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Gianni Rodari



ii



Contents

Introduction v

1 Preliminaries 1
1.1 Various results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sub-Riemannian Geometry: prolegomena . . . . . . . . . . . . . . . . . . . . 4
1.3 Uniform estimate for sub-Riemannian balls . . . . . . . . . . . . . . . . . . . 5

2 The trace theorem 7
2.1 Shape of the sub-Riemannian boxes . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Measure of the sub-Riemannian boxes . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Estimates for the sub-Riemannian distance . . . . . . . . . . . . . . . . . . . 10
2.4 Trace theorem for the Martinet Distribution . . . . . . . . . . . . . . . . . . 11

iii



iv Contents



Introduction

Tracing functions in the Euclidean case; a very brief “historical” overview. Given
Ω ⊆ Rn open (bounded) of class C 1, consider the Dirichlet problem:{

∆u = 0 in Ω

u = g on ∂Ω,

where g : ∂Ω→ R is a given function, together with its weak formulation:∫
Ω

∇u · ∇ϕdx = 0 ∀ϕ ∈ C∞c (Ω).

We look for a solution in the Sobolev space W 1,2(Ω). Some questions arise: what does it
mean that u = g on ∂Ω for functions u ∈ W 1,2(Ω)? Which are the admissible functions g?

The main problem could then be reformulated in these terms: given Ω ⊆ Rn open of
class C l, we want to define a linear continuous operator Tr : W l,p(Ω) → Lp(∂Ω) such that
Trf = f|∂Ω for all f ∈ W l,p(Ω) ∩ C 0(Ω); moreover we want to describe explicitely the space
Tr(W l,p(Ω)). The problem with l = 1 and p > 1 was solved by Emilio Gagliardo in [8]; before
[8] only the case p = 2 had been treated (by Nachman Aronszajn in [1], L. N. Slobodetskij
and and Mikhail Vasil’evich Babich in [2]). In his article, Gagliardo used the definition of
trace of a function given by Charles B. Morrey in [13].

Before stating the main result, which is due to many successive refinements, we recall
that ‖ · ‖W l,p(Rn) is the Sobolev norm while the Besov-Nikol’skǐı norm ‖ · ‖Blp(Rn) is defined by

‖f‖Blp(Rn) = ‖f‖Lp(Rn) +

(∫
RN

‖∆σ
hf(x)‖p

Lpx(Rn)

|h|pl+n
dh

)1/p

for p ∈ [1,∞[, while for p =∞ we set

‖f‖Bl∞(Rn) = ‖f‖L∞(Rn) + sup
h6=0

‖∆σ
hf(x)‖L∞x (Rn)

|h|l

with l ∈]0,∞[, l < σ ∈ N, ∆hf(x) = f(x+ h)− f(x) and recursively

∆σ
hf(x) = ∆h(∆h(. . . (∆h︸ ︷︷ ︸

σ times

f) . . . ))(x) =
σ∑
k=0

(−1)σ
(
σ

k

)
f(x+ kh).

The space Bl
p(Rn) is the space of those functions ∈ Lp(Rn) such that ‖f‖Blp(Rn) < ∞. It is

called Besov-Nikol’skǐı space.

v
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We also remind that if f ∈ L1
loc(Rn) and g ∈ L1

loc(Rm) with m < n, then g is said to be
a trace of the function f if there exists a function h equivalent to f on Rn such that

h(·, v)→ g(·) in L1
loc(Rm) as v → 0.

The aforementioned main result is the following:

Theorem 1 (Trace theorem for linear subspaces of Rn). Let l,m ∈ N, m < n, 1 ≤ p ≤ ∞,

l > (n − m)/p. Then for all f ∈ W l,p(Rn) we have Trf ∈ B
l−n−m

p
p (Rm) and there exists

c > 0 such that
‖TrRmf‖

B
l−n−mp
p (Rm)

≤ c‖f‖W l,p(Rn).

Moreover TrRm : W l,p(Rn)→ B
l−n−m

p
p (Rm) is surjective.

Definitions of traces of functions, Besov-Nikol’skǐı spaces and so on may be given also
if we replace RN with a smooth surface, as we required at the beginning. It requires some
work; the complete theory is brilliantly developed for example in [4].

Trace theorem in the Grushin plane. The idea of this thesis comes from another
work by my supervisor Professor Roberto Monti and his colleague Professor Daniele Mor-
bidelli (namely [12]); a part of that work has been devoted to the study of the trace theorem
in the Grushin plane.

Let us first consider the Carnot-Carathéodory metric d (see Section 1.2) induced on R2

by the vector fields
X1 = ∂x, X2 = |x|α∂y, α > 0.

If (x, y) ∈ R2 and r ≥ 0, let B((x, y), r) = {(ξ, η) ∈ R2 : d((x, y), (ξ, η)) < r}. The boxes

Box((x, y), r) = [x− r, x+ r]× [y − r(|x|+ r)α, y + r(|x|+ r)α]

are equivalent to C-C balls and the metric d can be evaluated rather explicitely. Indeed it
can be proved that there exist constants 0 < c1 < c2 such that for all (x, y) ∈ R2 and r ≥ 0

Box((x, y), c1r) ⊂ B((x, y), r) ⊂ Box((x, y), c2r).

Moreover for λ > 0 and for all (x, y), (ξ, η) ∈ R2 with |x| ≥ |ξ|

d((x, y), (ξ, η)) '

{
|x− ξ|+ |y−η|

|x|α if |x|α+1 ≥ λ|y − η|
|x− ξ|+ |y − η|1/(α+1) if |x|α+1 < λ|y − η|

where the equivalence constants depend of λ.

Definition 2. Let Ω ⊂ R2 be an open set with ∂Ω of class C 1. A point (0, y0) ∈ ∂Ω is said
to be α-admissible, α > 0, if one of the following two conditions holds:

� (Non characteristic case). There exist δ > 0 and ψ ∈ C 1(y0 − δ, y0 + δ) such that
ψ(y0) = 0 and

∂Ω ∩ (−δ, δ)× (y0 − δ, y0 + δ) = {(ψ(y), y) : |y − y0|, |ψ(y)| < δ}.
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� (Characteristic case). There exist δ > 0 and c > 0 such that

∂Ω ∩ (−δ, δ)× (y0 − δ, y0 + δ) = {(x, ϕ(x)) ∈ R2 : |x| < δ},

where ϕ ∈ C 1(−δ, δ) and |ϕ′(x)| ≤ c|x|α for all x ∈ (−δ, δ).

Finally, Ω is said to be α-admissible if all the points of ∂Ω ∩ {x = 0} are α−admissible.

Finally we introduce on ∂Ω the measure µ := |Xν|H1x∂Ω where ν(x, y) is the unit normal
to ∂Ω at (x, y) ∈ ∂Ω and

|Xν(x, y)| =
(
〈X1(x, y), ν(x, y)〉2 + 〈X2(x, y), ν(x, y)〉2

)1/2

=
(
ν1(x, y)2 + |x|2αν2(x, y)2

)1/2
.

This measure can be estimated rather explicitely in terms of the Lebesgue measure:

Lemma 3. Let Ω ⊂ R2 be bounded open set with ∂Ω of class C 1 and suppose it is α-
admissible. Then there esist 0 < m1 < m2 and r0 > 0 such that

m1
L 2(B((x, y), r))

r
≤ µ(B(x, y), r) ≤ m2

L 2(B((x, y), r))

r

for all (x, y) ∈ ∂Ω and for all 0 < r < r0.

The starting point of our thesis is the following theorem:

Theorem 4. Let X1 = ∂x and X2 = |x|α∂y, α > 0. Let 1 < p < ∞ and s = 1 − 1/p. If
Ω ⊂ R2 is a bounded open set of class C 1 which is α-admissible, then there exist C > 0 and
δ0 > 0 such that∫

∂Ω×∂Ω∩{d(z,ξ)<δ0}

|u(z)− u(ξ)|p

d(z, ξ)psµ(B(z, d(z, ξ)))
dµ(z) dµ(ξ) ≤ C

∫
Ω

|Xu(x, y)|p dx dy

for all u ∈ C 1(Ω) ∩ C (Ω).

In the second part of [12] they also prove that the hypothesis of α-admissiblity for the
domain Ω in the previous theorem is necessary; more precisely there exist domains of class
C 1 that are not α-admissible for which the estimate of the previous theorem fails.

Content of the thesis. The first chapter of this work is dedicated to some theoretical
prolegomena, tools that we will use in the second chapter in order to prove the main result.

In the second chapter we prove the trace theorem for the Martinet distribution defined
in R3 by the vector fields

X = (X1, X2) =

(
∂

∂x
,
∂

∂y
+
x2

2

∂

∂z

)
.

R3 will be endowed with the sub-Riemannian distance d induced by X: according to the
definition given in Section 1.2 if

`(c) =

∫ τ

0

√
inf{u2

1(t) + u2
2(t) : u1(t)X1(c(t)) + u2(t)X2(c(t)) = ċ(t)} dt
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then by definition, if p, q ∈ R3, we have

d(p, q) = inf{`(c) : c : [0, τ ]→ R3 absolutely continuous with c(0) = p and c(τ) = q}.

