ B pairwise

disjoint such that

µ

(
A \

+∞⋃
i=1

Bi

)
= 0.

Proof. We may assume µ(A) > 0 (otherwise the theorem is trivially true); we can also
suppose that A is bounded, otherwise one can proceed as in theorem 1.17 noting that we
can take n-rectangles with the union of the boundaries of measure zero by Lemma 1.21.
Since µ is a Radon measure we can �nd U open such that A ⊂ U and

µ(U) ≤ (1 + (4Q(n))−1)µ(A)

where Q(n) is the number as in Besicovitch's Covering Theorem 1.18. Therefore we have
that

A ⊂
Q(n)⋃
i=1

⋃
B∈Bi

B ⊂ U

leading to

µ(A) ≤ Q(n)
∑
B∈Bi

µ(B) for some i ∈ {1, · · · , Q(n)}.

Therefore exists a subfamily B̃i of Bi such that µ(A) ≤ 2Q(n)
∑

B∈B̃i
µ(B). We get then

µ
(
A \

⋃
B∈B̃i

B
)
≤ µ

(
U \

⋃
B∈B̃i

B
)
≤ µ(U)−

∑
B∈B̃i

µ(B) ≤

≤ (1 + 1/4Q(n)−1 − 1/2Q(n)−1)µ(A) = (1− 1/4Q(n)−1)µ(A).

Setting ε = 1− 1/4Q(n)−1 < 1 we conclude as did for Theorem 1.17.
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Chapter 2

Di�erentiation of measures and the

Grassmannian of m-planes

In this chapter we will use covering theorems proved in the last chapter to discuss the
di�erentiation of measures on Rn. Later we will see some properties of G(n,m) the set
of all them-dimensional vectorial subspace of Rn and we will de�ne a measure on this set.

In general we will say that a property P holds for µ-almost all x ∈ X if there exists
a set N ⊂ X with µ(N) = 0 such that P holds ∀x ∈ X \N .

2.1 Di�erentiation of measures

De�nition 2.1. Let µ an ν be locally �nite Borel measures on Rn. The upper derivative
of µ with respect to ν at x ∈ Rn is de�ned as

D(µ, ν, x) :=

lim sup
r→0

µ(B(x,r))
ν(B(x,r)) if ν(B(x, r) > 0 for all r small enough

+∞ if ν(B(x, r) = 0 for some r > 0
.

The lower derivative of µ with respect to ν at x ∈ Rn is

D(µ, ν, x) :=

{
lim inf
r→0

µ(B(x,r))
ν(B(x,r)) if ν(B(x, r) > 0 for all r small enough

+∞ if ν(B(x, r) = 0 for some r > 0
.

If for some x ∈ Rn we have that D(µ, ν, x) = D(µ, ν, x), we de�ne the derivative of µ
with respect to ν at x as

D(µ, ν, x) := D(µ, ν, x) = D(µ, ν, x).

Lemma 2.1. Let µ and ν be Radon measures on Rn, 0 < α < +∞ and A ⊂ Rn.

1. If D(µ, ν, x) ≤ α for all x ∈ A, then µ(A) ≤ αν(A).
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2. If D(µ, ν, x) ≥ α for all x ∈ A, then µ(A) ≥ αν(A).

Proof. 1. Let ε > 0 ; because ν is a Radon measure, we �nd U open with A ⊆ U such
that ν(U) ≤ ν(A) + ε. Then, by Vitali's covering theorem, and using the de�nition of
lim inf, we �nd Bi disjoint balls contained in U such that

µ(Bi) ≤ (α+ ε)ν(Bi) and µ
(
A \

⋃
i∈N

Bi

)
= 0.

So we get

µ(A) ≤
∑
i∈N

µ(Bi) ≤ (α+ ε)
∑
i∈N

ν(Bi) ≤ (α+ ε)ν(U) ≤ (α+ ε)(ν(A) + ε)

and letting ε→ 0 we get µ(A) ≤ αν(A).

2. lim supr→0
µ(B(x,r))
ν(B(x,r)) ≥ α implies lim infr→0

ν(B(x,r))
µ(B(x,r)) ≤ 1/α.

De�nition 2.2. Let µ and ν be measures on Rn. We say that µ is absolutely continuous
with respect to ν if ∀A ⊂ X

ν(A) = 0 =⇒ µ(A) = 0,

and we will write µ� ν.

Theorem 2.2. Let µ and ν be Radon measures on Rn. Then:

1. The derivative D(µ, ν, x) exists and is �nite for ν-almost all x ∈ Rn.

2. x 7→ D(µ, ν, x) is a Borel function.

3. For all Borel sets B ⊂ Rn, ∫
B
D(µ, ν, x)dν(x) ≤ µ(B)

and the equality holds if µ� ν.

4. µ� ν if and only if D(µ, ν, x) < +∞ for µ-almost all x ∈ Rn.
Proof.

1. Let us consider for 0 < α < β < +∞ the sets

I = {x ∈ Rn | D(µ, ν, x) = +∞} Eα,β = {x ∈ Rn | D(µ, ν, x) ≤ α < β ≤ D(µ, ν, x)}.

We have that I ⊂ {x ∈ Rn | D(µ, ν, x) > k} = Ik for all k ∈ N; then by lemma 2.1

µ(I) ≥ kν(I)

which means ν(I) ≤ 1/kµ(I) and letting k → +∞ we get ν(I) = 0. Again, by lemma
2.1 we have

µ(Eα,β) ≤ αν(Eα,β) µ(Eα,β) ≥ βν(Eα,β)

which implies that ν(Eα,β) = 0 for all 0 < α < β < +∞. Now take α, β as before, but

rational. Then {x ∈ Rn | D(µ, ν, x) does not exist } = I ∪
(⋃

0<α<β<+∞Eα,β

)
which as

ν measure null.
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2. For a �xed r > 0, x 7→ µ(B(x, r)) is upper semicontinuous, and so is x 7→ ν(B(x, r)).
Let xk → x, fk := χB(xk,r) and f = χB(x,r). Then lim supk→+∞ fk ≤ f , implying

lim inf
k→+∞

(1− fk) ≥ 1− f.

Since (1 − fk) are positive measurable functions we can apply Fatou's Lemma (see [C]
2.18) and we obtain∫

B(x,2r)
(1− f) dµ ≤

∫
B(x,2r)

lim inf
k→+∞

(1− fk) dµ ≤ lim inf
k→+∞

∫
B(x,2r)

(1− fk) dµ

which means µ(B(x, 2r)) − µ(B(x, r)) ≤ µ(B(x, 2r)) − lim supk→+∞ µ(B(xk, r)) ⇐⇒
lim supk→+∞ µ(B(xk, r)) ≤ µ(B(x, r)). Then x 7→ µ(B(x, r)) is Borel regular, as x 7→
ν(B(x, r)); therefore for all r > 0

dr(x) :=

{
µ(B(x, r))/ν(B(x, r)) if ν(B(x, r)) > 0

+∞ if ν(B(x, r)) = 0

are Borel functions, but since

D(µ, ν, x) = lim
r→0

dr(x) = lim inf
k→+∞

d1/k(x)

we conclude that D(µ, ν, x) is a Borel function.

3. Let 1 < a < +∞ and Bp := {x ∈ B|ap ≤ D(µ, ν, x) < ap+1} for p ∈ Z. Then, except
for a set of ν-measure zero, B =

⋃
p∈ZBp and we get by lemma 2.1

∫
B
D(µ, ν, x) dν(x) =

+∞∑
p=−∞

∫
Bp

D(µ, ν, x) dν(x) ≤
+∞∑
p=−∞

ap+1ν(Bp) ≤ a
+∞∑
p=−∞

µ(Bp) ≤ aµ(B).

Letting a→ 1 we obtain
∫
B D(µ, ν, x) dν(x) ≤ µ(B). If µ� ν then D(µ, ν, x) exists for

µ-almost x ∈ Rn and then
∑+∞

p=−∞ µ(Bp) = µ(B). Therefore,

∫
B
D(µ, ν, x) dν(x) =

+∞∑
p=−∞

∫
Bp

D(µ, ν, x) dν(x) ≥
+∞∑
p=−∞

apν(Bp) ≥
1

a

+∞∑
p=−∞

µ(Bp) =
1

a
µ(B)

and letting a→ 1 we obtain the other inequality.

4. Let µ� ν then D(µ, ν, x) < +∞ ν-almost everywhere =⇒ D(µ, ν, x) < +∞ µ-almost
everywhere. Let A ⊂ Rn such that ν(A) = 0; if D(µ, ν, x) < +∞ µ-almost everywhere,
then

µ({x ∈ A | D(µ, ν, x) ≤ a}) ≤ aν(A) = 0

for all a ∈ N and since µ(A) = µ(
⋃
a∈N{x ∈ A | D(µ, ν, x) ≤ a}) = 0 we conclude.
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Remark 5. In point 2. of Theorem 2.2 we did not say what is the domain of the Borel
function; the reader can imagine that if we have f : X \N −→ R a measurable function
with µ(N) = 0 then this can be easily extended to a measurable function f̃ with domain
X (f̃(x) = 0∀x ∈ N).

Corollary 2.3 (Lebesgue Density Theorem). Let ν be a Radon measure on Rn.

1. If A ⊂ Rn is ν-measurable, then

lim
r→0

ν(A ∩B(x, r))

ν(B(x, r))
=

{
1 if x ∈ A
0 if x ∈ Rn \A

for ν-almost all x ∈ Rn.

2. If f : Rn −→ R is locally ν-integrable, then

lim
r→0

1

ν(B(x, r))

∫
B(x,r)

f(z) dν(z) = f(x) for ν-almost all x ∈ Rn.

Remark 6. In order to show that limr→0
ν(A∩B(x,r))
ν(B(x,r)) = 1 when x ∈ A the measurability

of A is not required.

Proof. 1. Follows from 2. with f = χA.
2. Since f = f+−f− we can suppose that f ≥ 0, then µ(A) :=

∫
A f(x) dν(x) is a Radon

measure (de�ned on the σ-algebra of all the ν-measurable sets), and µ � ν. Then by
Theorem 2.2 we have ∫

B
D(µ, ν, x) dν(x) = µ(B) =

∫
B
f(x) dν(x)

for all Borel sets B. Then limr→0
1

ν(B(x,r))

∫
B(x,r) f(z) dν(z) = D(µ, ν, x) = f(x) for

ν-almost all x ∈ Rn.

De�nition 2.3. Given µ, ν Radon measures onRn we say that they are mutually singular
if there is a Borel set A ⊂ Rn such that ν(A) = µ(Rn \A) = 0. In this case we will write
ν ⊥ µ.

Theorem 2.4. Let µ and ν be �nite Radon measures on Rn. Then there is a Radon

measure λ and a Borel function such that ν ⊥ λ and

µ(B) =

∫
B
f(x) dν(x) + λ(B)

for all B Borel sets. Moreover, D(λ, ν, x) = 0 for ν-almost all x.
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Proof. Set A = {x ∈ Rn|D(µ, ν, x) < +∞} and

µ1 = µ A λ = µ (Rn \A).

We have that µ1 and λ are Radon measures and µ = µ1 + λ. Because D(µ1, ν, x) ≤
D(µ, ν, x) < +∞ µ1-almost everywhere we have µ1 � µ, so µ1(B) =

∫
BD(µ1, ν, x) dν(x)

and we can take f = D(µ1, ν, ) which is a Borel function. Of course, λ(A) = 0, and
because of Theorem 2.2 1. we have that ν(Rn \A) = 0 and ν ⊥ λ. Then we can see that
considering the set

C = {x ∈ A | D(λ, ν, x) ≥ n}
we have

ν(C)n ≤ λ(C) ≤ λ(A) = 0

so that D(λ, ν, x) = 0 ν-almost everywhere and then D(µ, ν, x) = D(µ1, ν, x) ν-almost
everywhere.

2.2 Haar measure and The orthogonal group

In the next chapters we will need to compare a set with its orthogonal projection on a
m-dimensional subspace of Rn and most statements do not hold for every subspace. We
could ask ourself if some kind of property does it hold for almost all m-subspaces. In
this section we shall give some de�nitions and some properties of O(n), the n-orthogonal
group.

De�nition 2.4. A topological group G is a group with a structure of topological space
such that the group operations

f : G×G→ G α : G→ G

(g, h) 7→ gh g 7→ g−1

are continuous.

De�nition 2.5. A measure on G is invariant if for all A ⊂ G and g ∈ G

µ(A) = µ(gA) = µ(Ag)

where gA = {ga | a ∈ A} and Ag = {ag | a ∈ A}.

Theorem 2.5. If G is a compact topological group, there is a unique invariant Radon

measure µ on G such that µ(G) = 1.

A measure on a compact topological space like the one described in Theorem 2.5 is
called Haar measure. Given µ Haar measure on G, we see that ν(A) := µ({a−1 | a ∈ A})
also de�nes an Haar measure on G, hence

µ(A) = µ({a−1 | a ∈ A}). (2.1)

At this point we will make a small digression on uniformly distributed measures, which,
however, will be useful for us.
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De�nition 2.6. A Borel regular measure µ on a metric space X is uniformly distributed

if

0 < µ(B(x, r)) = µ(B(y, r)) < +∞

for all x, y ∈ X and r > 0.

Theorem 2.6. Let µ, ν be uniformly distributed Borel regular measures on a separable

metric space X. Then there exists a constant c ≥ 0 such that µ = cν.

Proof. Let g(r) = µ(B(x, r)) and h(r) = ν(B(x, r)) functions de�ned for all r > 0 and
for x ∈ X. Let U 6= ∅ be a bounded open subset of X. Then for almost all x ∈ U
the limit limr→0 ν(U ∩B(x, r))/ν(B(x, r)) exists and it is equal to 1. Hence, by Fatou's
Lemma and Fubini's Theorem,

µ(U) =

∫
U

lim
r→0

ν(U ∩B(x, r))/ν(B(x, r)) dµ(x) ≤

≤ lim inf
r→0

1

h(r)

∫
X
ν(U ∩B(x, r)) dµ(x) = lim inf

r→0

1

h(r)

∫
U
µ(B(x, r)) dν(x) =

= lim inf
r→0

g(r)

h(r)
ν(U).

Interchanging µ and ν we get

ν(U) ≤ lim inf
r→0

h(r)

g(r)
µ(U).

This shows that limr→0
g(r)
h(r) = c exists and so µ(U) = cν(U) for all U open subsets of X

(details are left to the reader). Let E ⊂ X, then, because X is separable, we are able
to �nd Vi open bounded sets such that E ⊂

⋃
i Vi. Then, since µ, ν are Borel regular,

µ(E) = sup{µ(U) | E ⊂ Uopen} = c sup{ν(U) | E ⊂ Uopen} = cν(E), so µ = cν.

Now we shall discuss about the properties of orthogonal group O(n), which consist of
all linear maps g : Rn −→ Rn preserving the inner product, or, equivalently, the distance:

g(x) · g(y) = x · y ⇐⇒ |g(x)− g(y)| = |x− y|

for all g ∈ O(n) and x, y ∈ Rn. O(n) is closed and limited in the normed space of the
endomorphism of Rn, L(Rn), which is of �nite dimension. Therefore O(n) is a compact
subspace of L(Rn), and the norm is the usual operator norm:

‖g‖ = sup
|x|=1

|g(x)|

therefore

d(g, h) = ‖g − h‖ = sup
|x|=1

|g(x)− h(x)|.
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Considering also the composition as operation on O(n), this becomes also a topological
group, and we shall denote the unique Haar measure on O(n) as θn (θn(O(n)) = 1).
Since d(gk, hk) = d(g, h) for all g, h, k ∈ O(n), we have that

θn(B(g, r)) = θn(B(g, r)k) = θn(B(gk, r))

and θn is uniformly distributed. In order to de�ne a g ∈ O(n) we can take two di�erent
ordered orthonormal bases of Rn {v1, · · · , vn}, {u1, · · · , un} and de�ne g such that it
sends one basis in the other, g(vi) = ui. It is easy to check that O(n) acts transitively
on Sn−1: the action is de�ned as g(x) for g ∈ O(n), x ∈ Sn−1 and for all x, y ∈ Sn−1

there exists g ∈ O(n) such that g(x) = y.
With σn−1 we will denote the normalized surface measure on Sn−1, for instance, σn−1(Sn−1) =
1 and it can be de�ned as follows: recall that α(n) = Ln(B(0, 1)), then

σn−1(A) = α(n)−1Ln({tx | x ∈ A, 0 ≤ t ≤ 1}) for A ⊂ Sn−1.