This distance can be computed rather explicitely: we prove an estimate for d in terms of the
Euclidean metric of R3 in Lemma 2.3.1. (R3, d) is a Carnot-Carathéodory space.

A complete and interesting result would be a trace theorem for a suitable Ω ⊆ R3 regular
enough, but in order to rough-hew the problem we chose a “simpler” case: Ω = {z > 0}.

Let us consider then the Euclidean unit normal to ∂Ω ν = (0, 0, 1); we have that

|Xν| =
√
〈X1, ν〉2 + 〈X2, ν〉2 = x2.

A point x ∈ ∂Ω is said to be characteristic if |Xν| = 0 (see also Section 1.2). At these
points the vector fields X1 and X2 become tangent to the boundary and most of the tools
from classical analysis fail to work. For example, near the characteristic set standard surface
measure does not scale correctly and fails to satisfy estimates of the kind of Proposition 2.2.1
with respect to sub-Riemannian balls (cfr. introduction of [5]). For these reasons the right
surface measure in the LHS cannot be the Hausdorff one. The natural surface measure that
takes into account characteristic points in the boundary is

µ := |Xν|L 2x∂Ω.

In Proposition 2.2.1 we prove an estimation for the µ-measure of the sub-Riemannian boxes.
The more interesting part of our work is in fact the proof of the trace theorem even in

the nearby of characteristic points (there are indeed more general trace theorems for spaces
without characteristic points - see the first part of [12]).

Let us now state the main result of this thesis:

Theorem 5. For every 1 < p < ∞ there exists a constant C(p) > 0 such that for every
function u ∈ C 1

c (R2 × [0,∞)) the following integral estimate holds∫
R2×R2

|u(w, 0)− u(q, 0)|p

d(w, q)psµ(B(w, d(w, q)))
dµ(w) dµ(q) ≤ C(p)

∫
R2×[0,∞)

|Xu(x, y, z)|p dx dy dz.

The proof of Theorem 5 relies on some recurrent ideas; we firstly split the integration
domain of LHS, which without losing of generality may be assumed to be for instance
[−1, 1]2 × [−1, 1]2 (see Remark 2.4.2), into four subdomains:

A1 = {((x, y), (x′, y′)) ∈ [−1, 1]2 × [−1, 1]2 : |x| ≤ d(w, q), |x′| ≤ d(w, q)}
A2 = {((x, y), (x′, y′)) ∈ [−1, 1]2 × [−1, 1]2 : |x| > d(w, q), |x′| ≤ d(w, q)}
A3 = {((x, y), (x′, y′)) ∈ [−1, 1]2 × [−1, 1]2 : |x| ≤ d(w, q), |x′| > d(w, q)}
A4 = {((x, y), (x′, y′)) ∈ [−1, 1]2 × [−1, 1]2 : |x| > d(w, q), |x′| > d(w, q)};

in each Ai we constructed paths linking points (x, y, 0) and (x′, y′, 0) using vector fields X1,
X2, their integral curves and suitable approximations of [X1, X2]. To fix the ideas, over the
set A1 we firstly estimate

|u(x, y, 0)− u(x, y′, x2(y′ − y)/2)| =

∣∣∣∣∣∣∣
∫ y′−y

0

X2u(x, y + t, x2t/2︸ ︷︷ ︸
=Ψ1(x,y,t)

) dt

∣∣∣∣∣∣∣ ,
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and then

|u(x, y′, x2(y′ − y)/2)− u(x′, y′, x2(y′ − y)/2)| =

∣∣∣∣∣
∫ x′−x

0

X1u(x+ t, y′, x2(y′ − y)/2) dt

∣∣∣∣∣
where these equalities are justified basically by fundamental theorem of calculus; the “de-
scent” from u(x′, y′, x2(y′−y)/2) to u(x′, y′, 0) is made following the vector field [[X1, X2], X1] =
− ∂
∂z

for a suitable time, approximating the Lie brackets via their components, in order of
being able of “reconstructing” the sub-elliptic gradient |Xu|. Here Hardy and Minkowski
inequalities are also used.

The case A4 requires some more refined ideas; even though the main technique of “link-
ing” points (subdividing the path into some sub-paths) is used again, because of the con-
straints on the coordinates (given by the definition of A4 itself) the integrals to be estimated
present a much more entangled situation (in terms of variables dependence); we needed to
use Minkowski integral inequality in a specific point of the proof, immediatly followed by
the use of spherical coordinates together with the coarea formula.

As far as we know Theorem 5 is a new result.
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Chapter 1

Preliminaries

In this chapter we recall some results which will be used in the second chapter.

1.1 Various results

Commutator of vector fields

Definition 1.1.1 (Lie brackets). Given two vector fields f, g ∈ C∞(Rn), their Lie bracket
is defined as

[f, g](x) = Dxg(x)f(x)−Dxf(x)g(x).

In the following, we shall use the exponential notation θ 7→ eθfx to denote the solution
of the Cauchy problem {

dw
dθ

= f(w)

w(0) = x.

Lemma 1.1.2 (Characterizations of Lie brackets). The Lie bracket can be equivalently char-
acterized as

[f, g] = lim
ε→0+

1

ε2
(e−εge−εfeεgeεf − x).

Proof. They are (truncated) Taylor expansions: for ε→ 0+

eεfx = x+ εf(x) +
ε2

2
Df(x)f(x) + o(ε2);

eεfeεgx = eεfx+ εg(eεfx) +
ε2

2
Dg(eεfx)g(eεgx) + o(ε2)

= x+ εf(x) +
ε2

2
Df(x)f(x) + ε(g(x+ εf(x) + o(ε)) + o(ε)) + ε2Dg(x)g(x) + o(ε2)

= x+ εf(x) +
ε2

2
Df(x)f(x) + ε(g(x) + εDg(x)f(x)) +

ε2

2
Dg(x)g(x) + o(ε2)

= x+ ε(f(x) + g(x)) + ε2
(

1

2
Df(x)f(x) +

1

2
Dg(x)g(x) +Dg(x)f(x)

)
+ o(ε2);

e−εfeεgeεf = eεgeεfx− εf(eεgeεfx) +
ε2

2
Df(eεgeεfx)f(eεgeεfx) + o(ε2)

1
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= x+ ε(f(x) + g(x)) + ε2
(

1

2
Df(x)f(x) +

1

2
Dg(x)g(x) +Dg(x)f(x)

)
− εf(x+ ε(f(x) + g(x))) +

ε2

2
Df(x)f(x) + o(ε2)

= x+ ε(f(x) + g(x)) + ε2
(

1

2
Df(x)f(x) +

1

2
Dg(x)g(x) +Dg(x)f(x)

)
− εf(x)− ε2Df(x)(f(x) + g(x)) +

ε2

2
Df(x)f(x) + o(ε2)

= x+ εg(x)− ε2Df(x)g(x) +
ε2

2
Dg(x)g(x) + ε2Dg(x)f(x) + o(ε2);

e−εge−εfeεgeεf = e−εfeεgeεfx− εg(e−εfeεgeεfx) +
ε2

2
Dg(e−εfeεgeεfx)g(x) + o(ε2)

= x+ εg(x) + ε2[f, g](x) +
ε2

2
Dg(x)g(x)− εg(x+ εg(x)) +

ε2

2
Dg(x)g(x) + o(ε2)

= x+ εg(x) + ε2[f, g](x)− εg(x)− ε2Dg(x)g(x) + ε2Dg(x)g(x) + o(ε2)

= x+ ε2[f, g](x) + o(ε2)

that concludes the proof.

Coarea formula

Theorem 1.1.3 (Coarea formula). Let f : Rn → Rm be Lipschitz, n ≥ m. Then for each
Ln-measurable set A ⊆ Rn,∫

A

Jf dx =

∫
Rm
Hn−m(A ∩ f−1({y}) dy.

Proof. The proof is long and quite difficult, thus it is omitted; see e.g. [6], page 112.

Functional inequalities

We recall a couple of inequalities of fundamental importance; we will further use them.

Theorem 1.1.4. Let (X,M, µ) be a measurable space. Let p and q be conjugate exponents.
Suppose that g is a measurable function on X such that fg ∈ L1 for all f in the space Σ of
simple functions that vanish outside a set of finite measure, and the quantity

Mq(f) = sup

{∣∣∣∣∫ fg

∣∣∣∣ : f ∈ Σ and ‖f‖Lp(µ) = 1

}
is finite. Also, suppose either that Sg = {x : g(x) 6= 0} is σ-finite or that µ is semifinite.
Then g ∈ Lq(µ) and Mq(g) = ‖g‖Lq(µ).

Proof. The proof falls outside our aims; it can be found in [7], page 189.

Theorem 1.1.5 (Minkowski inequality for integrals). Suppose that (X,M, µ) and (Y,N , ν)
are σ-finite measure spaces, and let f be an (M⊗N )-measurable function on X × Y .
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� If f ≥ 0 and 1 ≤ p <∞, then[∫ (∫
f(x, y) dν(y)

)p
dµ(x)

]1/p

≤
∫ [∫

f(x, y)p dµ(x)

]1/p

dµ(y).