σn−1 can be viewed as Hn−1 Sn−1 where Hn−1 is the n− 1-Hausdor� measure, which
is Borel regular.

Theorem 2.7. For any x ∈ Sn−1 and A ⊂ Sn−1,

θn({g ∈ O(n) | g(x) ∈ A}) = σn−1(A).

Proof. Let us consider fx : O(n) −→ Sn−1 de�ned as fx(g) = g(x) for a �xed x ∈ Sn−1.
Since θn is a Radon measure with compact support and fx is a continuous function, fx]θn
is a Radon measure with compact support and fx]θn(Sn−1) = 1. We have that

fx]θn(A) = θn({g ∈ O(n)|g(x) ∈ A}).

Since both σn−1 and fx]θn are Borel regular measures on Sn−1 with same value on the
whole space, we just need to show that fx]θn is a uniformly distributed measure; then
fx]θn = cσn−1 with c = 1 and we conclude. Given y, z ∈ Sn−1 there exists h ∈ O(n)
such that y = h(z); then

fx]θn(B(y, r)) = θn({g ∈ O(n) | g(x) ∈ B(y, r)}) =

= θn({g | |g(x)− h(z)| < r}) = θn({g | |h−1 ◦ g(x)− z| < r}) =

= θn({g ∈ O(n) | |g(x)− z| < r}) = fx]θn(B(z, r))

and we are done.

Lemma 2.8. For x, y ∈ Rn, x 6= 0, and δ > 0,

θn({g ∈ O(n) | |x− g(y)| ≤ δ}) ≤ c δ
n−1

|x|n−1

where c is a constant depending only on n.
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Proof. If ||x| − |y|| > δ then {g | |x− g(y)| ≤ δ} = ∅, so θn({g | |x− g(y)| ≤ δ}) = 0. We
can assume that ||x| − |y|| ≤ δ, x 6= 0 and y 6= 0. Then |x− g(y)| ≤ δ implies

|x− g(
|x|y
|y|

)| ≤ |x− g(y)|+ |(1− |x|/|y|)g(y)| = |x− g(y)|+ ||y| − |x|| ≤ 2δ

which means that |x/|x| − g(y/|y|)| ≤ 2δ/|x|. Therefore

θn({g | |x− g(y)| ≤ δ}) ≤ θn({g | g(y/|y|) ∈ B(x/|x|, δ/|x|)}) =

= σn−1({B(x/|x|, δ/|x|) ∩ Sn−1}) ≤ c δ
n−1

|x|n−1

where c is a constant depending only on n.

2.3 The Grassmannian of m-planes

Let 0 < m < n. As we anticipated G(n,m) := {V ≤ Rn | dimRV = m} and in this
section we shall de�ne a measure on G(n,m).
We can identify every element V ∈ G(n,m) with

PV : Rn −→ Rn

the orthogonal projection on V ∈ G(n,m). Then we can de�ne for V,W ∈ G(n,m) a
distance, using the operator norm:

d(V,W ) = ‖PV − PW ‖ := sup
|x|=1

|PV (x)− PW (x)|.

Proposition 2.9. (G(n,m), d) is a compact metric space.

Proof. Since G(n,m) = {PV : Rn → Rn} ⊂ GL(n), ‖PV ‖ ≤ 1, and dimR(GL(n)) = n2

we just need to show that G(n,m) is closed in GL(n). Let then {PVk} a converging
sequence in GL(n). Since Sn−1 is compact we can choose vi,k orthonormal vectors
such that Vk = 〈{vk,j}1≤j≤m〉 and such that vk,j → vj for k → +∞. Limits are also
orthonormal vectors. Let V = 〈{vj}1≤j≤m〉. Let us show that

‖PVk − PV ‖ → 0

as k → +∞. Since any norm in GL(n) is equivalent, we just need to show that the entries
of the matrix PVk converge to the entries of the matrix of PV (matrices are written here
with respect to the canonical base). Let {e1, . . . , en} the canonical base of Rn. We have
that

ei = PVk(ei) + PV ⊥k
(ei) = αk,1vk,1 + . . .+ αk,mvk,m + PV ⊥k

(ei).

We can easily see that αk,j = ei · vk,j → ei · vj =: αj for k → +∞. Therefore

lim
k→+∞

PVk(ei) = α1v1 + . . .+ αmvm
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and
lim

k→+∞
PV ⊥k

(ei) = ei − α1v1 + . . .+ αmvm

for all i = 1, . . . , n. It is trivial that α1v1 + . . .+ αmvm ∈ V . Noting that

0 ≡ PV ⊥k (ei) · vk,j → lim
k→+∞

PV ⊥k
(ei) · vj

we can deduce that limk→+∞ PV ⊥k
(ei) ∈ V ⊥. We have proved that

lim
k→+∞

PVk(ei) = PV (ei)

for all i = 1, . . . , n. Since each entry of vk,j converges to the corresponding entry of vj
we can conclude that the entries of the i-th column of the matrix of PVk converge to the
entries of the matrix PV . This holds for all i = 1, . . . , n we conclude that

‖PVk − PV ‖ → 0

and the proof is complete.

One can also easily see that G(n,m) is also a separable metric space, since it is a
subset of a separable metric space. We can see that O(n) acts on G(n,m) and this action
preserves the distance:

d(gV, gW ) = d(V,W ) for g ∈ O(n), V,W ∈ G(n,m).

Moreover, by standard linear algebra, the action is transitive: ∀ V,W ∈ G(n,m) we have
gV = W . Finally we are ready to de�ne a Radon measure on G(n,m): �x V ∈ G(n,m)

γn,m(A) = θn({g | gV ∈ A}).

Taking fV : O(n) −→ G(n,m) such that fV (g) = gV we have that γn,m = fV ]θn. Since
{g | gV ∈ hA} = {hg | gV ∈ A} and θn is invariant then γn,m is O(n) invariant, that is

γn,m(gA) = γn,m(A)

for all g ∈ O(n) and A ⊂ G(n,m). Therefore we can notice that the transitivity and
the distance preservation of the action of O(n) imply that γn,m is uniformly distributed.
The invariant measure is unique, and in particular γn,m does not depend on the choice
of V ∈ G(n,m). In order to prove equalities with γn,m, it will be su�cient to prove that
the other side of the equation is O(n) invariant. For example

γn,m(A) = γn,n−m({V ⊥ | V ∈ A}) (2.2)

or, for A ⊆ G(n, 1),

γn,1(A) = σn−1

(⋃
L∈A

L ∩ Sn−1

)
and again, for A ⊆ G(n, n− 1),

γn,n−1(A) = σn−1

( ⋃
V ∈A

V ⊥ ∩ Sn−1

)
.
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Lemma 2.10. For any x ∈ Rn \ {0} and 0 < δ < +∞,

γn,m ({V | d(x, V ) ≤ δ}) ≤ c δ
n−m

|x|n−m

with c = 2nα(n)−1. Moreover, from equation 2.2, we have that

γn,m ({V | |PV (x)| ≤ δ}) ≤ c δ
m

|x|m
.

Proof. Fix x ∈ Rn \ {0}, and W = {x ∈ Rn | xm+1 = . . . = xn = 0} ∈ G(n,m). Then
d(x, V ) = |x|d(x/|x|, V ) and by equation 2.1,

γn,m

({
V | d

(
x/|x|, V

)
≤ δ

|x|

})
= θn

({
g | d

(
x/|x|, gW

)
≤ δ

|x|

})
=

= θn

({
g | d

(
g−1(x/|x|),W

)
≤ δ

|x|

})
= θn

({
g | d

(
g(x/|x|),W

)
≤ δ

|x|

})
=

= σn−1({y ∈ Sn−1 | d(y,W ) ≤ δ/|x|}) = σn−1

y ∈ Sn−1 |

√√√√ n∑
i=m+1

y2
i ≤

δ

|x|


 ≤

≤ α(n)−1Ln({y | |yi| ≤ 1 for i ≤ m , |yi| ≤ δ/|x| for i > m }) =

= α(n)−12n(δ/|x|)n−m.

Corollary 2.11. For 0 < s < m∫
|PV (x)|−s dγn,mV ≤ c|x|−s

where c is a constant depending only on m,n and s.

Proof. V 7→ |PV (x)| is a measurable function because it is continuous. Another way to
see this is the following : �x W ∈ G(n,m), and recalling the comment after de�nition
1.8, we have to show that

{V | |PV (x)| > α}
is γn,m-measurable for all x ∈ Rn \ {0}. This is true since {g | |PW (gx)| > α} is θn-
measurable, since it is open in O(n). To see it one can consider PW ◦ fx : O(n) 7→ R≥0

where fx(g) = g(x). By proposition 1.13 we get∫
|PV (x)|−s dγn,mV =

∫ +∞

0
γn,m({V | |PV (x)| ≤ t−1/s}) dt =

=

∫ |x|−s
0

dt+

∫ +∞

|x|−s
γn,m({V | |PV (x)| ≤ t−1/s}) dt ≤

≤ |x−s|+ c|x|−m
∫ +∞

|x|−s
t−m/s dt =

(
1 +

cs

m− s

)
|x|−s
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where the third equalities hold since if t ≤ |x|−s ⇐⇒ |x| ≤ t−1/s then |PV (x)| ≤ t−1/s

for all V ∈ G(n,m) and so γn,m({V | |PV (x)| ≤ t−1/s}) = 1 for t ≤ |x|−s.

When m = 0, then G(n, 0) = {0} and γn,0 = δ0 on G(n, 0).

Lemma 2.12. Let V ∈ G(n,m) for 0 < m < n. Then

γn,m({V }) = 0.

Proof. The proof is trivial: �x {vi}i=1,...,m an orthonormal base of V . Then

γn,m({V }) = θn({g | gV = V }) =

= θn

(
m⋂
i=1

{g | g(vi) ∈ V ∩ Sn−1}

)
≤ σn−1({V ∩ Sn−1}) = 0.

Lemma 2.13. Let k,m ∈ N such that 1 ≤ k ≤ n− 1, 0 ≤ m ≤ n− 1, k + m ≤ n, and
let W ∈ G(n,m). Then

γn,m({V | V ∩W 6= {0}}) = 0.

Proof. For n = 2 the lemma is true. We can proceed by induction on n. We may assume
m ≥ 1 and that the lemma is true for n− 1. Then

γn,m(A) =

∫
γL⊥,m−1({U ⊂ L⊥ | L+ U ∈ A}) dγn,1L (2.3)

where the variable is L ∈ G(n, 1), and γL⊥,m−1 is the invariant measure on the subspaces

of L⊥ of dimension m− 1 ≤ n− 2.
Let us prove 2.3. By Proposition 1.15,∫

γL⊥,m−1({U ⊂ L⊥ | U+L ∈ gA}) dγn,1gL =

∫
γgL⊥,m−1({U ⊂ gL⊥ | U+gL ∈ gA}) dγn,1L =

=

∫
γL⊥,m−1({g−1U ⊂ L⊥ | g−1U+L ∈ gA}) dγn,1L =

∫
γL⊥,m−1({U ⊂ L⊥ | L+U ∈ A}) dγn,1L

where with γn,1gL we intend g]γn,1, with g de�ned fromG(n, 1) into itself and g(V ) = gV .
Moreover g]γn,1 = γn,1. Now take A = {V ∈ G(n,m) | V ∩W 6= {0}} By hypothesis,

γn,1({L ∈ G(n, 1) | L ⊂W}) = 0,

so we can integrate over the lines L such that L 6⊆W . Then assuming that L 6⊆W , the
conditions (L+ U) ∩W 6= {0} ⇐⇒ (W + L) ∩ U 6= {0} and U ⊂ L⊥ imply that

L⊥ ∩ (W + L) ∩ U = (W + L) ∩ U 6= {0}.
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Noting that dimR(L⊥ ∩ (W + L)) ≤ k and supposing that k ≤ n − 2, by induction we
have that

γL⊥,m−1({U ⊂ L⊥ | (L+U)∩W 6= {0}) ≤ γL⊥,m−1({U ⊂ L⊥ | L⊥∩(L+W )∩U 6= {0}) = 0.

If k = n − 1 then m − 1 = 0 and the above inequality holds true without using the
inductive hypothesis. Finally integrating 2.3 over the lines L such that L $ W we
conclude.

Taking V,W ∈ G(n,m), V ⊥ ∩W = {0} if and only if PV |W : W ←→ V is injective.
Therefore

Corollary 2.14. Let W ∈ G(n,m). Then PV |W : W −→ V is injective for γn,m-almost

all V ∈ G(n,m).
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Chapter 3

Hausdor� measures and Lipschitz

maps on Rn

3.1 Carathéodory's construction

The Caratheodory's construction is useful in order to de�ne measures starting from a
family of sets F ⊂ P(X). The construction is very similar to the de�nition of Lebesgue
measure Ln on Rn. The idea is to approximate areas of generic sets by covering them
with sets of known area (for example n-rectangles in the case of Ln), subsequently sum
them and taking the in�mum over all the possible coverings. Let us do this in general
and precisely.

Let X be a metric space and F ⊂ P(X) such that:

1. ∀δ > 0 there are {Ei}i≥1 ⊂ F such that X =
⋃+∞
i=1 Ei and d(Ei) ≤ δ for all

i = 1, 2, . . .

2. ∀δ > 0 there exist Eδ ∈ F such that ζ(Eδ) ≤ δ and d(Eδ) ≤ δ.
where ζ : F −→ R≥0 is a non negative function. Let E ⊂ X. We de�ne for 0 < δ ≤ +∞

ψδ(E) = inf

{
+∞∑
i=1

ζ(Ei) | E ⊂
+∞⋃
i=1

Ei, d(Ei) ≤ δ, Ei ∈ F

}
. (3.1)

Proposition 3.1. ψδ, de�ned in 3.1, is a measure.

Proof. ψδ(∅) = 0: let 0 < ε < δ. Taking Eε such that ζ(Eε) ≤ ε and d(Eε) ≤ ε we
have ψδ(∅) < ε. Let A ⊂ B; a cover of B of elements in F is also a cover for A, then
ψδ(A) ≤ ψδ(B). A similar argument holds for the last property of measure, see de�nition
1.1.

Let ε < δ ≤ +∞ and E ⊂ X. Since{
{Ei}i≥1 ⊂ F | E ⊂

+∞⋃
i=1

Ei, d(Ei) ≤ ε

}
⊆

{
{Ei}i≥1 ⊂ F | E ⊂

+∞⋃
i=1

Ei, d(Ei) ≤ δ

}
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we have that ψδ(E) ≤ ψε(E). We can de�ne a measure

ψ(E) = lim
δ→0

ψδ(E) = sup
δ>0

ψδ(E)

for all E ⊂ X. It is easy to see that ψ is a measure. If we want to specify F and ζ, we
will write ψ = ψ(F , ζ).

Theorem 3.2. Let F and ζ as above, and ψ = ψ(F , ζ). Then

1. ψ is a Borel measure.

2. If F is formed by Borel sets, ψ is Borel regular.

Proof.

1. Recalling Theorem 1.3, let A,B such that d(A,B) > 0. We can then choose 0 < δ <
d(A,B)/2. If we take a cover {Ei}i=1,... of A ∪ B with d(Ei) < δ for all i = 1, . . . , then
there are no sets of this cover that meet both A and B. Therefore∑

i

ζ(Ei) ≥
∑

A∩Ei 6=∅

ζ(Ei) +
∑

B∩Ei 6=∅

ζ(Ei) ≥ ψδ(A) + ψδ(B). (3.2)

The inequality 3.2 holds for all the covers of A∪B. Taking the in�mum we get ψδ(A) +
ψδ(B) ≤ ψδ(A ∪B) and since ψδ is a measure, ψδ(A) + ψδ(B) = ψδ(A ∪B). Taking the
limit as δ tends to zero we conclude.