� If 1 ≤ p ≤ ∞, f(·, y) ∈ Lp(µ) for almost every y, and the function y 7→ ‖f(·, y)‖Lp(µ)

is in L1(ν), then f(x, ·) ∈ L1(ν) for almost every x, the function x 7→
∫
f(x, y) dν(y)

is in Lp(µ), and ∥∥∥∥∫ f(·, y) dν(y)

∥∥∥∥
Lp(µ)

≤
∫
‖f(·, y)‖Lp(µ) dν(y).

Proof. If p = 1, the first statement is merely Tonelli theorem. If 1 < p < ∞, let q be
the conjugate exponent to p and suppose g ∈ Lq(µ). Then by Tonelli theorem and Hölder
inequality,∫ [∫

f(x, y) dν(y)

]
|g(x)| dµ(x) =

∫ ∫
f(x, y)|g(x)| dµ(x) dν(y)

≤ ‖g‖Lq(µ)

∫ [∫
f(x, y)p dµ(x)

]1/p

dν(y).

The first assertion follows then from Theorem 1.1.4. When p < ∞, the second assertion
follows from the first (with f replaced by |f |) and Fubini theorem; when p = ∞, it is a
simple consequence of the monotonicity of the integral.

Theorem 1.1.6 (Hardy inequality). If p > 1, f(x) ≥ 0 and F (x) =
∫ x

0
f(t) dt, then∫ ∞

0

(
F (x)

x

)p
dx <

(
p

p− 1

)p ∫ ∞
0

fp dx,

unless f ≡ 0. The constant is the best possible.

Proof. Let

G(x) =
1

x

∫ x

0

f(t) dt =

∫ 1

0

f(tx) dt

and set ft(x) = f(tx). By Minkowski inequality for integrals

‖G(x)‖Lp((0,∞)) ≤
∫ 1

0

‖ft(x)‖Lp((0,∞)) dt =

∫ 1

0

(∫ ∞
0

|ft(x)|p dx
)1/p

dt.

By the change of variables s = tx and using Fubini-Tonelli theorem we get

‖G(x)‖Lp((0,∞)) ≤
∫ 1

0

(∫ ∞
0

|f(s)|p ds
t

)1/p

dt =

∫ 1

0

t−1/p dt

(∫ 1

0

|f(s)|p ds
)1/p

.

Hence
‖G(x)‖Lp((0,∞)) ≤

p

p− 1
‖f(s)‖Lp((0,∞))

which directly leads to∫ ∞
0

(
1

x

∫ x

0

f(t) dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)p dx.
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1.2 Sub-Riemannian Geometry: prolegomena

Distributions. Let M be a C∞ manifold of dimension n, and let m ≤ n. Suppose that
for each x ∈ M , we assign an m-dimensional subspace ∆x ⊂ Tx(M) of the tangent space in
such a way that for a neighborhood Nx ⊂M of x there exist m linearly independent smooth
vector fields X1, . . . , Xm such that for any point y ∈ Nx, span{X1(y), . . . , Xm(y)} = ∆y. We
let ∆ refer to the collection of all ∆x for all x ∈ M and we then call ∆ a distribution of
dimension m on M . The set of smooth vector fields {X1, . . . , Xm} is called a local basis of ∆.

Sub-Riemannian distance. Let M be a real analytic n-dimensional manifold (a man-
ifold with analytic transition maps) and X1, . . . , Xm analytic vector fields on M . We define
a sub-Riemannian metric g on M by setting, for each q ∈M and v ∈ TqM ,

gq(v) = inf{u2
1 + · · ·+ u2

m : u1X1(q) + · · ·+ umXm(q) = v}.

The length of an absolutely continuous path c(t) (0 ≤ t ≤ τ) is defined as

length(c) =

∫ τ

0

√
gc(t)(ċ(t)) dt.

Finally the sub-Riemannian distance (or Carnot-Carathéodory distance) is d(p, q) = inf length(c),
where the infimum is taken on all the absolutely continuous paths joining p and q.

The manifoldM endowed with the distance d, denoted (M,d), is called the sub-Riemannian
manifold attached to X1, . . . , Xn.

Singular points. Let L1 = L1(X1, . . . , Xm) be the set of linear combinations, with real
coefficients, of the vector fields X1, . . . , Xm. We define recursively Ls = Ls(X1, . . . , Xm) by
setting, for s > 1,

Ls = Ls−1 + [Ls−1,L1].

Due to Jacobi identity Ls is the set of linear combinations of all commutators of X1, . . . , Xm

with length ≤ s. The union L of all Ls is a Lie sub-algebra of the Lie algebra of vector
fields on M . It is generated by the commutators [[Xi1 , Xi2 ], . . . , Xik ]. Such a commutator is
denoted [XI ], where I is the multi-index I = (i1, . . . , ik) and its length is |I| = k.

For p ∈ M , let Ls(p) be the subspace of TpM which consists of the values X(p) taken,
at the point p, by the vector fields X belonging to Ls. By Chow’s Condition1, at each point
p ∈ M there is a smallest integer r = r(p) such that Lr(p)(p) = TpM (and so dimLr(p)(p) =
n). This integer is called the degree of nonholonomy at p. We say that p is a regular point
if the sequence

1 ≤ dimL1(p) ≤ · · · ≤ dimLs(p) ≤ · · · ≤ dimLr(p)(p) = n

remains constant in a neighborhood of p. Otherwise we say that p is a singular point.

Minimal basis. Let (M,d) be the sub-Riemannian manifold attached to a systemX1, . . . , Xn

of vector fields. Let p ∈M . We call minimal basis at p a family of commutators ([XI1 ], . . . , [XIn ])
which values at p form a basis of TpM and such that the total length

∑n
i=1 |Ii| equals

∑n
i=1 wi

1Chow’s Condition. The vector fields X1, . . . , Xm and their iterated brackets [Xi, Xj ], [[Xi, Xj ], Xk]
etc. span the tangent space TpM at every point p of M .
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(where the sequence w1 ≤ · · · ≤ wn is defined by setting wj = s if ns−1 < j ≤ ns with
ns = dimLs(p) for s = 1, . . . , r). It implies that, up to a permutation of indices, each |Ii|
equals wi. To a family I = ([XI1 ], . . . , [XIn ]) we associate the application

φpI : (u1, . . . , un) 7→ p exp(un[XIn ]) . . . exp(u1[XI1 ]).

When I is a minimal basis at p, φpI is a diffeomorphism from a neighborhood of 0 ∈ Rn into
a neighborhood of p in M . It defines local coordinates, called canonical coordinates of the
second kind, which are privileged at p.

Associated basis. Let now Ω ⊂ M be compact. We denote by r the maximum of the
degree of nonholonomy on Ω.

Let p ∈ Ω and ε > 0. We consider the families of vector fields ([XI1 ], . . . , [XIn ]) such
that each bracket [XIj ] is of length |Ij| ≤ r. On the (finite) set of these families, we have a
function ∣∣det

(
[XI1 ]ε

|I1|, . . . , [XIn ]ε|In|
)

(p)
∣∣ .

We say that the family I = ([XI1 ], . . . , [XIn ]) is associated with (p, ε) on Ω if it achieves the
maximum of this function. In particular the value at p of a family associated with (p, ε)
forms a basis of TpM .

1.3 Uniform estimate for sub-Riemannian balls

Now: for p ∈ M and ε > 0, B(p, ε) denotes the open ball centered at p of radius ε for the
sub-Riemannian distance d. Moreover for a family I = ([XI1 ], . . . , [XIn ]) of vector fields we
set

BI(p, ε) = {p exp(un[XIn ]) . . . exp(u1[XI1 ]), |ui| < ε|Ii|, 1 ≤ i ≤ n}.

Theorem 1.3.1. Let Ω ⊂M be a compact set. There exist a constant δ0 > 0 and functions
k(δ), K(δ), 0 < k(δ), K(δ), with limδ→0K(δ) = 0, such that: for every p ∈ Ω, ε < 1, δ < δ0

and evermy family I associated with p, ε) on Ω,

BI(p, k(δ)ε) ⊂ B(p, δε) ⊂ BI(p,K(δ)ε).

The following corollary will be used in the next chapter:

Corollary 1.3.2. Let Ω ⊂M be a compact set. There exist constants c, C and δ0 > 0 such
that, for every p ∈ Ω, ε < δ0 and every family I associated with (p, ε/δ0) on Ω,

BI(p, cε) ⊂ B(p, ε) ⊂ BI(p, Cε).