2. Let A ⊂ X and choose for 1 ≤ i ∈ N sets Ei,j such that A ⊂
⋃+∞
j=1 Ei,j , d(Ei,j) ≤ 1

i
and

+∞∑
j=1

ζ(Ei,j) ≤ ψ 1
i
(A) +

1

i
.

Let B =
⋂
i=1

⋃
j Ei,j . Then B is a Borel set such that A ⊂ B. ψ(A) ≤ ψ(B) and

ψ 1
i
(B) ≤

+∞∑
j=1

ζ(Ei,j) ≤ ψ 1
i
(A) +

1

i
.

Letting i→ +∞ we get ψ(A) = ψ(B).

3.2 Hausdor� measures

Let X be a separable metric space, 0 ≤ s < +∞. Let also F = P(X) and ζs(E) = d(E)s.
We will interpret 00 = 1 and d(∅)s = 0. Then the measure ψ(F , ζs) is called the s-
dimensional Hausdor� measure and it will be denoted by Hs. Hs(E) = limδ→0Hsδ(E)
where

Hsδ(E) = inf

{
+∞∑
i=1

d(Ei)
s | E ⊂

+∞⋃
i=1

Ei, d(Ei) ≤ δ

}
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for all E ⊂ X. H0 is the counting measure, for instance H0(A) = |A|. H1 can be viewed
as a generalized length measure. In many textbooks the de�nition of Hausdor� measure
is slightly di�erent when X = Rn. For instance see [B, 2.1]. It is de�ned analogously but
with a factor α(n)/2s, so that Hn = Ln in Rn. The equality is not trivial, for a proof
see [B, 2.2]. With our de�nition we have

Hn = 2nα(n)−1Ln

and therefore
Hn(B(x, r)) = (2r)n.

De�nition 3.1. Given A ⊂ Rn, we de�ne the convex hull of A, ι0A as

ι0A =
⋂

C⊇A convex

C.

The convex hull of a set can be de�ned also as the smallest (and unique) convex set
containing A.

Proposition 3.3. Let A ⊂ Rn. Then d(A) = d(ι0A).

Proof. Since A ⊂ ι0A then d(A) ≤ d(ι0A). Let x, y ∈ ι0A, then there exist x1, . . . , xp ∈ A
and y1, . . . , yq ∈ A such that

x =

p∑
i=1

λixi y =

q∑
i=1

µiyi

with λi, µi ∈ R≥0 and
∑p

i=1 λi =
∑q

j=1 µj = 1.Then

d(x, y) ≤
p∑
i=1

λid

xi, q∑
j=1

µjyj

 ≤
≤

p∑
i=1

λi

q∑
j=1

µjd(xi, yj) ≤ d(A)

p∑
i=1

λi q∑
j=1

µj

 = d(A).

Theorem 3.4. Let 0 ≤ s < +∞ and ζs(E) = d(E)s for E ⊂ X with X separable metric

space. Then, if

1. F = {U ⊂ X | U is open} or

2. F = {C ⊂ X | C is closed} or

3. if X = Rn, F = {K ⊂ Rn | K is convex}

we have that ψ(F , ζs) = Hs.
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Remark 7. The hypothesis thatX is separable is necessary, because otherwise the families
of sets we consider in Theorem 3.4 could not be used to de�ne ψ(F , ζs).

Proof.

1. Let E ⊂ X and Eε = {x ∈ X | d(x,E) < ε}. Eε is open and d(Eε) ≤ d(E) + 2ε. It
is true that ψδ(E) ≥ Hsδ(E), therefore the inequality ψ(E) ≥ Hs(E) is veri�ed. Let
E1, E2, . . . with d(Ei) ≤ δ such that E ⊂

⋃+∞
i=1 Ei, and

+∞∑
i=1

d(Ei)
s ≤ Hsδ(E) + δ.

Therefore

E ⊂
+∞⋃
i=1

Ei,δνi/2,

where νi > 0. Then d(Ei,δνi/2)s ≤ (d(Ei)+δνi)
s. Since (d(Ei)+δνi)

s → d(Ei)
s as νi → 0

we can choose, for each i, νi small enough to have (d(Ei) + δνi)
s ≤ d(Ei)

s + δ/2i. Let
ν := 2 supi{νi}, we can suppose that ν → 0 as δ → 0. Then, since d(Ei,δνi/2) ≤ δ + δν,
we obtain

ψδ+δν(E) ≤
+∞∑
i=1

d(Ei,δνi/2)s ≤
+∞∑
i=1

d(Ei)
s + δ/2i ≤ Hsδ(E) + 2δ

which means that ψδ(1+ν)(E) ≤ Hsδ(E) + 2δ. Letting δ → 0 we obtain ψ(E) ≤ Hs(E).

2. True, since d(E) = d(E) where E is the closure of E.

3. Trivial, since d(E) = d(ι0E).

Remark 8. If X = Rn for n ≥ 2, F = {B(x, r)|x ∈ Rn, r > 0} and ζs(E) = d(E)s the
resulting measure from the Caratheodory's construction is not Hs for 0 < s < n. It is
called the s-spherical measure and it is indicated by Ss.

Corollary 3.5. Let 0 ≤ s < +∞ and A ⊂ Rn. Then

1. Hs is Borel regular

2. Hs(aA) = asHs(A) where aA = {ax | x ∈ A}

3. Hs(LA) = Hs(A) for all L : Rn → Rn rigidities of Rn (|Lx| = |x|).

Proof. The �rst point follows from 3.4 and 3.2 even when X is a generic separable metric
space. The last two assertions are easy to show (see also Theorem 3.13).

The following lemma is very useful to see if a set has Hs null measure for some s.

Lemma 3.6. Let E ⊂ X, 0 ≤ s < +∞ and 0 ≤ δ ≤ +∞. Then, the following are

equivalent:
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1. Hs(E) = 0.

2. Hsδ(E) = 0.

3. ∀ε > 0 ∃E1, E2, . . . ⊂ X such that E ⊂
⋃+∞
i=1 Ei and

∑+∞
i=1 d(Ei)

s < ε.

Proof. 1 =⇒ 2 is trivial, as 2 =⇒ 3. Let us assume 3 and let ε > 0; since
∑+∞

i=1 d(Ei)
s < ε

is convergent, let νs = supi≥1 d(Ei)
s. We have that ν ≤ ε1/s, then

Hsν(E) ≤
+∞∑
i=1

d(Ei)
s < ε.

Letting ε→ 0 we obtain Hs(E) = 0.

The next theorem will be fundamental to de�ne the Hausdor� dimension of X:

Theorem 3.7. Let 0 ≤ s < t < +∞ and E ⊂ X then:

1. Hs(E) < +∞ =⇒ Ht(E) = 0,

2. Ht(E) > 0 =⇒ Hs(E) = +∞.

Proof. Of course 2⇐⇒ 1. Let us show that the �rst assertion is true. Take Ei such that
E ⊂

⋃+∞
i=1 Ei, d(Ei) ≤ δ and

∑+∞
i=1 d(Ei)

s ≤ Hsδ(E) + 1. Therefore

Htδ(E) ≤
+∞∑
i=1

d(Ei)
t ≤ δt−s

+∞∑
i=1

d(Ei)
s ≤ δt−s(Hsδ(E) + 1),

which gives, as δ → 0, Ht(E) = 0.

Now we can give the de�nition of Hausdor� dimension.

De�nition 3.2. Let E ⊂ X. Then the Hausdor� dimension is de�ned as

dimE := sup {s | Hs(E) > 0} = sup {s | Hs(E) = +∞} =

= inf {s | Hs(E) < +∞} = inf {s | Hs(E) = 0} .

The Hausdor� dimension has some natural properties:

Proposition 3.8. Let E ⊂ X. Then

1. dimE ≤ dimF for E ⊂ F

2. dim
⋃+∞
i=1 Ei = supi dimEi for Ei ⊂ X.
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Proof. The �rst statement is easy and it is left as exercise. Let d = supi dimEi. The
case d = 0 is left to the reader. If d < +∞ let c, e such that c < d < e. Then there exists
Ej such that

+∞ = Hc(Ej) ≤ Hc
(

+∞⋃
i=1

Ei

)

He
(

+∞⋃
i=1

Ei

)
≤

+∞∑
i=1

He(Ei) = 0.

Therefore d = dim
⋃+∞
i=1 Ei. If d = +∞ the proof is similar.

Remark 9. In general, for a set A ⊂ X, if we �nd an s such that 0 < Hs(A) < +∞ then,
s = dimA.

If we take X = Rn, since 0 < Hn(B(0, r)) = (2r)n < +∞, we have that dimB(0, r) =
n. Then, because Rn =

⋃+∞
n=1B(0, n), it follows that dimRn = n. In Rn it is interesting

to consider Hausdor� measures only when 0 ≤ s ≤ n. Moreover one can show that for
each 0 ≤ s ≤ n there is E ⊆ Rn such that dimE = s.

Remark 10. Hs is a Borel regular measure, but in general it is not locally �nite and
therefore Radon. For example take s < n, then HsB(x, r) = +∞ for each x ∈ Rn and
r > 0. But, if E ⊂ X is Hs-measurable and Hs(E) < +∞ then Hs E is a Radon
measure.

3.3 Cantor set in R

In general it is not easy to compute the Hausdor� dimension of a set. In this section
we will brie�y calculate the dimension of the Cantor set. First of all let us de�ne it:
let 0 < λ < 1/2 and I0,1 = [0, 1]. From now on, with the �rst index of the intervals
we will indicate the "iteration" and the second index will serve us to enumerate the
intervals. Remove from I0,1 an open ball with centre 1/2 and diameter (1 − 2λ); we
obtain I1,1 = [0, λ] and I1,2 = [1−λ, 1] each of length λ. Then we can iterate this process
for I1,1, I1,2 by removing an open interval of length (1− 2λ)λ and midpoint the midpoint
of each I1,i for i = 1, 2. We obtain I2,1, I2,2, I2,3, I2,4 closed intervals of length λ2. In
this way at the k-th iteration we have {Ik,i}i=1,...,2k intervals of length λ

k, see �gure 3.1.
Note that

⋃
i Ik,i ⊂

⋃
i Ik−1,i. We can now de�ne the λ-Cantor set C(λ) as

C(λ) =
+∞⋂
k=0

2k⋃
i=1

Ik,i.

C(λ) is non-empty and compact, because in a metric space if K1 ⊃ K2 ⊃ K3 ⊃ . . .
are compact then K = ∩iKi is a non-empty compact set. Moreover C(λ) has no interior
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Figure 3.1: Cantor set (5 iterations) with λ = 1
3

points and Lebesgue measure equal to 0: in fact the length of the intervals that we are
removing is

+∞∑
j=0

(2λ)j(1− 2λ) = 1.

Moreover C(λ) is uncountable. Taking {Ik,i}i=1,...,2k as a cover of C(λ) we have that

Hsλk(C(λ)) ≤
2k∑
i=1

d(Ik,i)
s = 2k(λk)s = (2λs)k. (3.3)

If s = log(2)/log(1/λ) then 2λs = 1 and therefore, letting k → +∞, we get that
Hs(C(λ)) ≤ 1 and so dimC(λ) ≤ s. Now we will show that Hs(C(λ)) ≥ 1/4 and it
will follow that

dimC(λ) =
log(2)

log(1/λ)
.

Let s = log(2)/log(1/λ). Since C(λ) is compact we can cover it with �nitely many
intervals Jl with l = 1, . . . , n. We will show that

∑n
l=1 d(Jl)

s ≥ 1/4. C(λ) has no interior
points, then we can assume that the endpoints of each interval Jl are outside C(λ)
(otherwise C(λ) would have a non-empty interior). Then each endpoint has distance at
least, for instance, δ > 0. Choosing k big enough (so that δ > λk), we have that each
{Ik,i}i=1,...,2k is contained in some Jl. Now �x a general I open interval which intersect
(0, 1), then I contains some Iw,i. Let n be the smallest integer such that In,i is contained
in I for some i. Let In,i1 , . . . , In,ip intervals contained in I. Then p ≤ 4, otherwise there
exists an In−1,i contained in I. Then

4d(I)s ≥
p∑

m=1

d(In,im)s =

p∑
m=1

∑
Iw,i⊂In,im

d(Iw,i)
s ≥

∑
Iw,i⊂I

d(Iw,i)
s

where the equality holds since there are 2w−n intervals Iw,i in In,im of length λw. This
leads to

2w−n(λw)s = λsn(2λs)w = λsn = d(In,im)s.
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Therefore, since each {Ik,i}i=1,...,2k is contained in some Jl,

4
n∑
l=1

d(Jl)
s ≥

2k∑
i=1

d(Ik,i)
s = 2k(λs)k = 1

which gives us
n∑
l=1

d(Jl)
s ≥ 1/4.

We can choose the intervals Jl such that

1/4 ≤
n∑
l=1

d(Jl)
s ≤ Hs(C(λ)) + ε

and letting ε → 0 we obtain that 1/4 ≤ Hs(C(λ)). Moreover one can show that
Hs(C(λ)) = 1.

3.4 Density Theorems for Hausdor� measures

In this section we will present a couple of theorems on Hausdor� density.

De�nition 3.3. Let 0 ≤ s ≤ n, E ⊂ Rn and x ∈ Rn. The upper s-density of E at x is
de�ned by

Θ∗s(E, x) := lim sup
r→0

Hs(E ∩B(x, r))

(2r)s

and the lower s-density of E at x is

Θs
∗(E, x) := lim inf

r→0

Hs(E ∩B(x, r))

(2r)s
.

Naturally, Θs
∗(E, x) ≤ Θ∗s(E, x) and if they are equal we de�ne the s-dimensional density

of E at x as
Θs(E, x) = Θs

∗(E, x) = Θ∗s(E, x).

Remark 11. For s > n one could de�ne upper and lower densities, but they are always
equal to 0. For s = n we obtain the usual Lebesgue densities. By Corollary 2.3 we have
that Θn(E, x) = 1 if x ∈ E and, if E is Lebesgue measurable, Θn(E, x) = 0 if x /∈ E.

Theorem 3.9. Let E ⊂ Rn Hs-measurable with Hs(E) < +∞. Then

1. 2−s ≤ Θ∗s(E, x) ≤ 1 for Hs-almost all x ∈ E.

2. Θ∗s(E, x) = 0 for Hs-almost all x ∈ Rn \ E.

Remark 12. The measurability of E is not required to show that 2−s ≤ Θ∗s(E, x);
moreover we can notice that Hs E is a Borel regular measure (and Radon) and so
x 7→ Θ∗s(E, x),Θs

∗(E, x) are Borel functions.
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Proof.

1. We �rst prove that 2−s ≤ Θ∗s(E, x). Let B = {x ∈ E | 2−s > Θ∗s(E, x)}; using the
de�nition of Θ∗s as lim sup the reader can see that, setting

Bk := {x ∈ E | Hs(E ∩B(x, r)) < (k/k + 1)rs for 0 < r < 1/k}

for k = 1, 2, . . . ,

B =
+∞⋃
k=1

Bk.

Therefore we only have to show that Hs(Bk) = 0 for all k ≥ 1. We can cover Bk with
Ei such that d(Ei) < 1/k and

+∞∑
i=1

d(Ei)
s ≤ Hs(Bk) + ε.

We can suppose that Bk ∩ Ei 6= ∅ for all i, then let xi ∈ Bk ∩ Ei and ri = d(Ei). Since
Bk ∩ Ei ⊂ B(xi, ri) ∩ E we have that

Hs(Bk) ≤
+∞∑
i=1

Hs(Bk ∩ Ei) ≤
+∞∑
i=1

Hs(B(xi, ri) ∩ E) ≤

≤
+∞∑
i=1

k

k + 1
rsi ≤

k

k + 1
(Hs(Bk) + ε)

By hypothesis Hs(Bk) < +∞, then letting ε → 0, and since 0 < k/(k + 1) < 1 we
conclude that Hs(Bk) = 0. Now we prove that Θ∗s(E, x) ≤ 1 for Hs-almost every x ∈ E.
Let

C := {x ∈ E | Θ∗s(E, x) > α}

for α > 1. Since E is Hs-measurable of �nite Hs-measure and Θ∗s(E, x) is a Borel
function, we can �nd an open set U that contains C and such thatHs(E∩U) < Hs(C)+ε
(Theorem 1.5). For every x ∈ C we have that

α < inf
δ>0

sup
r<δ
Hs(E ∩B(x, r))/(2r)s.

Then we can �nd an arbitrarily small r such that 0 < r < δ/2, that B(x, r) ⊂ U and
such that

α < Hs(E ∩B(x, r))/(2r)s.

We can then apply Vitali's covering Theorem 1.22 to Hs U and �nd disjoint balls
{Bi}i=1,... of radius less than δ/2 such that

Hs
(
C \

+∞⋃
i=1

Bi

)
= 0.
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We can notice that Hsδ(C) = Hsδ(C ∩
⋃+∞
i=1 Bi). Therefore

Hs(C)+ε > Hs(E∩U) ≥
+∞∑
i=1

Hs(E∩Bi) > α

+∞∑
i=1

d(Bi)
s ≥ αHsδ

(
C ∩

+∞⋃
i=1

Bi

)
= αHsδ(C).

Letting ε, δ → 0 we conclude that Hs(C) ≥ αHs(C) and since α > 1 we conclude that
Hs(C) = 0.

2. Let B = {x ∈ Rn \E | Θ∗s(E, x) > α} for α > 0. Let ε > 0. Since (Hs E)(B) = 0 we
can �nd U open such that B ⊂ U and Hs(E ∩ U) < ε. Again, we can �nd 0 < r < δ/2
small enough such that for each x ∈ B, B(x, r) ⊂ U and

Hs(E ∩B(x, r)) > α(2r)s.

By Theorem 1.16 we can �nd Bi = B(xi, ri) disjoint with xi ∈ B, such that 5Bi covers
B. Therefore

Hs∞(B) ≤
+∞∑
i=1

d(5Bi)
s = 5s

+∞∑
i=1

d(Bi)
s <

<
5s

α

+∞∑
i=1

Hs(E ∩Bi) ≤
5s

α
Hs(E ∩ U) <

5sε

α
.

Letting ε→ 0 we obtain Hs∞(B) = 0 which implies Hs(B) = 0 by Lemma 3.6. If in place
of Hs∞(B) we had estimated Hs5sδ(B), we would have reached the same conclusion.

Corollary 3.10. Let E,F be Hs-measurable subset of Rn with E ⊂ F and Hs(F ) < +∞.

Then for Hs-almost all x ∈ E

Θ∗s(E, x) = Θ∗s(F, x)

and

Θs
∗(E, x) = Θs

∗(F, x).

Proof. For Hs-almost all x ∈ E Θ∗s(F \ E, x) = 0. Therefore

Θ∗s(E, x) ≤ Θ∗s(F, x) ≤ Θ∗s(F \ E, x) + Θ∗s(E, x) = Θ∗s(E, x).

The last corollary tells us somehow that densities are preserved if the set is enlarged.
Moreover, if A,B are measurable and both are of �nite measure, then A ∪ B has the
same density as A ∩B for almost all x ∈ A ∩B.
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3.5 Lipschitz functions

In this section we will discuss about Lipschitz functions and some of their properties.

De�nition 3.4. A function f : D → Rn for D ⊂ Rm is a Lipschitz map if there is a
constant L such that

|f(x)− f(x)| ≤ L|x− y|, (3.4)

for all x, y ∈ D. The smallest constant such that 3.4 holds will be called the Lipschitz

constant of f and it will be denoted by Lip(f).

There is another de�nition of function that extends the property of being Lipschitz:

De�nition 3.5. A function f : D → Rn for D ⊂ Rm is Hölder continuous of parameter
0 < α ≤ 1 if there is a constant C such that

|f(x)− f(x)| ≤ C|x− y|α, (3.5)

for all x, y ∈ D. The smallest constant C such that 3.5 holds will be called the Hölder

constant of f and it will be denoted by Lα(f).

If a function is Hölder continuous then it is continuous, and if α = 1 we have that f
is Lipschitz. Every Lipschitz function f : D → Rn de�ned on a proper subset of Rm can
be extended to Rm:

Theorem 3.11. Let f : D → Rn be a Lipschitz map with Lipschitz constant Lip(f) and

D ⊂ Rn. Then there exists g : Rm → Rn such that f = g|D, and Lip(g) ≤
√
nLip(f).

Proof. Let f = (f1, . . . , fn), where fi are the coordinate functions for i = 1, . . . , n. We
de�ne

gi(x) := inf
d∈D

(
fi(x) + Lip(fi)|x− d|

)
.

of course gi(x) = fi(x) for all x ∈ D. Then

gi(x) ≤ inf
d∈D

(
fi(y) + Lip(fi)|x− y|+ Lip(fi)|y − d|

)
= gi(y) + Lip(fi)|x− y|

and similarly, gi(y) ≤ gi(x) +Lip(fi)|x− y| and gi is Lipschitz with Lip(gi) ≤ Lip(fi) ≤
Lip(f) for all i. Finally, setting g = (g1, . . . , gn),

|g(x)− g(y)|2 =

n∑
i=1

|gi(x)− gi(y)|2 ≤ nLip(f)2|x− y|2.

This last theorem can be adapted also for a Hölder continuous map. From the above
proof, when n = 1, we can conclude that Lip(g) = Lip(f). If n > 1 we can just say
that Lip(g) ≤

√
nLip(f). It is however true that f can be extended in such a way that

Lip(f) = Lip(g) but it is not easy to show it (Kirszbraun's theorem); for a proof see [E,
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2.10.43].

One of the most important property for Lipschitz maps is that they are di�erentiable
almost everywhere. This is the so-called Rademacher's Theorem. Let us �rst recall

De�nition 3.6. A map f : Rm → Rn is di�erentiable at x ∈ Rm if there is a (unique)
linear map

L : Rm → Rn

such that

lim
y→x

|f(y)− f(x)− L(y − x)|
|y − x|

= 0.

We call L the derivative of f at x and it is denoted with Df [x].

Theorem 3.12 (Rademacher's Theorem). Let f : Rm → Rn be a Lipschitz map. Then

f is di�erentiable Lm-almost everywhere.

Proof. We can assume that n = 1, since we could study the coordinate functions. We
shall also consider the case m = 1 to be known since in one dimension Lipschitz functions
are absolutely continuous and so they are di�erentiable almost everywhere. For e ∈ Sm−1

we denote, for x ∈ Rm, ∂ef(x) the partial derivative of f in the direction of e. Let Be
the set of points such that ∂ef(x) does not exist. Since f is a continuous function,

Def(x) := lim sup
r→0

f(x+ te)− f(x)

t
, Def(x) := lim inf

r→0

f(x+ te)− f(x)

t

are Borel function, and

Be = {x ∈ Rm | Def(x) < Def(x)}

is a Borel set. Let Le = {x + te | t ∈ R}. Applying the one dimensional case to
t 7→ f(x+ te), we have

H1(Be ∩ Le) = 0.

By Fubini's Theorem 1.12 we obtain that Lm(Be) = 0, therefore ∂ef(x) exists for Lm-
almost all x ∈ Rm.

Now we will show that ∂ef(x) = e · ∇f(x) where ∇f(x) = (∂1f(x), . . . , ∂mf(x)) for
Lm-almost all x ∈ Rm. Here ∂if(x) = ∂eif(x) where ei is the i-th vector of the canonical
base of Rm. Let ϕ ∈ C∞0 (Rm). Then, for h 6= 0,∫

h−1(f(x+ he)− f(x))ϕ(x) dx = −
∫
h−1(ϕ(x)− ϕ(x− he))f(x) dx.
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Since f is Lipschitz we can apply Lebesgue's dominated convergence Theorem, (see [C,
2.14]) letting h→ 0 and applying partial integration we obtain∫

∂ef(x)ϕ(x) dx = −
∫
f(x)∂eϕ(x) dx =

= −
∫
f(x)(e · ∇ϕ(x)) dx = −

m∑
i=1

e · ei
∫
f(x)∂iϕ(x) dx =

=
m∑
i=1

e · ei
∫
ϕ(x)∂if(x) dx =

∫
ϕ(x)(e · ∇f(x)) dx.

Then ∫
(∂ef(x)− e · ∇f(x))ϕ(x) dx = 0

and since this holds for all ϕ ∈ C∞0 (Rm) we have that ∂ef(x) = e · ∇f(x) for Lm-almost
all x ∈ Rm.

Let {vi}i=1,..., be a dense subset of Sm−1. For each i, let Ai be the set of x ∈ Rm for
which ∇f(x) and ∂vif(x) exist and ∂vif(x) = vi · ∇f(x). Let A =

⋂+∞
i=1 Ai. Therefore

we can say, for what we have proved, that Lm(Rm \A) = 0.

Now we will �nally show that f is di�erentiable at all x ∈ A: let x ∈ A and e ∈ Sm−1

and h > 0. Let
Q(x, e, h) = h−1(f(x+ he)− f(x))− e · ∇f(x).

We are going to show that limh→0Q(x, e, h) = 0 uniformly in e. Since |∂if(x)| ≤ Lip(f)
then |∇f(x)| ≤

√
mLip(f) and by Cauchy-Schwartz inequality we have, for e, v ∈ Sm−1,

that

|Q(x, e, h)−Q(x, v, h)| ≤
≤ |h−1(f(x+ he)− f(x+ hv))|+ |(e− v) · ∇f(x)| ≤

≤ (1 +
√
m)Lip(f)|e− v|.

Now, since Sm−1 is compact, there is an N big enough such that ∀e ∈ Sm−1 there exists
k ∈ {1, . . . , N} such that

|e− vk| ≤
ε

2 (1 +
√
m)Lip(f)

.

Moreover, we have that

lim
h→0

Q(x, vk, h) = 0 for all k ∈ {1, . . . , N},

which means that there exists δ > 0, good for all vk with k = 1, . . . , N , such that

|Q(x, vk, h)| < ε

2
for 0 < |h| < δ and k = 1, . . . , N.
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Then for all e ∈ Sm−1 there is vk with k ∈ {1, . . . , N} such that, for all 0 < |h| < δ

|Q(x, e, h)| ≤ |Q(x, vk, h)|+ |Q(x, e, h)−Q(x, vk, h)| < ε

2
(1 +

√
m)Lip(f)|e− vk| < ε

and δ does not depend on e, which means that the convergence is uniform in e.
We can now conclude: let y ∈ Rm and e := y−x

|y−x| , so y = x+ te with t = |y−x|. It holds
that

f(y)− f(x)−∇f(x) · (y − x) = f(x+ te)− f(x)− t∇f(x) · e = o(t) = o(|y − x|)

which means exactly that f is di�erentiable at x ∈ A with Df [x](y) := ∇f(x) · y.

Proposition 3.13. Let f : Rm → Rn be a Hölder continuous map of parameter 0 < α ≤
1, 0 ≤ s ≤ m and A ⊂ Rm, then

Hs(f(A)) ≤ Lα(f)sHsα(A),

and therefore dimf(A) ≤ αdimA.

Proof. Let L = Lα(f) and let {Ei}i=1,... such that E ⊆
⋃+∞
i=1 Ei, d(Ei) ≤ δ and

+∞∑
i=1

Lsd(Ei)
sα ≤ LsHsαδ (E) + ε.

Then f(E) ⊂
⋃+∞
i=1 f(Ei) and d(f(Ei)) ≤ Ld(Ei)

α ≤ Lδα. Therefore

HsLδα(f(E)) ≤
+∞∑
i=1

d(f(Ei))
s ≤

+∞∑
i=1

Lsd(Ei)
sα ≤ LsHsαδ (E) + ε

and letting ε, δ → 0 we obtain that Hs(f(A)) ≤ Lα(f)sHsα(A).

When α = 1 we obtain that for a Lipschitz map f , Hs(f(A)) ≤ Lip(f)sHs(A) and
dimf(A) ≤ dimA.

Theorem 3.14. Let f : Rm → Rn be a Lipschitz map, and let

A = {x ∈ Rm | dim(∇f(x) ·Rm) < m}.

Then Hm(f(A)) = 0.

Proof. First we de�ne AR = A ∩ B(0, R) for 0 < R < +∞. Let ε > 0 and L = Lip(f).
Let x ∈ AR, Wx := f(x) +∇f(x) ·Rm; then for su�ciently small r > 0,

fB(x, r) ⊂ B(f(x), Lr) ∩ {y ∈ Rn | d(y,Wx) ≤ εr}.

Let k = dimWx. fB(x, r) is contained in a cylinder C with base an k-ball of radius Lr
and n− k-height 2εr:

C := {z ∈ Rn | |PWxz − f(x)| ≤ Lr, |QWx − f(x)| ≤ εr}.

46



Now we cover C with some balls Bi of radius εr. Let N be the number of balls we use,
then NLn(Bi) ≥ (Lr)k(εr)n−k. We get, taking k = m− 1, that

N ≥ Lm−1

α(n)εm−1

and, letting c = 2m+1

α(n) , we have the following estimate

Hm∞(fB(x, r)) ≤ 2N(2εr)m ≤ cLm−1εrm.

By Vitali's covering theorem we can �nd disjoint balls Bi = B(xi, ri) such that

Lm
(
AR \

+∞⋃
i=1

Bi

)
= 0,

+∞∑
i=1

Lm(Bi) < Lm(AR) + ε.

We have that fAR ⊆
(⋃+∞

i=1 fBi
)
∪f(AR \

⋃+∞
i=1 Bi) and by Proposition 3.13 Hm(f(AR \⋃+∞

i=1 Bi)) = 0. Then

Hm∞(fAR) ≤
+∞∑
i=1

Hm∞(fBi) ≤ cLm−1ε
+∞∑
i=1

rmi ≤ cLm−1εα(m)−1(Lm(AR) + ε)

and for ε→ 0 we conclude since Lm(AR) < +∞ and since A =
⋃
R>0AR.

Theorem 3.15. Let A ⊂ Rn and let f : A → Rm be a Lipschitz map. If m ≤ s ≤ n,
then ∫ ∗

Hs−m(A ∩
←−
f {y}) dLmy ≤ α(m)Lip(f)mHs(A).

Proof. We cover A with closed sets Ek,i with d(Ek,i) ≤ 1/k and

+∞∑
i=1

d(Ek,i)
s ≤ Hs1/k(A) + 1/k.

Let Fk,i = {y ∈ Rm | Ek,i ∩
←−
f {y} 6= ∅}. If we take x, y ∈ Fk,i we can �nd v, u ∈ Ek,i ∩A

such that f(v) = x and f(u) = y. Then

|x− y| ≤ Lip(f)|v − u| ≤ Lip(f)d(Ek,i)

which means that d(Fk,i) ≤ Lip(f)d(Ek,i). Therefore

Lm(Fk,i) ≤ α(m)(Lip(f)d(Ek,i))
m.
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Using Fatou's Lemma we obtain∫ ∗
Hs−m(A ∩

←−
f {y}) dLmy =

=

∫ ∗
lim

k→+∞
Hs−m1/k (A ∩

←−
f {y}) dLmy ≤

≤
∫

lim inf
k→+∞

+∞∑
i=1

d(Ek,i ∩
←−
f {y})s−m dLmy ≤

≤ lim inf
k→+∞

+∞∑
i=1

∫
Fk,i

d(Ek,i ∩
←−
f {y})s−m dLmy ≤

≤ lim inf
k→+∞

+∞∑
i=1

d(Ek,i)
s−mLm(Fk,i) ≤

≤ α(m)Lip(f)m lim inf
k→+∞

+∞∑
i=1

d(Ek,i)
s ≤

≤ α(m)Lip(f)m lim inf
k→+∞

(Hs1/k(A) + 1/k) = α(m)Lip(f)mHs(A).

Lemma 3.16. Let f : Rm → Rn be a Lipschitz map and let A ⊂ Rm be Lm-measurable.

Then f(A) is a Hm-measurable set.