Proofs of these results can be found in [11]. They generalize the Ball-Box theorem due
to Belläıche and Gromov.
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Chapter 2

The trace theorem

2.1 Shape of the sub-Riemannian boxes

Our goal is to estimate the sub-Riemannian distance induced on R3 by Martinet distribution
(here we indicate with the same name the distribution and the basis which spans it - see
Section 1.2) in terms of the Euclidean one, defined by vector fields1

X1 =
∂

∂x
, X2 =

∂

∂y
+
x2

2

∂

∂z
. (2.1)

The only non zero commutators are

X12 = [X1, X2] = x
∂

∂z
, X121 = [[X1, X2], X1] = − ∂

∂z
;

every point in the plane {x = 0} is singular. Two families of vector fields have a non
identically zero determinant, I = (X1, X2, X12) and J = (X1, X2, X121). We have

|det(εX1, εX2, ε
2X12)(x, y, z)| = |x|ε4

and
|det(εX1, εX2, ε

3X121)(x, y, z)| = ε5.

Thus the families associated with ((x, y, z), ε) are

J if |x| < ε, J and I if |x| = ε, I if |x| > ε.

Therefore at a singular point p0 = (0, y, z) the minimal basis is J while at a regular point
p = (x, y, z) (with x 6= 0) the minimal basis is I.

Using Corollary 1.3.2 we compute the sub-Riemannian boxes in order to get an uniform
estimate of sub-Riemannian balls associated to the metric we are looking for; we split the
computation into two cases: when |x| < ε and when |x| ≥ ε.

In the case |x| < ε the box of center p = (x, y, z) is the following set of points of R3:

BJ(p, ε) =
{

(x, y, z) exp(u3X121) exp(u2X2) exp(u1X1) : |u1| < ε, |u2| < ε, |u3| < ε3
}

;

1At the beginning I personally found a bit confusing this way to write vector fields. A brilliant explanation
of this notation can be find in Chapter 3 of Introduction to smooth manifolds by John M. Lee, version 3.0.

7
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more explicitely we have that

(x, y, z) exp(u3X121) exp(u2X2) exp(u1X1) = (x, y, z − u3) exp(u2X2) exp(u1X1)

= (x, y + u2, z − u3 + u2x
2/2) exp(u1X1)

= (x+ u1, y + u2, z − u3 + u2x
2/2)

and this leads to a more explicit writing of the boxes:

BJ(p, ε) = [x− ε, x+ ε]× [y − ε, y + ε]× {z − u3 + u2x
2/2 : |u2| ≤ ε, |u3| ≤ ε3}︸ ︷︷ ︸

=A

.

Notice that

maxA = z + ε
x2

2
+ ε3 and minA = z − εx

2

2
− ε3;

and since we are in the case |x| < ε, we have that

BJ(p, ε) ' [x− ε, x+ ε]× [y − ε, y + ε]× [z − ε3, z + ε3] .

Even though the computations are the same, the second case (|x| > ε) presents a little bit
more tricky geometric “issue” (which was negligible in the first case):

BI(p, ε) = {(x, y, z) exp(u3X12) exp(u2X2) exp(u1X1) : |u1| < ε, |u2| < ε, |u3| < ε3};

more explicitely we have

(x, y, z) exp(u3X121) exp(u2X2) exp(u1X1) = (x, y, z + u3x) exp(u2X2) exp(u1X1)

= (x, y + u2, z + u3x+ u2x
2/2) exp(u1X1)

= (x+ u1, y + u2, z + u3x+ u2x
2/2)

which leads to

BI(p, ε) = [x− ε, x+ ε]× [y − ε, y + ε]× {z + xu3 + u2x
2/2 : |u2| ≤ ε, |u3| ≤ ε2}.

However we cannot here just brutally take the supremum and the infimum, since we would get
a too rough estimate. To clarify the situation, let’s compute the x-section of BI((x, 0, 0), ε):
it is the set {

(y, z) ∈ R2 : |y| < ε,

∣∣∣∣z − x2y

2

∣∣∣∣ < ε2x

2

}
.

In conclusion

BI(p, ε) '
{

(x′, y′, z′) ∈ R3 : |x− x′| < ε, |y − y′| < ε,

∣∣∣∣z′ − z − x2

2
(y′ − y)

∣∣∣∣ < ε2x

2

}
.

By Fubini-Tonelli theorem we have that 3-dim Lebesgue measures L 3 of the boxes computed
are

L 3(BJ(p, ε)) ' ε5, L 3(BI(p, ε)) ' ε4x.

Finally for a center p = (x, y, z) we write

Box(p, r) :=

{
BJ(p, r) if |x| ≤ r

BI(p, r) if |x| > r.
(2.2)
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2.2 Measure of the sub-Riemannian boxes

In order to be usable in computations, the µ-measure of the sub-Riemannian boxes must be
estimated in terms of their Lebesgue measures:

Proposition 2.2.1. Let Ω = {z > 0} and µ := |Xν|L 2x∂Ω, where X is 2.1. Then

µ(Box(p, r)) ' L 3(Box(p, r))

r
(2.3)

for centers p = (x̄, ȳ, 0).

Proof. In our case |Xν| = x2: indeed if X is 2.1 we have that

|Xν| :=
√
〈X1, ν〉2 + 〈X2, ν〉2

where ν is the (constant) normal unit vector to Ω, which is ν = (0, 0, 1). So we have

〈X1, ν〉 = 〈(1, 0, 0), ν〉 = 0

and

〈X2, ν〉 = 〈(0, 1, x2), ν〉 = x2.

Therefore

|Xν| = x2. (2.4)

Hence we have that

µ(BJ(p, r)) '
∫ ȳ+r

ȳ−r

∫ x̄+r

x̄−r
x2 dx dy =

4

3
r4 + 2x̄2r2 ' r4

and this proves the proposition in the case |x̄| ≤ r. The second case (|x̄| > r) requires
more work; indeed the condition of the boxes, taking into account the fact that z = z̄ = 0,
becomes |x̄||y − ȳ| < r2 −→ |y − ȳ| < r2/|x̄|; now, it’s clear that if 2r2/|x̄| > r, which holds
if and only if 2r > |x̄|, then the intersection between the box BI(p, r) and the plane {z = 0}
gives a square of side length = 2r, which is exactly the previous case. In particular

µ(BI(p, r)) '
∫ ȳ+r

ȳ−r

∫ x̄+r

x̄−r
x2 dx dy ' r4 ' |x̄|r

4

r

since r < |x̄| < 2r. When conversely |x̄| ≥ 2r, we have that

µ(BI(p, r)) =

∫
|x−x̄|<r

x2

∫
|y−ȳ|<2r2/|x̄|

dy dx

=
4r2

|x̄|

∫ x̄+r

x̄−r
x2 dx =

4r2

3|x̂|
((x̄+ r)3 − (x̄− r)3)

=
4r2

3|x̄|
(6x̄2r + r3) ' r3

|x̄|
x̄2 = r3|x̄| =

L 3(BI(p, r))

r
.

This concludes the proof.
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2.3 Estimates for the sub-Riemannian distance

It is basically impossible to directly deal with the sub-Riemannian distance; however the
computations made in Section 2.1 allow us to estimate it in terms of the Euclidean distance.
We sum up such result in the following lemma:

Lemma 2.3.1. Let r > 0. For all (x, y, z), (x′, y′, z′) ∈ R3 the following estimates for the
sub-Riemannian distance d induced by the Martinet distribution hold:

d((x, y, z), (x′, y′, z′)) '


|x− x′|+ |y − y′|+ |z − z′|1/3 if |x| ≤ r

|x− x′|+ |y − y′|+
√
|z − z′|/|x| if |x| > r and |z − z′| ≥ x2|y − y′|

|x− x′|+ |y − y′|+
√
|y − y′||x| if |x| > r and |z − z′| ≤ x2|y − y′|.

Proof. The first case is quite simple: let’s take p = (x, y, z) ∈ R3 with |x| ≤ r; let BJ(p, r) be
the sub-Riemannian box defined above. The point q = (x′, y′, z′) ∈ R3 is distant r from q if
and only if it belongs to the boundary of BJ(p, r), i.e. if and only if |x− x′| ≤ r, |y− y′| ≤ r
and |z − z′| ≤ r3 and at least one of the inequalities is actually an equality. This leads to
d(p, q) ' |x− x′|+ |y − y′|+ |z − z′|1/3.

Now let’s assume that |z−z′| ≥ x2|y−y′|; as before d(p, q) = r if and only if |x−x′| ≤ r,
|y − y′| ≤ r and |z − z′ − x2(y − y′)/2| < r2|x|/2 and at least one of the inequalities is an
equality. We have

|z − z′| ≤
∣∣∣∣z − z′ − x2

2
(y′ − y)

∣∣∣∣+

∣∣∣∣x2

2
(y′ − y)

∣∣∣∣
≤
∣∣∣∣z − z′ − x2

2
(y′ − y)

∣∣∣∣+
1

2
|z − z′|

which leads to
1

2
|z − z′| ≤ r2|x|

2
.