Proof. A set A ⊂ Rm is Lm-measurable if and only if it can be written as F ∪N where
F ⊂ A is a countable, or �nite, union of compact sets and Lm(N) = 0. We can suppose A
of �nite measure, since Rm =

⋃+∞
n=1B(0, n). Therefore we can �nd compact sets Ki ⊂ A

such that Lm(A \ Ki) ≤ 1/i. Taking F =
⋃+∞
i=1 Ki and N = A \ F we are done. The

converse is trivially true. This argument holds for generic Borel regular measures, such
as Hm (see Theorem 1.5). Then f(A) = f(F ) ∪ f(N). f(N) has Hm-measure zero,
because Hm(f(N)) ≤ Lip(f)Hm(N) = 0. Since f is Lipschitz, then continuous, sends
compact sets into compact sets, so f(F ) is a countable, or �nite, union of compact sets.
Then f(A) is Hm-measurable.

Theorem 3.17. Let f : Rm → Rn be a Lipschitz map and let A ⊂ Rm be Lm-measurable.

Then Θm
∗ (fA, x) > 0 for Hm-almost all x ∈ fA.

Proof. We may assume that Lm(A) < +∞. Let E = fA, ε > 0 and F = {x ∈
E | Θm

∗ (E, x) < ε}. By Lemma 3.16, E is Hm-measurable and of �nite measure by
Proposition 3.13, therefore F is measurable and of �nite measure. Let C be a compact
subset of F and U open set such that A ⊂ U and Lm(U) < +∞. Let V be an open set
of �nite measure such that E ⊂ V : Hm V is a Radon measure. We can �nd for each
x ∈ C a closed ball B = B(x, r) such that Hm(E ∩ B) < εd(B)m. With a smaller r,
we can also suppose that D = B(y, r/L) ⊂ U with y ∈ A, f(y) = x ∈ C and also that
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B ⊂ V . Therefore, using Vitali's covering theorem on Hm V , we can �nd Bi = B(xi, ri)
disjoint closed balls such that

Hm(E ∩Bi) < εd(Bi)
m

Di = B(yi, ri/L) ⊂ U

Hm
(
C \

+∞⋃
i=1

Bi

)
= 0.

Di are disjoint because fDi ⊂ Bi. We have then

Hm(C) =

+∞∑
i=1

Hm(C ∩Bi) ≤ ε
+∞∑
i=1

d(Bi)
m = εc

+∞∑
i=1

Lm(Di) ≤ cεLm(U)

where c = (2L)mα(m)−1 depends only on m and L. Therefore

Hm(C) ≤ cεLm(U)

and, since F is Hm-measurable and of �nite measure, we have, by Theorem 1.5, that

Hm({x ∈ E | Θm
∗ (E, x) = 0}) ≤ Hm(F ) = sup{Hm(C) | C ⊂ F compact } ≤ cεLm(A)

which shows that {x ∈ E | Θm
∗ (E, x) = 0} has Hm-measure zero.
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Chapter 4

Recti�ability

In this chapter we present one of the most fundamental concept in measure theory:
Recti�ability.

De�nition 4.1. A set E ⊂ Rn ism-recti�able if there exist Lipschitz maps fi : Rm → Rn

with i = 1, . . . such that

Hm
(
E \

+∞⋃
i=1

fi(R
m)

)
= 0.

A set F ⊂ Rn is called purely m-recti�able if Hm(E ∩ F ) = 0 for every E ⊂ Rm

m-recti�able.

Another equivalent de�nition of m-recti�able is the following: E is m-recti�able if
there are at most countably many C1 submanifolds of Rn Γi with dimension m such that

Hm
(
E \

(⋃
i

Γi

))
= 0.

As a consequence of the extension theorem 3.11 for Lipschitz maps, we have the following
lemma (whose proof is left to the reader).

Lemma 4.1. E ⊂ Rm is m-recti�able if and only if there exist {Ai}i=1,... subsets of R
m

and Lipschitz maps fi : Ai → Rn such that Hm(E \
⋃+∞
i=1 fi(Ai)) = 0.

Note that {Ai}i=1,... can be taken Hm-measurable and such that fi(Ai) ⊂ E. We
leave to the reader also the proof of the following fact, which lists some properties of
recti�able sets:

Lemma 4.2. Let E ⊂ Rn m-recti�able. Then

1. E has σ-�nite Hm-measure, i.e. E is the union of countably many Hm-measurable

sets of �nite measure

2. Any subset of E is m-recti�able
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3. There exists a m-recti�able Borel set U such that E ⊂ U and Hm(E) = Hm(B)

4. Union of countably many m-recti�able sets is m-recti�able.

Theorem 4.3. Let A ⊂ Rn with Hm(A) < +∞. There is a Borel m-recti�able set E
and a purely m-unrecti�able set F such that A = E ∪ F . This decomposition is unique

up to Hm null sets.

Proof. Let S the supremum of {Hm(A∩B) | B is m-recti�able and Borel}. Then, there is
Ei Borelm-recti�able contained in A such thatHm(Ei) ≥ S− 1

i . Let us set E :=
⋃+∞
i=1 Ei

which is m-recti�able, and F := A \E. F is purely m-unrecti�able: this can be seen by
contradiction, details are left to the reader. Then

A = E ∪ F

and the decomposition is unique up to Hm null sets.

An important property of m-recti�able sets is the existence Hm-almost everywhere of
tangent planes, which approximate the set in some sense. We will indicate with A(n,m)
the set of all the a�ne subspaces of dimension m in Rn. We recall that W (ε) := {x ∈
Rn | d(x,W ) ≤ ε} for every W ∈ A(n,m).

De�nition 4.2 (Linearly approximable). We will say that E ⊂ Rn is m-linearly approx-
imable if for Hm-almost all e ∈ E we have this property: for every η > 0 there exists
r0, λ > 0 and W ∈ A(n,m), with e ∈W , such that

Hm
(
E ∩B(x, ηr)

)
≥ λrm for x ∈W ∩B(e, r) (4.1)

Hm
(
E ∩B(e, r) \W (ηr)

)
< ηrm (4.2)

for all 0 < r < r0.

For a geometric representation of the properties described in 4.2 see �gure 4.1. A
weaker form of this de�nition can be given, where W ∈ A(n,m) depends on 0 < r < r0:

De�nition 4.3 (Weakly linearly approximable). We will say that E ⊂ Rn is m-weakly
linearly approximable if, for Hm-almost all e ∈ E, we have this property: for every η > 0
there exist r0, λ > 0 such that, for all 0 < r < r0, there is Wr ∈ A(n,m), with e ∈ Wr,
such that 4.1 and 4.2 hold with Wr in place of W .

If these conditions hold, then Θm
∗ (E, e) > 0 for Hm-almost all e ∈ E. Moreover,

if Hm(E) < +∞, then properties 4.1 and 4.2 are preserved Hm-almost everywhere for
subsets of E (see Theorem 3.9).

Theorem 4.4. Let E be an Hm-measurable and m-recti�able subset of Rn with Hm(E) <
+∞. Then E is m-linearly approximable.
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Figure 4.1: Representation of the sets described in de�nition 4.2. Condition 4.1 implies
that B(x, ηr) contains a good portion of E for all x ∈W ∩B(e, r); 4.2 implies that most
of E ∩B(e, r) lies in W (ηr).

Proof. Let 0 < η < 1
2 . Let f : Rm → Rn be a Lipschitz function and let B ⊂ Rm be a

measurable set of �nite Lebesgue measure with fB ⊂ E. We have to verify 4.1 and 4.2
for Hm-almost all a ∈ fB. By Theorem 3.17 Θm

∗ (fB, a) > 0 for Hm-almost all a ∈ fB,
then we may assume that there is r0 > 0 and λ > 0 such that

Hm(E ∩B(a, r)) ≥ λrm (4.3)

for all 0 < r < r0 and all a ∈ fB. In fact B is the union of the sets (
←−
f {a ∈ fB |

Θm
∗ (fB, a) > 1/i})∩B and of a set of measure zero. Therefore we may consider each of

them separately. By Theorem 3.12, f is di�erentiable Hm-almost everywhere in B. Let
Lx = Df [x]−Df [x](x) +f(x) and Wx = LxR

m. By Theorem 3.14, we can suppose that
dimWx = m for Hm-almost all x ∈ B. Moreover for such x ∈ B there is

0 < l(x) := min
u∈Sm−1

|Df [x](u)|,

which means that |Lxy −Lxx| ≥ l(x)|y − x| for all y ∈ Rm. Let ε > 0. By the Lebesgue
density Theorem (see Corollary 2.3) Hm-almost all x ∈ B have density equal to 1. Let
0 < δ < 1 and x ∈ B of density 1; let us suppose that ∀r > 0 there exist yr ∈ B(x, r/δ)
such that d(yr, B) ≥ δ2r. We have that B(yr, δ̄

2r) ⊂ Rm \ B for some δ̄ < δ �xed.
Letting N = δ2 + 1

δ we obtain

Lm(B ∩B(x,Nr))

Lm(B(x,Nr))
≤ L

m(B(x,Nr) \B(yr, δ̄
2r))

Lm(B(x,Nr))
= 1−

(
δδ̄2

(δ3 + 1)

)m
< 1
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and x does not have density 1, a contradiction. Therefore we can �nd a compact subset
C ⊂ B and two numbers r0 > 0 and δ < min{η/4, 1/L} such that Lm(B \ C) < ε, such
that for almost all x ∈ C,

|f(y)− Lxy| < δ2|y − x| for all y ∈ B(x, r0) (4.4)

l(x) ≥ 2δ (4.5)

d(y,B) < δ2r for all y ∈ B(x, r/δ), 0 < r < r0. (4.6)

We then partition C into �nitely many Borel subsets Ci with d(Ci) < r0. Let x ∈ Ci for
some i �xed, a = f(x) such that Θm(E \ fCi, a) = 0. We can verify 4.1 and 4.2 in these
points of fCi. Let 0 < r < δr0/2 and b ∈ Wx ∩ B(a, r) and b = Lxy; since l(x) ≥ 2δ,
y ∈ B(x, r/δ). There exists z ∈ B such that |y − z| < δ2r, whence |x − z| < 2r/δ < r0.
Therefore, because ‖Df [x]‖ ≤ L < 1/δ,

|f(z)− b| ≤ |f(z)−Lxz|+ |Lxz − b| < δ2|z − x|+ |Lxz − b| ≤ δ2|z − x|+L|z − y| < 3δr

and, since 4δ < η, it follows by 4.3 that

Hm(E ∩B(b, ηr)) ≥ Hm(E ∩B(f(z), δr)) ≥ λδmrm

and 4.1 is veri�ed.
By 4.4 we obtain that

f(Ci ∩B(x, r/δ)) ⊂Wx(δr) ⊂Wx(ηr).

Since d(Ci) < r0 and by 4.5, 4.6, we have for z ∈ Ci \B(x, r/δ)

|a− f(z)| ≥ |Lxx− Lxz| − |Lxz − f(z)| ≥ 2δ|x− z| − δ2|x− z| > δ|x− z| ≥ δr

whence

f(Ci \B(x, r/δ)) ⊂ Rn \B(a, r).

Therefore fCi ∩B(a, r) ⊂Wx(ηr) and since Θm(E \ fCi, a) = 0 we obtain 4.2.

Before proving that E has almost everywhere an approximate tangent plane (whose
de�nition still must be given) we need to show some results, and give some notations.
Let V ∈ G(n, n−m) and QV := PV ⊥ . Then we set

X(a, V, s) := {x ∈ Rn | d(x− a, V ) < s|x− a|} = {x ∈ Rn | |QV (x− a)| < s|x− a|}

and

X(a, r, V, s) := X(a, V, s) ∩B(a, r)

for a ∈ Rn, 0 < s < 1 and r > 0. For a representation of X(a, V, s) see �gure 4.2.

Lemma 4.5. Suppose E ⊂ Rn, V ∈ G(n, n − m), 0 < s < 1, and r > 0. If E ∩
X(a, r, V, s) = ∅ for all a ∈ E then E is m-recti�able.
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Figure 4.2: Representation of X(a, V, s) in R2.

Proof. We can suppose that d(Ei) < r. Then |QV (b) −QV (a)| ≥ s|b − a| for all b ∈ E.
Hence QV |E is Lipschitz injective and the inverse f = Q−1

V |E is Lipschitz. Since QVE lies

on an m-plane and E = f(QVE), E is m-recti�able.

Lemma 4.6. Let V ∈ G(n, n −m), 0 < s < 1, δ, λ > 0. If A is purely m-unrecti�able

and

Hm(A ∩X(x, r, V, s)) ≤ λrmsm

for all x ∈ A, 0 < r < δ, then

Hm(A ∩B(a, δ/6)) ≤ 2λ20mδm

for all a ∈ Rn.

Proof. We can assume that A ⊂ B(a, δ/6) and that

A ∩X(x, V, s/4) 6= ∅

for x ∈ A. The set where this fails, by Lemma 4.6, has Hm-measure zero. Let

h(x) = sup{|y − x| | y ∈ A ∩X(x, V, s/4)}

for x ∈ A. Then 0 < h(x) ≤ δ/3. Letting

Cx = Q−1
V (QVB(x, sh(x)/4))

and x′ ∈ A ∩X(x, V, s/4) with |x− x′| ≥ 3h(x)/4, we obtain that

A ∩ Cx ⊂ X(x, 2h(x), V, s) ∪X(x′, 2h(x), V, s)
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Figure 4.3: Geometric representation, in R2, of the fact that A∩Cx ⊂ X(x, 2h(x), V, s)∪
X(x′, 2h(x), V, s).

for x ∈ A (see �gure 4.3). Let us prove it: if z ∈ A ∩ Cx, then |QV (x − z)| ≤ sh(x)/4,
moreover |x − z| ≤ h(x) since if |x − z| > h(x), then |QV (x − z)| < s/4|x − z| and
z ∈ X(x, V, s/4), therefore we obtain h(x) < h(x) a contradiction. Hence it is true that
|x′ − z| ≤ 2h(x). Suppose that z /∈ X(x′, 2h(x), V, s). It follows that

s|x′ − z| ≤ |QV x′ −QV z| ≤ |QV (x′ − x)|+ |QV (x− z)| <
< s|x− x′|/4 + sh(x)/4 ≤ sh(x)/2,

and knowing that |x− x′| ≥ 3h(x)/4, we have that

|x− z| > 3h(x)/4− h(x)/2 = h(x)/4 ≥ |QV (x− z)|/s

which means that z ∈ X(x, 2h(x), V, s). Then by hypothesis we have

Hm(A ∩ Cx) ≤ 2λ(2h(x))msm.

By Theorem 1.16 there exists B ⊂ A countable such that the balls QVB(x, sh(x)/20) ⊂
V ⊥ for x ∈ B are disjoint and

QVA ⊂
⋃
x∈B

QVB(x, sh(x)/4),

which means that A ⊂
⋃
x∈B Cx. Therefore, recalling that Hm(V ⊥ ∩ B(y, r)) = 2mrm
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for all y ∈ V ⊥, we have that

Hm(A) ≤
∑
x∈B
Hm(A ∩ Cx) ≤ λ2m+1

∑
x∈B

(sh(x))m =

= 2λ20m
∑
x∈B
Hm(V ⊥ ∩B(QV x, sh(x)/20)) ≤

≤ 2λ20mHm(V ⊥ ∩B(QV a, δ/2)) = 2λ20mδm.

Corollary 4.7. If V ∈ G(n, n −m), δ > 0 and A ⊂ Rn is purely m-unrecti�able with

Hm(A) < +∞, then

lim sup
s→0

sup
0<r<δ

(rs)−mHm(A ∩X(a, r, V, s)) > 0

for Hm-almost all a ∈ A.

Proof. Let Z be the set of points in A such that the statement does not hold. Then let
us de�ne

Zi =

{
a ∈ A | sup

0<r<δ
(rs)−mHm(A ∩X(a, r, V, s)) < λ for 0 < s < 1/i

}
.

We have that Z1 ⊂ Z2 . . . and Z ⊂
⋃+∞
i=1 Zi. Therefore by the last Lemma we proved,

we have that Hm(Zi ∩B(a, δ/6)) ≤ 2λ20mδm for all i, which implies (for i→ +∞) that

Hm(Z ∩B(a, δ/6)) < 2λ20mδm.