Moreover

|z − z′| ≥
∣∣∣∣z − z′ − x2

2
(y′ − y)

∣∣∣∣− ∣∣∣∣x2

2
(y′ − y)

∣∣∣∣
≥
∣∣∣∣z − z′ − x2

2
(y′ − y)

∣∣∣∣− 1

2
|z − z′|

and therefore
3

2
|z − z′| ≥

∣∣∣∣z − z′ − x2

2
(y′ − y)

∣∣∣∣ .
The argument proves that∣∣∣∣z − z′ − x2

2
(y′ − y)

∣∣∣∣ ≤ r2|x|
2
⇐⇒ |z − z′| . r2|x|

2

and this is enough for the second case.
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Let’s finally assume |z− z′| ≤ x2|y− y′|; mutatis mutandis in the previous computations
we get ∣∣∣∣z − z′ − x2

2
(y′ − y)

∣∣∣∣ ≤ r2|x|
2
⇐⇒ x2

2
|y − y′| ≤ r2|x|

2

⇐⇒
√
|x||y′ − y| ≤ r.

The proof is concluded.

2.4 Trace theorem for the Martinet Distribution

We have now all the tools to proceed with the estimate; our goal is to estimate the following
integral (using the Martinet distribution 2.1)∫

R2×R2

|u(w, 0)− u(q, 0)|p

d(w, q)psµ(B(w, d(w, q)))
dµ(w) dµ(q) (2.5)

where w = (x, y), q = (x′, y′), d is the sub-Riemannian distance induced on R3 by Martinet
distribution 2.1 (see Section 1.2), s = 1 − 1/p and µ is the measure defined in Proposition
2.2.1.

Theorem 2.4.1. For every 1 < p <∞ there exists a constant C(p) > 0 such that for every
function u ∈ C 1

c (R2 × [0,∞)) the following integral estimate holds∫
R2×R2

|u(w, 0)− u(q, 0)|p

d(w, q)psµ(B(w, d(w, q)))
dµ(w) dµ(q) ≤ C(p)

∫
R2×[0,+∞)

|Xu(x, y, z)|p dx dy dz.

Remark 2.4.2. We are going without losing of generality to prove the theorem for functions
u ∈ C 1

c ([−1, 1]2 × [0, 1]); however the result can be easily extended considering the transfor-
mation δλ : (x, y, z) 7→ (λx, λy, λ3z). Indeed for λ > 1 let us take u ∈ C 1

c ([−λ, λ]2 × [0, λ3])
and ũ(x, y, z) = u(δ1/λ(x, y, z)) ∈ C 1

c ([−1, 1]2 × [0, 1]). With simple computations it turns
out that

|Xũ(x, y, z)| = 1

λ
|Xu(δ1/λ(x, y, z))|

and then

|Xu(x, y, z)| = λ|Xũ(δλ(x, y, z))|.

Hence ∫
R2×[0,+∞)

|Xu(x, y, z)|p dx dy dz = λp
∫
R2×[0,+∞)

|Xũ(δλ(x, y, z))| dx dy dz

= λp−5

∫
R2×[0,+∞)

|Xũ(x, y, z)| dx dy dz.

On the LHS we have that, if w̄ = δλw and q̄ = δλq,

d(w, q)ps = d(δ1/λw̄, δ1/λq̄)
ps =

(
1

λ

)ps
d(w̄, q̄)ps
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and
µ(B(δ1/λw̄, d(w̄, q̄)/λ)) = µ(B(w̄, d(w̄, q̄)))/λ4.

In conclusion dµ(w) = dµ(w̄)/λ4 and then∫
R2×R2

|u(w, 0)− u(q, 0)|p

d(w, q)psµ(B(w, d(w, q)))
dµ(w) dµ(q) = λpsλ4 1

λ4

1

λ4

∫
R2×R2

|ũ(w̄, 0)− ũ(q̄, 0)|p

d(w̄, q̄)psµ(B(w̄, d(w̄, q̄)))
dµ(w̄) dµ(q̄)

= λp−5

∫
R2×R2

|ũ(w̄, 0)− ũ(q̄, 0)|p

d(w̄, q̄)psµ(B(w̄, d(w̄, q̄)))
dµ(w̄) dµ(q̄).

This means that dilations of the support does not affect the trace inequality.

Proof. The integral (2.5) has to be split in a sum of integrals; in particular [−1, 1]2×[−1, 1]2 =
Q1 ×Q1 =

⋃4
i=1Ai where

A1 = {((x, y), (x′, y′)) ∈ Q1 ×Q1 : |x| ≤ d(w, q), |x′| ≤ d(w, q)}
A2 = {((x, y), (x′, y′)) ∈ Q1 ×Q1 : |x| > d(w, q), |x′| ≤ d(w, q)}
A3 = {((x, y), (x′, y′)) ∈ Q1 ×Q1 : |x| ≤ d(w, q), |x′| > d(w, q)}
A4 = {((x, y), (x′, y′)) ∈ Q1 ×Q1 : |x| > d(w, q), |x′| > d(w, q)}.

We want to deal now with the case A1. The idea is to connect the points w and q with
the integral curves of the vector fields X1, X2 and their commutators, subdividing the path
in some subpaths. Let’s do the first step, moving in the y and z directions using the integral
curve of X2; we can assume y′ > y (on the contrary we could just switch the two points w
and q):

|u(x, y, 0)− u(x, y′, x2(y′ − y)/2)| =

∣∣∣∣∣∣∣
∫ y′−y

0

X2u(x, y + t, x2t/2︸ ︷︷ ︸
=Ψ1(x,y,t)

) dt

∣∣∣∣∣∣∣ (2.6)

where Ψ1 ∈ C (R3;R3) is defined by Ψ1(x, y, t) = (x, y + t, x2t/2). We want to prove that

I1 :=

∫
A1

|u(w)− u(q)|p

d(w, q)psµ(B(w, d(w, q)))
dµ(w) dµ(q) ≤

12∑
i=1

I1i (2.7)

where the I1is are the integrals of the subpaths. Using 2.4 (i.e. dµ(w) = x2dx dy and
dµ(q) = x′2dx′ dy′), Lemma 2.3.1 (i.e. d(w, q) ' |x−x′|+ |y− y′|) and Proposition 2.2.1 (i.e.
µ(B(w, d(w, q)) ' d(w, q)4) we have that

I11 '
∫
A1

|u(x, y, 0)− u(x, y′, x2(y′ − y)/2)|p

(|x− x′|+ |y − y′|)p+3
|x|2|x′|2 dx dy dx′ dy′.

Using |x′| ≤ d = d(w, q) and 2.6 we find

I11 ≤ C

∫
A1

1

dp+1

(∫ y′−y

0

|X2u(Ψ1(x, y, t))| dt

)p

|x|2 dx dy dx′ dy′.

We claim now that there exists a constant C(p) > 0 depending only on p such that∫
{|x′|≤d}

dx′

dp+1
≤ C(p)

hp
(2.8)
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where h = |y′ − y|. Indeed, assuming moreover wlog x′ ≥ 0,∫
{x′≤|x−x′|+h}

dx′

(|x− x′|+ h)p+1
=

∫
{x′≤|x−x′|+h, 0<x′≤x}

dx′

(|x− x′|+ h)p+1︸ ︷︷ ︸
=J1

+

∫
{x′≤|x−x′|+h, x≤x′}

dx′

(|x− x′|+ h)p+1︸ ︷︷ ︸
=J2

;

since 0 < x′ ≤ x− x′ + h iff x′ ≤ (x+ h)/2 we get

J1 =

∫ (x+h)/2

0

dx′

(x− x′ + h)p+1
=

[
1

p
(x− x′ + h)−p

]x′=(x+h)/2

x′=0

=
1

p

[(
x+ h

2

)−p
− (x+ h)−p

]

=
C(p)

(x+ h)p
≤ C(p)

hp
.

For J2 we get that x′ ≤ x′ − x+ h holds iff x ≤ h; moreover x′ ≤ 1. Thus

J2 =

∫ 1

x

dx′

(x′ − x+ h)p+1
=

[
−(x′ − x+ h)−p

p

]1

x

= −1

p
[(1− x+ h)−p − h−p]

≤ 1

php
.

This prove the claim 2.8. Thus using 2.8 we get∫
A1

1

dp+1

(∫ y′−y

0

|X2u(Ψ1(x, y, t))| dt

)p

|x|2 dx dy dx′ dy′

≤ C(p)

∫ 1

0

1

hp

∫
{|x|≤1,|y|≤1}

(∫ h

0

|X2u(Ψ1(x, y, t))| dt
)p
|x|2 dx dy dh.

By Minkowski inequality for integrals we get now that the last line above is

≤ C(p)

∫ 1

0

1

hp


∫ h

0

(∫
{|x|≤1,|y|≤1}

|X2u(Ψ1(x, y, t))|p|x|2 dx dy
)1/p

︸ ︷︷ ︸
=g(t)

dt


p

dh

= C(p)

∫ 1

0

(
1

h

∫ h

0

g(t) dt

)p
dh ≤ C1(p)

∫ 1

0

g(t)p dt

= C1(p)

∫ 1

0

∫
{|x|≤1,|y|≤1}

|X2u(Ψ1(x, y, t))|p|x|2 dx dy dt
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where we used Hardy inequality in the second line. Here we are using p > 1 (if p = 1
the constant generated by Hardy inequality blows up). Now we do the change of variables
(ξ, η, τ) = Ψ1(x, y, t); the jacobian matrix of this change of variables is

∂Ψ1

∂x∂y∂t
=

1 0 tx
0 1 0
0 1 x2/2


whose determinant is x2/2. Therefore∫
{|x|≤1, |y|≤1, 0≤t≤2}

|X2u(Ψ1(x, y, t))|p|x|2 dx dy dt ≤ C(p)

∫
{|ξ|≤1, |η|≤2, |τ |≤1}

|X2u(ξ, η, τ)|p dη dξ dτ.

The first step has been done. Now we have to move along the x direction, from the point
(x, y′, x2(y′ − y)/2) to the point (x′, y′, x2(y′ − y)/2) using the integral curve of the vector
field X1. We have that

|u(x, y′, x2(y′ − y)/2)− u(x′, y′, x2(y′ − y)/2)| =

∣∣∣∣∣
∫ x′−x

0

X1u(x+ t, y′, x2(y′ − y)/2) dt

∣∣∣∣∣ .
Thus

I12 '
∫
A1

|u(x, y′, x2(y′ − y)/2)− u(x′, y′, x2(y′ − y)/2)|p

(|x− x′|+ |y − y′|)p+3
|x|2|x′|2 dx dy dx′ dy′.

With the change of variables x + t = τ −→ dt = dτ and x2(y′ − y)/2 = η −→ x2/2 dy = dη

we get a new domain Â1 = {|x| ≤ d̂, |x′| ≤ d̂} where d̂ = |x − x′| + 2|η|/x2 (if x 6= 0).
Therefore

I12 ≤
∫
A1

1

dp+3

∣∣∣∣∣
∫ x′−x

0

|X1u(x+ t, y′, x2(y′ − y)/2)| dt

∣∣∣∣∣
p

|x|2|x′|2 dx dx′ dy dy′

≤ 2

∫
Â1

1

d̂p+3

∣∣∣∣∣
∫ x′

x

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

|x′|2 dx dx′ dy′ dη

≤ 2

∫
Â1

1

d̂p+1

∣∣∣∣∣
∫ x′

x

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη.

We distinguish four cases:

I : x′ ≥ x ≥ 0;

II : x′ ≥ 0 ≥ x;

III : x ≥ x′ ≥ 0;

IV : x ≥ 0 ≥ x′.

Case I . We firstly split the domain Â1 as follow:

Â1 = (Â1 ∩ {2|η|/x2 > |x′ − x|}) ∪ (Â1 ∩ {2|η|/x2 ≤ |x′ − x|})
= Â+

1 ∪ Â−1 .
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On Â+
1 the following holds: 2|η|/x2 ≤ d̂ ≤ 4|η|/x2; moreover we know that{

x ≤ d̂ = |x− x′|+ 2|η|/x2

x′ ≤ d̂ = |x− x′|+ 2|η|/x2

and those together lead to

d̂ = |x′ − x|+ 2|η|/x2 = x′ − x+ 2|η|/x2 ≥ x′

and
x ≤ 2|η|/x2.

Thus

I+
12 = 2

∫
Â+

1

1

d̂p+1

∣∣∣∣∣
∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη

≤ 2

∫
Â+

1

1

d̂

∣∣∣∣∣ 1

x′

∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη.

We have that 0 ≤ x ≤ d̂ ≤ 4|η|/x2, which implies 0 ≤ x ≤ 3
√

4|η|. Hence the last integral
above is

≤
∫ 3
√

4|η|

0

x2

2|η|
dx

∫
D

∣∣∣∣∣ 1

x′

∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx′ dy′ dη

where D ⊆ QR × [0, 1] is a certain domain. Finally

I+
12 ≤

4

3

∫
D

∣∣∣∣∣ 1

x′

∫ x′

0

X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx′ dy′ dη

≤ 4

3
C(p)

∫
D̃

|X1u(τ, y′, η)|p dτ dy′ dη

for a suitable D̃ ⊆ QR × [0, 1], where we used again Hardy inequality and Minkowski in-
equality; we integrated over R2 × R+ but u has been chosen with compact support.

Similarly we define now

I−12 = 2

∫
Â−1

1

d̂p+1

∣∣∣∣∣
∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη.

The points of Â−1 fulfill the conditions

x′ − x = |x− x′| ≤ d̂ ≤ 2|x′ − x| = 2(x′ − x) ≤ 2x′

and then x′ ≤ d̂ ≤ 2(x′ − x) leads to d̂ ≥ x′ − x ≥ x′/2. Hence

I−12 ≤ 2

∫
Â−1

1

x′p+1

∣∣∣∣∣
∫ x′

0

X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη

≤ 2

∫ 2x′

0

dx

x′

∣∣∣∣∣ 1

x′

∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη
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since 0 ≤ x ≤ d̂ ≤ 2(x′ − x) ≤ 2x′. Thus we get as in the previous case

I+
12 ≤ 4

∫
D1

∣∣∣∣∣ 1

x′

∫ x′

0

X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx′ dy′ dη

≤ 4C(p)

∫
D1

|X1u(τ, y′, η)|p dτ dy′ dη

for a certain domain D1 ⊂ [−1, 1]3. This concludes the case I.

Case II . We have here

I12 ≤ 2

∫
Â1

1

d̂p+1

∣∣∣∣∣
∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη︸ ︷︷ ︸
=L1

+ 2

∫
Â1

1

d̂p+1

∣∣∣∣∫ 0

x

|X1u(τ, y′, η)| dτ
∣∣∣∣p dx dx′ dy′ dη︸ ︷︷ ︸

=L2

and the conditions

d̂ = |x′ − x|+ 2|η|/x2 ≥ |x′ − x| ≥

{
x′

|x|

hold. As before

L1 ≤ C

∫
Â1

1

d̂

∣∣∣∣∣ 1

x′

∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη

and if we split the domain of integration Â1 into Â+
1 ∪ Â−1 as we did in the previous case we

have that in Â+
1 the conditions 2|η|/x2 ≤ d̂ ≤ 4|η|/x2 hold; thus |x| ≤ d̂ −→ −d̂ ≤ x ≤ d̂

and then 3
√
−4|η| ≤ x ≤ 3

√
4|η|. Hence

C

∫
Â+

1

1

d̂

∣∣∣∣∣ 1

x′

∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη

≤ C

∫ 3
√

4|η|

3
√
−4|η|

x2

2|η|
dx

∫
D

∣∣∣∣∣ 1

x′

∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx′ dy′ dη

where D ⊂ [−1, 1]3 is a certain domain. The final computations are identical to the previous

case. On Â−1 we have to be a little bit more careful: x′ − x = |x′ − x| ≤ d̂ ≤ 2(x′ − x) still
holds, but we cannot conclude that 2(x′ − x) ≤ 2x′. However if x′ ≥ |x| we have

C

∫
Â−1

1

d̂

∣∣∣∣∣ 1

x′

∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη

≤ C

∫ x′

−x′

dx

x′

∫
D

∣∣∣∣∣ 1

x′

∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx′ dy′ dη
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and the conclusive computations are still the same. If on the contrary |x| ≥ x′ it is obviously∫ x′

0

|X1u(τ, y′, η)| dτ ≤
∫ |x|

0

|X1u(τ, y′, η)| dτ ;

then∫
Â−1

1

d̂p+1

∣∣∣∣∣
∫ x′

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη ≤
∫
Â−1

1

d̂p+1

∣∣∣∣∣
∫ |x|

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dx′ dy′ dη

≤
∫ |x|

0

dx′

|x|

∫
D

∣∣∣∣∣ 1

|x|

∫ |x|
0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dy′ dη.

This concludes the estimate for L1. Noticing that∣∣∣∣∫ 0

x

|X1u(τ, y′, η)| dτ
∣∣∣∣ =

∣∣∣∣∣
∫ |x|

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
the computations for L2 are the same. This concludes case II. Computations for cases III
and IV are basically the same of I and II, and thus are left.

What we need to do at this point is to descend towards −z direction in order to reach
the point (x′, y′, 0). Since we cannot directly use the vector field [[X1, X2], X1] = −∂/∂z we
need to estimate it in terms of X1 and X2 using 1.1.2. Since X1 and X2 do not commute,
if we apply in order X1, X2, −X1 and −X2 for a time τ to a point P = (x, y, z) we do not
come back to P , but we can estimate the error. The situation is the following:

−X1

τ

X2τ−X2 τ

P X1

τ

More explicitely

P = (x, y, z)
X1−→ (x+ τ, y, z)

X2−→ (x+ τ, y + τ, z + τ(x+ τ)2/2)

−X1−−→ (x, y + τ, z + τ(x+ τ)2/2)

−X2−−→ (x, y, z + τ(x+ τ)2/2− τx2/2)

= (x, y, z + τ 3/2 + xτ 2).

This allows to estimate [X1, X2]; we do the same with [[X1, X2], X1] = −∂/∂z (remember
that −[X1, X2] = [X1,−X2] because Lie brackets are bilinear):
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−[X1, X2]

τ

X1τ−X1 τ

P [X1, X2]

τ

and explicitley we get

P = (x, y, z)
[X1,X2]−−−−→ (x, y, z + τ 3/2 + xτ 2)

X1−→ (x+ τ, y, z + τ 3/2 + xτ 2)

−[X1,X2]−−−−−→ (x+ τ, y, z − τ 3)
−X1−−→ (x, y, z − τ 3).