Letting λ→ 0 we obtain that Hm(Z) = 0 (since Z intersects every ball of radius δ/6 in
a set of measure zero).

Corollary 4.8. Let V ∈ G(n, n −m), 0 < s < 1 and A ⊂ Rn a purely m-unrecti�able

set with Hm(A) < +∞. Then

Θ∗m(A ∩X(a, V, s), a) ≥ sm

240m+1

for Hm-almost all a ∈ A.

Proof. The set of points were this fails is contained in the union of Ai, where Ai is the
set of points a ∈ A such that

Hm(A ∩X(a, r, V, s)) < λsmrm

for all 0 < r < 1/i, with λ = 120−m/3.

Taking 0 < δ < 1/i we have that Hm(Ai ∩B(a, δ/6)) ≤ 2λ20mδm which implies that

Θ∗m(Ai, a) ≤ 2 · 60mλ =
2−m+1

3
< 2−m

which means, by Theorem 3.9, that Hm(Ai) = 0 and we can conclude.

57



De�nition 4.4 (Approximate tangent plane). Let E ⊂ Rn, a ∈ Rn and V ∈ G(n,m).
We say that V is an approximate tangent m-plane for A in a if Θ∗m(A, a) > 0 and

lim
r→0

r−mHm (A ∩B(a, r) \X(a, V, s)) = 0

for all 0 < s < 1.

We will indicate the set of all approximatem-tangent planes forA in a with apTanm(A, a).
If the set is formed by just one element V we will simply write V = apTanm(A, a). Note
that apTanm(A, a) could be empty in general. The following lemma is a consequence of
Theorem 3.9.

Lemma 4.9. Let A ⊂ B ⊂ Rn be two Hm-measurable sets, with Hm(B) < +∞. Then

apTanm(A, a) = apTanm(B, a) for Hm-almost all a ∈ A.

Now we are ready to state the equivalence of m-recti�ability and existence of an
approximate tangent m-plane, which moreover will be unique. The hypothesis that
Hm(E) < +∞ is important. Let Q2 = {qi}i=1,... and Ii,j = [qi, qj ] the closed segment
with endpoints qi and i < j. Then

E =
⋃
i<j

Ii,j

is a 1-recti�able set of R2. Since H1(E ∩B(x, r)) = +∞ for all r > 0 and x ∈ E, E does
not have an approximate tangent line at any point x ∈ E, even if it is 1-recti�able.

Theorem 4.10. Let E ⊂ Rn an Hm-measurable set with Hm(E) < +∞. Then the

following are equivalent:

1. E is m-recti�able.

2. E is linearly approximable.

3. There is a unique approximate tangent m-plane for E at e for Hm-almost all e ∈ E.

4. There is an approximate tangent m-plane for E at e for Hm-almost all e ∈ E.

Proof. That 1. implies 2. was showed in Theorem 4.4. Let us suppose that 2. holds; by
Theorem 3.9 Θ∗m(E, e) > 0 for Hm-almost all e ∈ E, letW ∈ A(n,m) be as in de�nition
4.2 with e ∈ W . Let V := W − e = {w − e | w ∈ W}, and x ∈ B(e, r) \ X(e, V, s). If
|x− e| > εr, then d(x− e, V ) ≥ s|x− e| > sεr and so x /∈W (sεr). Hence

B(e, r) \X(e, V, s) ⊆
(
B(e, r) \W (sεr)

)
∪B(e, εr).

We can suppose that Θ∗m(E, e) < +∞, therefore there is δ such that

Hm(E ∩B(e, εr)) <
(

Θ∗m(E, e) + 1
)

(2r)mεm
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for all 0 < r < δ. Moreover Hm(E ∩ B(e, r) \ W (sεr)) < εsrm for all 0 < r < r0.
Therefore we can estimate r−mHm(E ∩B(e, r) \X(e, V, s)) (for 0 < r < min{δ, r0}):

r−mHm(E ∩B(e, r) \X(e, V, s)) ≤ r−mHm
((
B(e, r)∩E \W (sεr)

)
∪B(e, εr)∩E

)
≤

≤ r−mHm (B(e, r) ∩ E \W (sεr)) + r−mHm(E ∩B(e, εr)) ≤

≤ εs+
(

Θ∗m(E, e) + 1
)

2mεm

which means that V is an approximate tangent m-plane for E at e. Let us suppose
that U is another approximate tangent m-plane for E at e, and, by contradiction, that
V 6= U . Then there are η, s small enough such that for all r > 0 there is z ∈W ∩B(e, r)
such that B(z, ηr)∩X(e, U, s) = ∅. Then E ∩B(z, ηr) ⊆ E ∩B(e, r(1 + η)) \X(e, U, s).
This leads to

0 < λ ≤ lim sup
r→0

r−mHm(E∩B(z, ηr)) ≤ lim
r→0

r−mHm
(
E∩B(e, r(1+η))\X(e, U, s)

)
= 0,

which is a contradiction. Then, U = V = apTanm(E, e).

That 3. implies 4. it is trivial. To show that 4. implies 1. we can show that if E is
purelym-unrecti�able then E does not have an approximate tangentm-planeHm-almost
everywhere; then we can conclude using Lemma 4.9 and Theorem 4.3. Let us assume that
F is a purely m-unrecti�able Hm-measurable set of �nite Hm-measure. Since G(n,m) is
compact, it can be covered with �nitely many balls B(W, 1/3). Let us �x W ∈ G(n,m).
It is su�cient to show that the set DW = {a ∈ F | ∃Va ∈ apTanm(F, a) ∩ B(W, 1/3)}
has Hm-measure zero. Let us suppose that Hm(DW ) > 0. Therefore the set of points
a ∈ C of DW for which, for some δ > 0,

sup
0<r<δ

r−mHm(DW ∩B(a, r) \X(a, Va, 1/3)) < λ3−m

has positive Hm-measure. For r > 0, if |PW (x − a)| < 1
3 |x − a| implies |PVa(x − a)| <

2
3 |x− a| which implies |QVa(x− a)| > 1

3 |x− a|: this shows that

X(a, r,W⊥, 1/3) ⊂ B(a, r) \X(a, Va, 1/3).

Therefore for a ∈ C,
Hm(C ∩X(a, r,W⊥, 1/3)) < λ3−mrm

for all 0 < r < δ and choosing 2−mλ < 240−m−1 Corollary 4.8 leads to a contradiction.
Then Hm(DW ) = 0.

Corollary 4.11. Let F ⊂ Rn be Hm-measurable with �nite Hm measure. F is purely

m-unrecti�able if and only if apTanm(F, a) = ∅ for Hm-almost all a ∈ F .

Lemma 4.12. Let V be a vectorial space of �nite dimension and S : V × V → R a

bilinear symmetric map. Then there exists {e1, . . . , em} orthogonal basis for V such that

S(ei, ej) = 0 for i 6= j. Moreover S(ej , ej) ≥ S(ei, ei) for j > i.
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Proof. Inductively, we choose ei in the compact set Ci := {x ∈ V | |x| = 1, x ·ej = 0 j <
i} such that S(ei, ei) ≥ S(x, x) for all x ∈ Ci. Then, noting that |ei+tej |−1(ei+tej) ∈ Ci
for all t ∈ R with i < j, we can deduce that S(ei, ej) = 0.

Now we will state a lemma on projections of m-unrecti�able sets that are weakly
m-linearly approximable.

Lemma 4.13. Let A ⊂ Rn be a Hm-measurable with Hm(A) < +∞. Then if A is

both purely m-unrecti�able and weakly m-linearly approximable, Hm(PVA) = 0 for all

V ∈ G(n,m).

Proof. Let 0 < ε < 1/2 and V ∈ G(n,m). We can �nd C ′ ⊂ A such that Hm(A \ C ′) <
ε/2 and such that there exist 0 < δ < 1, and r1 > 0 for which

Hm(A ∩B(a, r)) ≥ δrm (4.7)

for all 0 < r < r1 and a ∈ C ′. This is possible because A is the union of the sets
Ai := {a ∈ A | Θm

∗ (A, a) > 1/i} and a set of measure zero {a ∈ A | Θm
∗ (A, a) = 0}. This

is true since A is weakly m-linearly approximable. We can �nd a compact set C ⊂ C ′

such that the following properties hold: Hm(C ′ \ C) < ε/2 and there are two positive
numbers η < δε and r0 < r1 such that for all a ∈ C and 0 < r < r0 we have that there
is W ∈ A(n,m) with a ∈W for which

Hm(A ∩B(a, 2r) \W (ηr/2)) < δ(ηr/2)m.

Let us assume that there exists z ∈ C∩B(a, r) such that d(z,W ) > ηr. ThenB(z, ηr/2) ⊂
B(a, 2r) \W (ηr/2). Therefore

Hm(B(a, 2r) \W (ηr/2)) ≥ Hm(B(z, ηr/2)) ≥ δ(ηr/2)m,

which is a contradiction.

Then we have found C ⊂ A compact with Hm(A \ C) < ε and δ > 0, η > 0, r0 > 0
such that η < δε < ε and the following hold:

� the inequality referred by 4.7 holds for all 0 < r < r0 and a ∈ C.

� For all 0 < r < r0 and a ∈ C there is W ∈ A(n,m) with a ∈W for which

C ∩B(a, r) \W (ηr) = ∅. (4.8)

We also have that
Hm (PV (A \ C)) < ε (4.9)

and since C is purely m-unrecti�able, we have from Lemma 4.5 that

Hm
(

+∞⋃
i=1

{a ∈ C | C ∩X(a, 1/i, V ⊥, η) = ∅}

)
= 0.
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Then for Hm-almost all points a ∈ C there are b ∈ C arbitrarily close to a such that

|PV (b− a)| < η|b− a|;

let us take a, b ∈ C with this property, and r = |a − b| < r0. Let W ∈ A(n,m) with
a ∈W such that 4.8 holds and c = PW b. Therefore, using 4.8, we have that

|c− b| ≤ ηr;

we have also that |c−a| ≤ r and |c−a| ≥ |b−a|−|c−b| ≥ (1−η)r > r/2 since η < ε < 1/2.
So r/2 < |c − a| ≤ r and one gets easily that |PV (c − a)| < 2ηr. By Lemma 4.12 we
can select an orthonormal basis {e1, . . . , em} for W − a such that PV (ei) ·PV (ej) = 0 for
j 6= i. Then for some i we have that

|PV ei| ≤ 2r−1|PV (c− a)| < 4η

because otherwise

|PV (c− a)|2 =

m∑
i=1

|(c− a) · ei|2|PV ei|2 > 4r−2|PV (c− a)|2|c− a|2 > |PV (c− a)|2.

We deduce that PV (W ∩ B(a, r)) is contained in an m-rectangle with m − 1 sides of
length 2r and one of length 8ηr. Therefore PV (C∩B(a, r)) is contained in a m-rectangle
of length 10ηr, 2r + 2ηr, . . . , 2r + 2ηr. Since η < 1/2 we have that

Hm(PV (C ∩B(a, r))) ≤ cηrm (4.10)

for a suitable constant depending only by m. Using Vitali's covering theorem we can
�nd disjoint balls B(ai, ri) satisfying 4.10 with ai ∈ C such that

Hm
(
C \

+∞⋃
i=1

B(ai, ri)

)
= 0.

Using 4.7 and 4.10 we get

Hm(PV (C)) ≤
+∞∑
i=1

Hm(PV (C ∩B(ai, ri))) ≤

≤ cη
+∞∑
i=1

rmi ≤ cηδ−1
+∞∑
i=1

Hm(A ∩B(ai, ri)) ≤ cεHm(A).

Using also 4.9 we have that Hm(PV (A)) < (1 + cHm(A))ε and we can conclude letting
ε→ 0.

We now prove a Theorem which tells us basically that m-recti�able sets are related
to m-weakly linearly approximable sets. Moreover, we will see a relation with E and the
orthogonal projections of E.
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Theorem 4.14. Let E ⊂ Rn be Hm-measurable with 0 < Hm(E) < +∞. Then E is

m-recti�able if and only if E is m-weakly linearly approximable. Moreover,

Θm(E, x) = 1 for Hm-almost all x ∈ E (4.11)

Hm(PV (E)) > 0 for γn,m-almost all V ∈ G(n,m) . (4.12)

Proof. If E ⊂ Rn is m-recti�able then it is also m-linearly approximable, in particular
it is weakly m-linearly approximable. Let us suppose that E is weakly m-linearly ap-
proximable and let ε > 0. Since E has positive lower density Hm-almost everywhere, we
have that

E =
⋃
n∈N

En

where En = {x ∈ E | Θm
∗ (E, x) > 1/n} for n ≥ 1 and Hm(E0) = 0. Since Hm(E) =

limn→+∞Hm(En), we can �nd a compact subset F of E such that Hm(E \ F ) < ε and
�nd δ, r0 such that

Hm(E ∩B(a, r)) > δrm (4.13)

for all a ∈ F and 0 < r < r0. Let η > 0, 1/2 < u < 1 and 0 < γ ≤ 1 with η < γ(1−u)/8.
As we did in Lemma 4.13 we can �nd F1 ⊂ F and r1 ≤ r0 with Hm(F \ F1) < ε such
that, for any a ∈ F1 and for all 0 < r < r1, there exists W ∈ A(n,m) with a ∈ W for
which

F1 ∩B(a, r) \W (ηr) = ∅ (4.14)

W ∩B(a, r) ⊂ F (ηr). (4.15)

Let us explain how to obtain the property 4.15. Note that �xed η > 0, λ = λ(a) in
De�nition 4.3 depends only on a and we can choose F ′ ⊂ F large enough such that
λ(a) ≥ λ0 > 0 for all a ∈ F ′. Let us take F1 ⊂ {x ∈ F ′ | Θm(E \ F ) = 0} compact
approximating F ′. Let a ∈ F1. Suppose that, ∀r > 0 , there exists zr ∈W ∩B(a, r) such
that d(zr, F ) > ηr; then B(zr, ηr) ∩ F = ∅. Since zr → a, for r small enough

Hm((E \ F ) ∩B(a, r)) ≥ Hm((E \ F ) ∩B(z, ηr)) ≥ λ(a)rm ≥ λ0r
m.

This implies that Θm
∗ (E \ F, a) > 0 which is a contradiction. Therefore W ∩ B(a, r) ⊂

F (ηr). We can notice that forHm-almost all a ∈ F1, Θ∗m(F1, a) ≤ 1 and Θm(E\F1, a) =
0. Therefore, as before, for Hm-almost all a ∈ F1 there exists a positive number r2 ≤ r1

such that for all 0 < r < r2 there is W ∈ A(n,m) with a ∈W for which

F1 ∩B(a, r) \W (ηr) = ∅, (4.16)

W ∩B(a, r) ⊂ F1(ηr), (4.17)

Hm(E ∩B(a, r)) < 3mrm, (4.18)

H((E \ F1) ∩B(a, r)) < 400−mtδrm (4.19)

with t = 2mγm(um − u2m).
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Now, �x such a, r and W and let V ∈ G(n,m) be such that PV |W−a : W − a→ V is
injective and γ ≤ ‖(PV |W−a)−1‖−1. Then

|PV x− PV y| ≥ γ|x− y| for x, y ∈W. (4.20)

We will show , given δ, u, γ, and for η small enough, that

Hm(PV (E ∩B(a, r))) ≥ (2γu2r)m. (4.21)

With 4.21 we can show everything: if E were not recti�able, we would apply Lemma
4.13 to an unrecti�able subset of E of positive measure, �nding a contradiction. Taking
V ∈ G(n,m) with V = W + a, then γ = 1 and we have that

Hm(E ∩B(a, r)) ≥ (2u2r)m

for all 0 < r < r2; this means that Θm(E, x) = 1 since Θ∗m(E, x) ≤ 1 for Hm-almost
all x ∈ E. Then, recalling Corollary 2.14, PV |W−a is injective (as well as PV |W ) for
γn,m-almost all V ∈ G(n,m) and since γn,m({V | ‖(PV |W−a)−1‖−1 < γ})→ 0 for γ → 0
we obtain that Hm(PV (E)) > 0 for almost all V ∈ G(n,m).

We now suppose that 4.21 fails Hm-almost everywhere in F1. Set

C = PV (F1 ∩B(a, r)) and D = PV (W ∩B(a, ur)) \ C,

C is compact and by hypothesis we have that

Hm(C) < (2γu2r)m.

By inequality 4.20 we have that V ∩ B(PV a, γur) ⊂ PV (W ∩ B(a, ur)): let z ∈ V ∩
B(PV a, γur), then there is b ∈ W such that PV b = z and (using 4.20) |a− b| < ur. We
obtain that

Hm(D) = Hm
(
PV (W ∩B(a, ur))

)
−Hm(C) ≥

≥ Hm
(
V ∩B(PV a, γur)

)
− 2mγmu2mrm = 2mγm(um − u2m)rm = trm

which means that
Hm(D) ≥ trm. (4.22)

We now cover D with balls B(b, ρ) with b ∈ D and C ∩ U(b, ρ) = ∅, C ∩ ∂B(b, ρ) 6= ∅.
Then we apply Theorem 1.16 to the balls B(b, 5ρ), and we �nd a �nite collection of
disjoint balls B(bi, 5ρi) such that B(bi, 25ρi) covers D. Then, by estimate 4.22, we get

p∑
i=1

ρmi ≥ 50−mtrm. (4.23)

By 4.17 we have that ρi ≤ ηr for i = 1, . . . , p. Now we set

Si = P−1
V (B(bi, ρi/2)) ∩W (γ(1− u)r/4)
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and we can suppose that for i = 1, . . . , q Si does not contain any point of F . Let
ci ∈ F ∩ Si for i = q + 1, . . . , p. We have that bi = PV b

′
i with b

′
i ∈ W ∩ B(a, ur), and

from the last considerations we obtain that

|a− ci| ≤ |a− b′i|+ |b′i − PW ci|+ |PW ci − ci| ≤
≤ ur + |bi − PV (PW ci)|/γ + (1− u)r/4 ≤

≤ ur + |bi − PV ci|/γ + |PV (ci − PW ci)|/γ + (1− u)r/4 ≤
≤ ur + ρi/(2γ) + (1− u)r/2 ≤ ηr/γ + (1 + u)r/2.

Since η < γ(1− u)/3, this gives

B(ci, ρi/4) ⊂ B(a, r).

Moreover PV (B(ci, ρi/4)) ⊂ V ∩ U(bi, ρi) ⊂ V \ C which implies that

p⋃
i=q+1

E ∩B(ci, ρi/4) ⊂ (E \ F1) ∩B(a, r). (4.24)

We can then deduce that the balls B(ci, ρi/4) are disjoint, and combining 4.13, 4.24 and
4.19 we obtain that

δ4−m
p∑

i=q+1

ρmi < 400−mtδrm

and by 4.23 that
q∑
i=1

ρmi > 100−mtrm. (4.25)

Now we will work for i = 1, . . . , q; let vi ∈ ∂B(bi, ρi) ∩ C then vi = PV ei with ei ∈
F1 ∩B(a, r) ⊂W (ηr) and we obtain that

ei ∈ P−1
V (∂B(bi, ρi)) ∩W (ηr) ∩ F1.

We have η−1ρi ≤ r < r1 and by 4.15 we obtain

Ai = B(ei, η
−1γ(1− u)ρi/16) ∩Wi ⊂ F ((1− u)ρi/16).

Let us suppose that bi ∈ PVAi, then there is x ∈ Ai with PV x = bi and we can �nd
a point y ∈ F such that |x − y| ≤ (1 − u)ρi/16. Then PV y ∈ B(bi, ρi/2) and since
η < γ(1− u)/8, ρi ≤ ηr. Recalling where we have taken ei we have

d(y,W ) ≤ |y−x|+|x−ei|+d(ei,W ) < (1−u)ρi/16+η−1γ(1−u)ρi/16+ηr < γ(1−u)r/4

and so y ∈ Si ∩ F , which is impossible. Then bi /∈ PVAi.
With ∂V we will indicate the boundary relative to V . Let Ii be the closed segment with
end-points bi and PV ei, then Ii ∩ ∂V PV (Ai) 6= ∅, since bi ∈ Ii \ PV (Ai) and PV ei ∈
Ii ∩ PV (Ai). We have that ∂V PV (Ai) = PV (∂WiAi), so we can select ai ∈ ∂WiAi such
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that PV (ai) ∈ Ii. Let Ji the closed segment connecting ei and ai. Therefore Ji ⊂ Ai and
PV Ji ⊂ Ii. Since ei ∈ P−1

V (∂B(bi, ρi)) ∩W (ηr) ∩ F1 then

|PV x− bi| ≤ ρi (4.26)

for all x ∈ Ji. Since Ji ⊂ Ai ⊂ F ((1− u)ρi/16), Ji is contained in the union of the balls
B(x, ρi) for x ∈ F . The length of Ji is η

−1γ(1−u)ρi/16 and we can �nd a �nite number
of these balls, let us say B(xi,j , ρi) for j = 1, . . . , k, such that

Ji ∩B(xi,j , ρi) 6= ∅ (4.27)

B(xi,j , ρi) ∩B(xi,l, ρi) = ∅ for j 6= l (4.28)

k > γ(1− u)/(160η). (4.29)

To do so, one can use Theorem 1.16.
We set

Bi =
k⋃
j=1

B(xi,j , ρi)

for i = 1, . . . , q. Using 4.26 and 4.27 we have that PVBi ⊂ B(bi, 3ρi) (by standard
estimates). Since B(bi, 5ρi) are disjoint then so are the sets PVBi, as well as Bi. Since
ρi ≤ ηr, by 4.27 and since η < (1− u)/8,

|xi,j−ei| ≤ H1(Ji)+ρi = η−1γ(1−u)ρi/16+ρi < γ(1−u)r/16+(1−u)r/8 < (1−u)r/4.

Taking b′i ∈W ∩B(a, ur) with PV b
′
i = bi, as before

|ei − b′i| ≤ |ei − PW ei|+ |PW ei − b′i| ≤
≤ ηr + |PV (PW ei)− bi|/γ ≤ ηr + |PV (PW ei)− PV ei|/γ + |PV ei − bi|/γ ≤

≤ ηr + ηr/γ + ρi/γ ≤ 3ηr/γ < (1− u)r/2.

Let z ∈ B(xi,j , ρi), then

|z − a| ≤ |z − xi,j |+ |xi,j − ei|+ |ei − b′i|+ |b′i − a| ≤ · · · ≤ (7r + ur)/8 < r

and we obtain that Bi ⊂ B(a, r). Now we use 4.28, 4.29 and 4.13 to write

Hm(E ∩Bi) =
k∑
j=1

Hm(E ∩B(xi,j , ρi)) > kδρmi > 160−1γ(1− u)η−1δρmi

for all i = 1, . . . , q from which follows, by 4.18 and 4.25, that

3mrm > Hm(E ∩B(a, r)) ≥
q∑
i=1

Hm(E ∩Bi) ≥

≥ 160−1γ(1− u)η−1δ

q∑
i=1

ρmi > 100−m160−1γ(1− u)η−1δtrm.

We come to a contradiction, since we can choose η as small as much we desire for given
δ, u and γ. Then the inequality referred by 4.21 holds and the proof is complete.
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As a consequence of 4.14, a set as in Lemma 4.13 has Hm-measure zero. Now we
shall prove a Theorem which will be useful for us in the next chapter. First we prove the
following lemma:

Lemma 4.15. Let µ be a measure on Rn, F ⊂ Rn closed and δ,M > 0. If

µ(B(x, r)) ≤Mrn

for all 0 < r < δ and B(x, r) ∩ F 6= ∅, then

lim
r→0

r−nµ (B(x, r) \ F ) = 0

for Ln-almost all x ∈ F .

Proof. Let x ∈ F and 0 < r < δ/5. Let sy = d(y, F )/2 for y ∈ B(x, r) \ F . Then
0 < sy ≤ r/2 and B(y, sy) ⊂ B(x, 2r) \ F . By Theorem 1.16 there is a countable set
S ⊂ B(x, r) \ F such that B(y, sy) with y ∈ S are disjoint and

B(x, r) \ F ⊂
⋃
y∈S

B(y, 5sy).

Therefore,

µ(B(x, r) \ F ) ≤ 5nM
∑
y∈S

sny ≤ 5nMα(n)−1Ln(B(x, 2r) \ F )

and by Lebesgue density Theorem

lim
r→0

r−nLn(B(x, 2r) \ F ) = 0

for Ln-almost all x ∈ F . This proves the Lemma.

Theorem 4.16. Let µ a measure on Rn and E a Ln-measurable set with µ(E) = 0.
Then, for Ln-almost all x ∈ E, we have that

lim sup
r→0

r−nµ(B(x, r)) = 0

or

lim sup
r→0

r−nµ(B(x, r)) = +∞.

Proof. We may assume that E is closed and that the set of points x ∈ E for which
lim supr→0 r

−nµ(B(x, r)) = +∞ has Ln-measure zero. Then we set, for j = 1, 2, . . . ,

Fj = {x ∈ E | µ(B(x, r)) ≤ jrn for 0 < r < 1/j}.

Each Fj is closed: let xk → x a converging sequence of elements in Fj with x ∈ E, and
let 0 < r < 1/j. Let 0 < ε < 1/j − r and rk → r + ε as k → +∞. Then

µ(B(x, r)) ≤ lim sup
k→+∞

µ(B(xk, rk)) ≤ j(r + ε)m
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which means that µ(B(x, r)) ≤ jrm for all 0 < r < 1/j, i.e. x ∈ Fj . Moreover

{x ∈ E | lim sup
r→0

r−nµ(B(x, r)) < +∞} =

+∞⋃
j=1

Fj .

Now we just need to show that the limit is 0 for Ln-almost all x ∈ Fj . Let x ∈ Fj , then
B(x, r)∩Fj 6= ∅ and µ(B(x, r)) ≤ jrn for all 0 < r < 1/j. Then, since µ(E) = 0 we have

lim
r→0

r−nµ(B(x, r)) =

= lim
r→0

r−nµ(B(x, r) \ Fj) + lim
r→0

r−nµ(B(x, r) ∩ Fj) =

= lim
r→0

r−nµ(B(x, r) \ Fj) = 0

The proof of this last theorem, and of the lemma we used, works also when Rn and
Ln are replaced by Sn−1 and Hn−1 Sn−1.
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Chapter 5

Besicovitch-Federer projection

Theorem

In this Chapter we enunciate and prove the Besicovitch-Federer Theorem, which gives a
characterization of recti�able sets in terms of some properties of their orthogonal projec-
tion. The Theorem was proved by Besicovitch for n = 2 and m = 1, while the proof for
the general case is credited to Federer. First we state the Theorem:

Theorem 5.1. Let A ⊂ Rn be Hm-measurable with Hm(A) < +∞. Then

1. A is m-recti�able if and only if Hm(PVB) > 0 for γn,m-almost all V ∈ G(n,m) for

all B ⊂ A Hm-measurable with Hm(B) > 0.

2. A is purely m-unrecti�able if and only if Hm(PVA) = 0 for γn,m-almost all V ∈
G(n,m).

These statements are equivalent, and in view of Theorem 4.14, we just need to show
that a purely m-unrecti�able set projects in a set of Hm-measure zero for γn,m-almost
all V ∈ G(n,m). To do so we will divide the proof in 6 Lemmas.

Lemma 5.2. Let A be purely m-unrecti�able. Let δ > 0, V ∈ G(n, n−m) and

A1,δ(V ) =

{
a ∈ A | lim sup

s→0
sup

0<r<δ
(rs)−mHm(A ∩X(a, r, V, s)) = 0

}
.

Then Hm(A1,δ(V )) = 0.

Proof. It follows immediately from Corollary 4.7.

Lemma 5.3. Let δ > 0, V ∈ G(n, n−m) and

A2,δ(V ) =

{
a ∈ A | lim sup

s→0
sup

0<r<δ
(rs)−mHm(A ∩X(a, r, V, s)) = +∞

}
.

Then Hm(QV (A2,δ(V ))) = 0.
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Proof. Let 0 < M < +∞. For all a ∈ A2,δ(V ) there are arbitrarily small s > 0 and some
r, 0 < r < δ, such that

Hm(A ∩X(a, r, V, s)) ≥M(rs)m = M2−mHm(QVX(a, r, V, s)). (5.1)

We can notice thatQVX(a, r, V, s) = U(QV a, rs)∩V ⊥. Considering the coverQVX(a, ra, V, sa)
of QV (A2,δ(V )) where ra, sa are such that 5.1 holds, we can apply Vitali's covering The-
orem and �nd a countably many disjoint balls such that

Hm
(
QV (A2,δ(A)) \

+∞⋃
i=1

QVX(ai, ri, V, si))

)
= 0.

Hence we obtain

Hm(QV (A2,δ(V ))) ≤
+∞∑
i=1

Hm(QVX(ai, ri, V, si)) ≤

≤
+∞∑
i=1

M−12mHm(A ∩X(ai, ri, V, si)) ≤M−12mHm(A).

Letting M → +∞ we obtain Hm(QV (A2,δ(V ))) = 0.

Lemma 5.4. Let V ∈ G(n, n−m) and

A3(V ) = {a ∈ A | |A ∩ (V + a)| = +∞}.

Then Hm(QV (A3(V ))) = 0.

Proof. Recall that |A∩ (V + a)| = H0(A∩ (V + a)). This Lemma follows from Theorem
3.15: ∫ ∗

V ⊥
H0(A ∩ (V + y)) dHmy =

∫ ∗
V ⊥
H0(A ∩

←−
QV {y}) dHmy ≤ cHm(A) < +∞,

and we have that H0(A ∩ (V + y)) < +∞ for Hm-almost all y ∈ V ⊥. From this, our
assertion follows .

Now we will introduce some more notations, which will be useful for us in the next
two lemmas. Let m+ 1 < n. We set

Xm+1(0, L, s) = {x ∈ Rm+1 | d(x, L) < s|x|}

for L ∈ G(m+ 1, 1). For 0 < s < 1 and j ∈ {m+ 1, . . . , n} we set

Z(j, s) =

{
x ∈ Rn |

m∑
i=1

x2
i <

s2

1− s2
x2
j

}
.
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Noting that √√√√ m∑
i=1

x2
i < s

√√√√m+1∑
i=1

x2
i ⇐⇒

m∑
i=1

x2
i <

s2

1− s2
x2
m+1

we obtain that
Z(m+ 1, s) = Xm+1(0, Lm+1, s)×Rn−m−1,

where Lm+1 = 〈em+1〉, the m+ 1-axis. Let 0 < s∗ < 1 such that

s∗2

1− s∗2
= (n−m)

s2

1− s2
.

Using the notations we have just introduced, we can now prove the next Lemma

Lemma 5.5. Let V = {0} ×Rn−m ∈ G(n, n−m), then we have that

n⋃
j=m+1

Z(j, s) ⊂ X(0, V, s) ⊂
n⋃

j=m+1

Z(j, s∗).

Proof. We have that

X(0, V, s) =

{
x ∈ Rn |

m∑
i=1

x2
i < s2

n∑
i=1

x2
i

}
=

{
x ∈ Rn |

m∑
i=1

x2
i <

s2

1− s2

n∑
i=m+1

x2
i

}
.

The lemma then follows immediately.

Lemma 5.6. Let δ > 0. For Hm-almost all a ∈ A either

lim sup
s→0

sup
0<r<δ

(rs)−mHm(A ∩X(a, r, V, s)) = 0

or

lim sup
s→0

sup
0<r<δ

(rs)−mHm(A ∩X(a, r, V, s)) = +∞

or

(A \ {a}) ∩ (V + a) ∩B(a, δ) 6= ∅,

and this holds for γn,n−m-almost all V ∈ G(n, n−m).