Back to our computation, we have reached the point (x′, y′, x2(y′ − y)/2); the exact time
τ for whom we have to follow [[X1, X2], X1] in order to reach the plane z = 0 is therefore
x2(y′ − y)/2− τ 3 = 0 −→ τ = 3

√
x2(y′ − y)/2.

We proceed now with our integral estimates; following the vector field X1 for a time τ =
3
√
x2(y′ − y)/2 we reach the point (x′ + τ , y′, x2(y′ − y)/2). Thus

∣∣u(x′ + τ , y′, x2(y′ − y)/2)− u(x′, y′, x2(y′ − y)/2)
∣∣ =

∣∣∣∣∫ τ

0

X1u(x′ + t, y′, x2(y′ − y)/2) dt

∣∣∣∣ .
As we did before,

I13 '
∫
A1

|u(x′ + 3
√
x2(y′ − y)/2, y′, x2(y′ − y)/2)− u(x′, y′, x2(y′ − y)/2)|

(|x− x′|+ |y − y′|)p+3
|x|2|x′|2 dx dy dx′ dy′

≤
∫
A1

1

dp+1

∣∣∣∣∫ τ

0

|X1u(x′ + t, y′, x2(y′ − y)/2)| dt
∣∣∣∣p |x|2 dx dy dx′ dy′.

Now, if x′ ≥ 3
√
x2(y′ − y)/2 = τ we can easily conclude using the change of variables we

have done few steps above, i.e. x′ + t = τ and η = x2(y′ − y)/2. The computations are the
same, and they are left (x′ will be the increment in the Hardy inequality). If on the contrary
x′ < 3

√
x2(y′ − y)/2 we should split into two cases again: if indeed x ≥ y′ − y ≥ 0 then

x′ < 3
√
x2(y′ − y)/2 ≤ x/ 3

√
2 we get∫

A1

1

dp+1

∣∣∣∣∫ τ

0

|X1u(x′ + t, y′, x2(y′ − y)/2)| dt
∣∣∣∣p |x|2 dx dy dx′ dy′

≤
∫
A1

1

dp+1

∣∣∣∣∫ Cx

0

|X1u(x′ + t, y′, x2(y′ − y)/2)| dt
∣∣∣∣p |x|2 dx dy dx′ dy′

and with the usual change of variables x′+ t = τ and η = x2(y′− y)/2 the last line becomes

≤
∫
Â1

1

d̂p+1

∣∣∣∣∣
∫ C′x

0

|X1u(τ, y′, η)| dτ

∣∣∣∣∣
p

dx dη dx′ dy′
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and we conclude again in the same way.
The case x ≤ y′ − y is slightly more difficult:∫

A1

1

dp+1

∣∣∣∣∫ τ

0

|X1u(x′ + t, y′, x2(y′ − y)/2)| dt
∣∣∣∣p |x|2 dx dy dx′ dy′

≤
∫
A1

1

dp+1

∣∣∣∣∣
∫ (y′−y)/ 3√2

0

|X1u(x′ + t, y′, x2(y′ − y)/2)| dt

∣∣∣∣∣
p

|x|2 dx dy dx′ dy′.

Now we do a first change of variables in x: ξ = x2(y′ − y)/2 from which we get x =√
2ξ/(y′ − y) −→ dx = dξ/

√
2ξ(y′ − y); thus the last line displayed above is

=

∫
Ã1

1

dp+1

∣∣∣∣∣
∫ y′−y

0

|X1u(x′ + t, y′, ξ)| dt

∣∣∣∣∣
p √

2ξ

(y′ − y)3/2
dξ dx′ dy dy′

'
∫
Ã1

1

dp+1

∣∣∣∣∣
∫ y′−y

0

|X1u(x′ + t, y′, ξ)| dt

∣∣∣∣∣
p

dξ dx′ dy dy′

=

∫
Ã1

1

d̃p+1

∣∣∣∣∣
∫ y′−y

0

|X1u(x′ + t, y′, ξ)| dt

∣∣∣∣∣
p

dξ dx′ dy dy′

with d̃ = |
√
ξ/(y′ − y)− x′|+ |y′ − y|. With the change of variables τ = x′ + t in t the last

line displayed above becomes

=

∫
Ã1

1

d̃p+1

∣∣∣∣∣
∫ x′+y′−y

y′−y
|X1(τ, y′, ξ)| dτ

∣∣∣∣∣
p

dξ dx′ dy dy′

≤
∫
Ã1

1

d̃p+1

∣∣∣∣∣
∫ 3√4|y′−y|

0

|X1(τ, y′, ξ)| dτ

∣∣∣∣∣
p

dξ dx′ dy dy′.

As we did some pages above, we prove that there exists a real number C(p) depending on p
such that ∫

Ã1

dx′

d̃p+1
≤
∫
{|x′|≤d̃}

dx′

d̃p+1
≤ C(p)

hp

where h = |y′ − y|. Assuming wlog x′ ≥ 0,∫
{|x′|≤d̃}

dx′

d̃p+1
=

∫
{x′≤d̃, x′≤

√
ξ/(y′−y)}

dx′

d̃p+1
+

∫
{x′≤d̃,

√
ξ/(y′−y)<x′}

dx′

d̃p+1
;

since x′ ≤
√
ξ/(y′ − y)− x′ + h −→ x′ ≤ (

√
ξ/(y′ − y) + h)/2 we have that∫

{x′≤d̃, x′≤
√
ξ/(y′−y)}

dx′

d̃p+1
=

∫ (
√
ξ/(y′−y)+h)/2

0

dx′

(
√
ξ/(y′ − y)− x′ + h)p+1

= −1

p

[
(
√
ξ/(y′ − y)− x′ + h)−p

](
√
ξ/(y′−y)+h)/2

0

= −1

p

[(√
ξ/(y′ − y) + h

2

)−p
− (
√
ξ/(y′ − y) + h)−p

]

≤ C(p)

(
√
ξ/(y′ − y) + h)p

≤ C(p)

hp
.
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Moreover ∫
{x′≤d̃,

√
ξ/(y′−y)<x′}

dx′

d̃p+1
≤
∫ 1

√
ξ/(y′−y)

dx′

(x′ −
√
ξ/(y′ − y) + h)p

=

[
−

(x′ −
√
ξ/(y′ − y) + h)−p

p

]1

√
ξ/(y′−y)

= −1

p

[
(1−

√
ξ/(y′ − y)− h)−p − h−p

]
≤ 1

php

which leads to the estimate that we claimed.

Let’s proceed with our integral estimate. Following the vector field X2 for a time τ̄ =
3
√
x2(y′ − y)/2 we reach the point (x′+ τ , y′+ τ̄ , x2(y′− y)/2) + τ̄(x′+ τ̄)2/2). Therefore we

have to estimate the integral

I14 '
∫
A1

1

dp+3

∣∣∣∣∫ τ̄

0

X2u(x′ + τ̄ , y′ + t, x2(y′ − y)/2 + t(x′ + τ̄)2/2) dt

∣∣∣∣p |x′|2|x|2 dx dy dx′ dy′
(2.9)

As usual we need to understand which will be the suitable increment for the Hardy inequality;
it turns out that τ̄ is the suitable increment. We better rewrite 2.9 with the change of
variables τ̄ = 3

√
x2/(y′ − y)/2 in y:

I14 ' 6

∫
Â1

1

dp+3

∣∣∣∣∫ τ̄

0

X2u(x′ + τ̄ , y′ + t, τ̄ 3 + t(x′ + τ̄)2/2) dt

∣∣∣∣p |x′|2τ̄ 2 dx dτ̄ dx′ dy′

.
∫
Â1

1

dp+1

∣∣∣∣∫ τ̄

0

X2u(x′ + τ̄ , y′ + t, τ̄ 3 + t(x′ + τ̄)2/2) dt

∣∣∣∣p τ̄ 2 dx dτ̄ dx′ dy′

=

∫
Â1

1

dp+1

∣∣∣∣∫ τ̄

0

X2u(Ψ2(τ̄ , y′, t)) dt

∣∣∣∣p τ̄ 2 dx dτ̄ dx′ dy′

with Ψ2(τ̄ , y′, t) = (x′ + τ̄ , y′ + t, τ̄ 3 + t(x′ + τ̄)2/2). We immediatly notice that

∂Ψ2

∂τ̄∂y′∂t
=

1 0 2τ̄ 2 + (x′ + τ̄)
0 1 0
0 1 (x′ + τ̄)2/2


and that det ∂Ψ2

∂τ̄∂y′∂t
= (x′ + τ̄)2/2. We claim now that there exists C(p) > 0 such that

∫
Â1

dx

d̂p+1
≤ C(p)

τ̄ p

with d̂ = |x− x′|+ 2τ̄ 3/x2. We split computations in various cases.