Proof. We shall prove the assertion for m = n − 1 and then for general m. Since A is
Hm-measurable of �nite measure, by Theorem 1.5 we can assume that A is σ-compact.
We can assume, in order to simplify notations, that a = 0. For θ ∈ Sn−1 and B ⊂ Sn−1

let
Lθ = {tθ | t ∈ R} and L(B) =

⋃
θ∈B

Lθ.

We can now de�ne a measure µ on Sn−1:

µ(B) := sup
0<r<δ

r−(n−1)Hn−1(A ∩B(r) ∩ L(B))
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for all B ⊂ Sn−1. We then set

C = {θ ∈ Sn−1 | (A \ {0}) ∩B(δ) ∩ Lθ 6= ∅}

which is σ-compact since so is A. Therefore, letting E = Sn−1 \ C, µ(E) = 0. Then, by
theorem 4.16, we obtain that for almost all θ ∈ Sn−1 either

lim sup
t→0

t−(n−1)µ(Sn−1 ∩B(θ, t)) = 0

or
lim sup
t→0

t−(n−1)µ(Sn−1 ∩B(θ, t)) = +∞

or
θ ∈ C.

We have that for any x, θ ∈ Sn−1 with x · θ ≥ 0

d(x, Lθ) ≤ |x− θ| ≤ 2d(x, Lθ).

Therefore we obtain

X(0, r, Lθ, s) ⊂ B(r) ∩ L(Sn−1 ∩B(θ, 2s)) \ {0} ⊂ X(0, r, Lθ, 3s)

which tells us that the three conditions we found are equivalent to the three condition
of the lemma for m = n− 1. Let now m < n− 1. We can say more from what we have
proved: if A is σ-compact and Hm(A) < +∞ for γm+1,1-almost all L ∈ G(m+1, 1) either

lim sup
s→0

sup
0<r<δ

(rs)−mHm
(
A ∩B(r) ∩ (Xm+1(0, L, s)×Rn−m−1)

)
= 0

or
lim sup
s→0

sup
0<r<δ

(rs)−mHm
(
A ∩B(r) ∩ (Xm+1(0, L, s)×Rn−m−1)

)
= +∞

or
(A \ {0}) ∩B(δ) ∩ (L×Rn−m−1) 6= ∅.

To get this, we can apply Theorem 4.16, de�ning

L(B) =
⋃
θ∈B

(Lθ ×Rn−m−1) ⊂ Rn

C = {θ ∈ Sm | (A \ {0}) ∩B(δ) ∩ (Lθ ×Rn−m−1) 6= ∅}
µ(B) := sup

0<r<δ
r−mHm(A ∩B(r) ∩ L(B))

for B ⊂ Sm and proceeding as we did for m = n − 1. Using lemma 5.5 we just need to
show that θn-almost all g ∈ O(n) either

lim sup
s→0

sup
0<r<δ

(rs)−mHm
(
A ∩B(r) ∩ gZ(j, s)

)
= 0 or

lim sup
s→0

sup
0<r<δ

(rs)−mHm
(
A ∩B(r) ∩ gZ(j, s)

)
= +∞ or

(A \ {0}) ∩ gV ∩B(δ) 6= ∅.
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We will prove this for j = m+ 1. Let χ be the characteristic function of those g ∈ O(n)
for which none of the three alternatives hold. Since A is σ-compact, χ is a Borel function.
We set

O(m+ 1) = {g ∈ O(n) | g|{0} ×Rn−m−1 is the identity }

and since gZ(m + 1, s) = Xm+1(0, gLm+1, s) × Rn−m−1 for g ∈ O(m + 1) we obtain,
from the �rst part of the proof, that∫

O(m+1)
χdθm+1 = 0.

For any h ∈ O(n), h−1(A) is σ-compact and since the characteristic function correspond-
ing to h−1(A) is g 7→ χ(h ◦ g) we have∫

O(m+1)
χ(h ◦ g) dθm+1g = 0.

Then, since θm+1 is invariant, for any g ∈ O(m+ 1) we have∫
O(n)

χ(h) dθnh =

∫
O(n)

χ(h ◦ g) dθnh.

Therefore, using Fubini's Theorem, we obtain∫
O(n)

χ(h) dθnh =

∫
O(m+1)

∫
O(n)

χ(h) dθnh dθm+1 =

=

∫
O(m+1)

∫
O(n)

χ(h ◦ g) dθnh dθm+1g =

=

∫
O(n)

∫
O(m+1)

χ(h ◦ g) dθm+1g dθnh = 0

and we can conclude.

We are now ready to prove Theorem 5.1:

Proof of Besicovith-Federer projection Theorem. For all the notations recall Lemmas 5.2,
5.3, and 5.4. Let V ∈ G(n, n−m) and δ > 0. Let

A3,δ(V ) = {a ∈ A | (A \ {a}) ∩ (V + a) ∩B(a, δ) 6= ∅}.

By lemma 5.6 we have for γn,n−m-almost all V ∈ G(n, n−m) that

Hm
(
A \ (A1,δ(V ) ∪A2,δ(V ) ∪A3,δ(V ))

)
= 0. (5.2)

Now we shall show that if V ∈ G(n, n −m) is such that 5.2 holds for all δi = 1/i, with
i = 1, 2, . . . , then Hm(QVA) = 0 and the Theorem will be proved. Since Hm(A1,δ(V )) =
0,

Hm
(
A \ (A2,δ(V ) ∪A3,δ(V ))

)
= 0.
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Moreover ⋂
δi

A3,δi(V ) ⊂ A3(V )

and

A \

⋃
δi

A2,δi(V ) ∪A3(V )

 ⊂ A \
⋃

δi

A2,δi(V ) ∪
⋂
δi

A3,δi(V )

 ⊂
⊂
⋃
δi

(
A \ (A2,δi(V ) ∪A3,δi(V ))

)
.

Then

Hm
QVA \

QV (
⋃
δi

A2,δi(V )) ∪QV (A3(V ))

 ≤
≤ Hm

QV (A \ (
⋃
δi

A2,δi(V ) ∪A3(V ))
) ≤∑

δi

Hm
(
A \ (A2,δi(V ) ∪A3,δi(V ))

)
= 0

but, by lemmas 5.3, 5.4 we have thatHm(QV
(⋃

δi
A2,δi(V )

)
) = 0 andHm(QV (A3(V ))) =

0. It follows thatHm(QVA) = 0. We have then proved the Besicovitch-Federer projection
Theorem.

5.1 Cantor set in R2

We now focus our attention on a particular subset of R2 which has positive and �nite
H1-measure and it is purely 1-unrecti�able. We prove �rst a version of the Besicovitch-
Federer Projection theorem in R2 for 1-recti�able sets. We can notice that when n = 2
and m = 1, every L ∈ G(2, 1) forms an angle θ ∈ [0, π) with the x-axis. We can then
identify G(2, 1) with [0, π] where π is identi�ed with 0 and then γ2,1 = L1 [0, π). With
Lθ we will indicate the element of G(2, 1) forming an angle θ with the x-axis.

Theorem 5.7. Let E ⊂ R2 be 1-recti�able and 0 < H1(E) < +∞. Then there exists at

most one direction θ ∈ [0, π) such that H1(PLθ(E)) = 0.

Proof. Since E is 1-recti�able it is the union of 1-recti�able curves Γi and a null set,
then E ⊂

⋃
i Γi. Therefore we can suppose that E ⊂ Γ, where Γ is a 1-recti�able curve.

Moreover, Θm(E, x) = 1 for H1-almost all x ∈ E by Theorem 4.14. Let x ∈ E such that
Θm(Γ, x) = 1. Then ∀ε > 0 we can �nd an r > 0 small enough such that

H1(E ∩B(x, r)) > (1− ε2)2r

and
H1(Γ ∩B(x, r)) < (1 + ε)2r.
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This implies that

H1(E ∩B(x, r)) > (1− ε)H1(Γ ∩B(x, r))

whence

H1((Γ \ E) ∩B(x, r)) < εH1(Γ ∩B(x, r)).

Γ ∩ B(x, r) is the union of at most countably many disjoint arcs and we can choose an
arc Γ0 ⊂ Γ ∩B(x, r) such that

H1(Γ0 \ E) < εH1(Γ0) < 2ε|y − z|

where x, y are the endpoints of Γ0. We take then an Lθ ∈ G(2, 1) such that it forms an
angle ϕ with the segment [x, y] for which | cos(ϕ)| > 2ε. Then

H1(PLθ(E)) > |cosϕ||y − z| − H1(PLθ(Γ0 \ E)) ≥
≥ |cosϕ||y − z| − H1(Γ0 \ E) > |cosϕ||y − z| − εH1(Γ0) >

> (| cos(ϕ)| − 2ε)|y − z| > 0.

Thus H1(PLθ(E)) > 0 for all θ ∈ [0, π) except for a set of directions of length 2 cos−1(2ε)
for all ε > 0, which means that H1(PLθ(E)) = 0 for at most one direction θ ∈ [0, π).

From this theorem we can deduce that if E ⊂ R2 with 0 < H1(E) < +∞ such that it
projects in a set of H1-measure zero for two distinct directions we can conclude that E is
purely 1-unrecti�able. Therefore by Theorem 5.1 we can conclude that H1(PL(E)) = 0
for γ2,1-almost all L ∈ G(2, 1). We now present a family of Cantor-type subsets of R2:
Qλ = Cλ × Cλ where Cλ is the λ-Cantor set presented in Chapter 3, with 0 < λ < 1/2.
In order to visualize it we can take, as �rst step, a square Q0 with sides of length 1 and
vertices (0, 0), (1, 0), (0, 1), (1, 1). Then (see �gure 5.1 for λ = 1/4) we proceed to take 4
squares Q1,j with sides of length λ, then of length λ2 and so on.
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Figure 5.1: First 4 iterations of C1/4 × C1/4

We wish �rst to estimate the dimension of Cλ × Cλ. Let us call {Qk,j}j=1,...,4k the

squares of the k-th iteration; we have that d(Qk,j) =
√

2λk. Then we can estimate

Hs√
2λk

(Qλ) ≤
4k∑
j=1

d(Qk,j)
s ≤
√

2
s
(4λs)k

and choosing s = log 4
log(1/λ) we have that

Hs(Qλ) ≤
√

2
s

which tells us that dimQλ ≤ log 4
log(1/λ) . By a similar argument to the one presented in

Chapter 3 one can see also that 0 < Hs(Qλ), which tells us that

dimQλ =
log 4

log(1/λ)
.

Let us consider the Cantor set with λ = 1/4. Then, dimQ1/4 = 1 and its measure
is positive and �nite. It is easy to check that the projections of Q1/4 on the x and y
axis have H1-measure zero. Then by Theorem 5.1 we can conclude that Q1/4 is purely
1-unrecti�able. It is also possible to �nd some lines, for instance 4, where the projection
of Qλ has positive H1-measure (see �gure 5.2); of course the set of those lines have
γ2,1-measure zero, in particular the set formed by these 4 distinct lines has measure zero.
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Figure 5.2: Representation of 4 directions where the projection of Q1/4 has positive H1-
measure.

To show that Q1/4 is purely 1-unrecti�able we can also show that

apTan1(Q1/4, x) = ∅

for all x ∈ Q1/4, which means that for all x we have to �nd an 0 < s < 1 such that

lim sup
r→0

r−1H1(Q1/4 ∩B(x, r) \X(x, L, s)) > 0.

Let us �x x ∈ Q1/4, and take L ∈ G(2, 1). If x ∈ Q1/4 we can �nd a sequence of squares

forming Q1/4 {Qk,jk}k=1,..., such that x ∈ Qk,jk for all k ∈ N. Then, setting rk =
√

24−k,
we have that Q1/4 ∩ Qk,jk ⊂ Q1/4 ∩ B(x, rk). We can then choose 0 < s < 1 small
enough such that there is an Qk+1,ik+1

entirely contained in Q1/4∩Qk,jk \X(x, L, s). For

instance, we could take 0 < s < 1/
√

5. Therefore

r−1
k H

1(Q1/4 ∩B(x, rk) \X(x, L, s)) ≥
≥ r−1

k H
1(Q1/4 ∩Qk,jk \X(x, L, s)) ≥ r−1

k H
1(Q1/4 ∩Qk+1,ik+1

) =

=
H1(Q1/4)4k

4k+1
√

2
=
H1(Q1/4)

4
√

2
> 0.

Letting k → +∞ we can conclude. Another easier way to see that Qλ is purely 1-
unrecti�able, is to notice that given E1, E2 ⊂ R with H1(E1) = H1(E2) = 0 and

γ : I ⊂ R → R2
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a C1 function we have (locally) that γ(t) = (t, y(t)) and so (E1 × E2) ∩ imγ ⊂ γ(E1).
Therefore

H1((E1 × E2) ∩ imγ) ≤ H1(γ(E1)) ≤ (Lipγ)H1(E1) = 0

and E1 × E2 is purely 1-unrecti�able. Now we give an example of a set in R2 which is
1-recti�able. We will verify this in three di�erent ways. Let {q1, . . . , qk, . . . } the set of
points with rational coordinates contained in B(0, 1). Let Si = ∂B(qi, 2

−i), and de�ne

E =
+∞⋃
i=1

Si.

It is pretty easy to verify thatH1(E) = 2π, and it is still easy to check that the orthogonal
projection of this set on every line L ∈ G(2, 1) has positive measure, which means that E
is 1-recti�able. One can also verify that E has an approximate tangent line in H1-almost
all x ∈ E. Let us �x i ∈ N; by Theorem 3.9,

lim
r→0

r−1H1

⋃
j

Sj \ Si

 ∩B(x, r)

 = 0

for H1-almost all x ∈ E, and for such x ∈ E, the tangent line through x ∈ Si is our
desired approximate tangent line of E. It is also easy to see that E is the countably
union of Lipschitz curves. For instance, fi(t) = qi + 2−i(cos t, sin t) with t ∈ [0, 2π).

5.2 Conclusions

The main objective of this thesis was to enunciate and prove the Besicovitch-Federer
Theorem, which is what we did in Chapters 4 and 5. Most of the arguments in Chapters
1-3 were presented for the reader that is approaching for the �rst time the study of Ge-
ometric measure Theory.

We conclude now presenting some generalizations to what we did, such as the de�-
nition of Recti�ability. Let µ be a measure on Rn. In [E], E ⊂ Rn is called countably

(µ,m)-recti�able if there are Lipschitz maps fi : Rm → Rn such that

µ

(
E \

+∞⋃
i=1

fi(R
m)

)
= 0.

E ⊂ Rn will be called (µ,m)-recti�able if µ(E) < +∞. F ⊂ Rn is purely (µ,m)-
unrecti�able if µ(F ∩ E) = 0 for all E ⊂ Rn (µ,m)-recti�able sets. Let us suppose that
µ is a Borel regular measure on Rn and A is a Borel set with µ(A) < +∞ such that

1. |A ∩ P−1
V {y}| < +∞ for Hm-almost all y ∈ V and

2. Hm(PV (B)) = 0 for all B ⊂ A and µ(B) = 0.
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From the proof of Theorem 5.1 we can deduce that if A is purely (µ,m)-unrecti�able,
then Hm(PV (A)) = 0 for γn,m-almost all V ∈ G(n,m). This is exactly what Federer
proved. We �nish presenting an interesting relation for 1-recti�able sets in R2 and the
Menger curvature. Let x, y, z ∈ R2 and let R(x, y, z) be the radius of the circle passing
through these three points. If x, y, z are aligned then R(x, y, z) = +∞. The Menger
curvature of the triple (x, y, z) is

c(x, y, z) =
1

R(x, y, z)
.

We can notice that x, y, z are aligned if and only if c(x, y, z) = 0. An explicit formula for
c(x, y, z) is

c(x, y, z) =
4A(x, y, z)

|x− y||x− z||y − z|
where A(x, y, z) is the area of the triangle with vertexes x, y, z. Let us set

c2(A) =

∫
A

∫
A

∫
A
c(x, y, z)2 dH1x dH1y dH1z

for any H1-measurable set A ⊂ R2.

Let E ⊂ R2 be a H1-measurable set with H1(E) < +∞. It can be proved that if
c2(E) < +∞, then E is 1-recti�able. This is a Theorem of David and Léger, whose proof
can be found in [I].
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