Case x ≥ x′ ≥ 0 . Here the condition |x| ≤ d̂ becomes x ≤
√

2τ̄ 3/x′; moreover we also
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know that |x′| ≤ d̂ which leads to x′ ≤ x ≤
√

2τ̄ 3/x′. Therefore∫
Â1

dx

d̂p+1
≤
∫ √2τ̄3/x′

x′

dx

(x− x′ + 2τ̄ 3/x2)p+1
≤
∫ √2τ̄3/x′

x′

dx

xp+1

= C(p)

[(√
τ̄ 3

x′

)−p
− (x′)−p

]

≤ C(p)
(x′)p/2

τ̄ 3p/2
=
C(p)

τ̄ p
(x′)p/2

τ̄ p/2
≤ C(p)

τ̄ p

which conclude the estimate in this first case.
Case x′ ≥ x ≥ 0 . Here the condition |x′| ≤ x′−x+2τ̄ 3/x2 leads to 0 ≤ x ≤ 3

√
2τ̄ . Hence∫

Â1

dx

d̂p+1
≤
∫ 3√2τ̄

0

dx

(x′ − x︸ ︷︷ ︸
≥0

+τ̄ 3/x2)p+1
≤
∫ 3√2τ̄

0

dx(
τ̄3

3√4τ̄2

)p+1 =
C(p)

τ̄ p
.

Case x′ ≥ 0 > x . Both conditions |x| ≤ d̂ and |x′| ≤ d̂ are empty; thus x moves between
0 and −1: ∫

Â1

dx

d̂p+1
≤
∫ 0

−1

dx

(x′ − x+ τ̄ 3/x2)p+1
≤
∫ 0

−1

dx

(−x+ τ̄ 3/x2)p+1

=

∫ 0

−1

dx(
1
x2

)p+1
(−x3 + τ̄ 3)p+1

=

∫ 0

−1

x2(p+1)

(−x3 + τ̄ 3)p+1
dx

= τ̄

∫ 1/τ̄

0

(τ̄ ξ)2(p+1)

((τ̄ ξ)3 + τ̄ 3)p+1
dξ ≤ 1

τ̄ p

∫ ∞
0

ξ2(p+1)

(1 + ξ3)p+1
dξ ≤ C(p)

τ̄ p

where we changed variable putting −x = ξτ̄ .
In each case we got the estimate needed. Therefore if x′ ≥ 0 we conclude:∫

Â1

1

dp+1

∣∣∣∣∫ τ̄

0

X2u(Ψ2(τ̄ , y′, t)) dt

∣∣∣∣p τ̄ 2 dx dτ̄ dx′ dy′ ≤
∫
QR×[0,1]

|X2u(ξ, η, τ)|p dξ dη dτ

where we used Hardy inequality, Minkowski inequality and the fact that determinant of the
jacobian of Ψ−1

2 is = 1/(x′ + τ̄)2, and thus τ̄ 2/(x′ + τ̄)2 ≤ 1.
However if x′ ≤ 0 the computations we have done so far do not work anymore, because

nothing we know about the quantity τ̄ 2/(x′+ τ̄)2; we need a geometric idea to solve this case.
Indeed using bilinearity of Lie brackets we have that [[−X1, X2],−X1] = [[X1, X2], X1] =
−∂/∂z. To estimate [−X1, X2] we may follow the following scheme:

X1

τ

−X2τX2 τ

P−X1

τ
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and explicitely

P = (x, y, z)
−X1−−→ (x− τ, y, z)

X2−→ (x− τ, y + τ, z + τ(x− τ)2/2)

X1−→ (x, y + τ, z + τ(x− τ)2/2)

−X2−−→ (x, y, z + τ(x− τ)2/2− τx2/2)

= (x, y, z + τ 3/2− xτ 2).

To conclude we do the same with the vector fields [−X1, X2] and −X1:

[−X1,−X2] = [X1, X2]

τ

−X1τ−X1 τ

P[−X1, X2]

τ

and explicitely

P = (x, y, z)
[−X1,X2]−−−−−→ (x, y, z + τ 3/2− xτ 2)

−X1−−→ (x− τ, y, z + τ 3/2− xτ 2)

[−X1,−X2]−−−−−−→ (x− τ, y + τ, z + τ 3/2− xτ 2 − τ 3/2 + (x− τ)τ 2)

X1−→ (x, y, z − τ 3)

which leads again to τ̄ = 3
√
x2(y′ − y)/2 as we needed.

Why did we choose a different path to reach the “same” point? Because if x′ < 0 we
want to go away from the singularity. The following picture better depicts the geometric
idea behind our choice:

y

x

−X1

τ̄

X2 τ̄

X1

τ̄

−X2τ̄

P X1

τ̄

X2τ̄

−X1

τ̄

−X2 τ̄

P ′
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The point P has negative abscissa and if we had used the vector field X1, we would
have moved too much close to the singularity; the same with the point P (and the vector
field −X1). Note that we carried out the computations for a point of “type” P ′ (positive
abscissa), but they would be basically the same in the case of a point of “type” P : the first
step would be moving from (x′, y′, x2(y′ − y)/2) to (x′ − τ̄ , y′, x2(y′ − y)/2) and so on.

This does not conclude the estimate for the case A1, but the main ideas on how to carry
out the further estimates have already been clarified. The other steps can be obtained with
similar computations; we may then consider proved the theorem in the case of A1.

We want to deal now with the case A4. Here again the idea is to connect the points w
and q with the integral curves of some vector fields, but we found out that the “technologies”
used so far were not anymore appropriate. Let us consider then the vector field

Z = X1 +X2 =
∂

∂x
+

∂

∂y
+
x2

2

∂

∂z
;

the integral curves of Z can be found solving{
γ̇(t) = Z(γ(t))

γ(0) = (x, y, 0)

which leads to γ(t) = (x+ t, y + t, (x+ t)3/6− x3/6).
The integral we want to deal with is again∫

{x≥d, x′≥d}

|u(x, y, 0)− u(x′, y′, 0)|p

dpsµ(B(x, y, 0), d)
x2x′2 dx dy dx′ dy′

but notice that in this case, according to Proposition 2.2.1 and Lemma 2.3.1,

dpsµ(B(x, y, 0), d) ' dp+2|x|

and
d = |x− x′|+ |y − y′|+

√
|y − y′||x|

but since here x ≥ d, we may assume that the term |y − y′| is negligible; thus

d ' |x− x′|+
√
|y − y′||x| ' max{|x− x′|,

√
|y − y′||x|}.

We can also suppose x′ ≥ x without loss of generality. Following the vector field Z for a
time x′− x we move from (x, y, 0) to (x′, y+ x′− x, (x′3− x3)/6); hence we have to estimate
the integral∫

{x≥d, x′≥d}

1

dp+2|x|

(∫ x′−x

0

|Zu(x+ t, y + t, [(x+ t)3 − x3]/6)| dt

)p

x2x′2 dx dy dx′ dy′.

Using x′ − x ≤ d we have that the previous integral is obviously

≤
∫
{x≥d, x′≥d}

1

dp+2|x|

(∫ d

0

|Zu(x+ t, y + t, [(x+ t)3 − x3]/6)| dt
)p

x2x′2 dx dy dx′ dy′;
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we notice that the inner integral does not depend on x′ and y′, thus we use “spherical”
coordinates in d. In particular

f(x, y) =
1

dp+2|x|

(∫ d

0

|Zu(x+ t, y + t, [(x+ t)3 − x3]/6)| dt
)p

is “radial” in d (in the coordinates x′ and y′); using then the Coarea formula (Theorem 1.1.3)
we get ∫

{d<r}
f dx′ dy′ =

∫ r

0

(∫
{d=s}

f

|∇d|
dH1(x′, y′)

)
ds.

Therefore we have to compute ∫
{d=s}

1

|∇d|
dH1(x′, y′);

a picture helps to understand the situation:

y′

x′x+ sxx− s

y

{(x′, y′) : d = s}

Indeed along the red edges it is d =
√
|y − y′||x| because |x− x′| < s and then

|∇y′d| =
1

2

√
x√

|y − y′|
=

1

2

√
x√
s2/x

=
x

2s
;

along the blue edges d = |x− x′| and then |∇d| = 1. In conclusion∫
{d=s}

1

|∇d|
dH1(x′, y′) ' s

x
· 2s ' s2

x

along red edges and again ∫
{d=s}

1

|∇d|
dH1(x′, y′) ' s2

x

along blue edges. These computations are enough to conclude the estimate: indeed along
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d = s we may suppose x ' x′ with s < x/2 and therefore∫
{x≥d}

∫
{x′≥d}

1

dp+2|x|

(∫ d

0

|Zu(x+ t, y + t, [(x+ t)3 − x3]/6)| dt
)p

x′2 dx′ dy′ x2 dx dy

≤
∫
{x≥d}

∫ 1

0

∫
{d=s}

1

dp+2|x|

(∫ d

0

|Zu(x+ t, y + t, [(x+ t)3 − x3]/6)| dt
)p

x′2
dH1(x′, y′)

|∇d|
ds dx dy

≤
∫
{x≥d}

∫ 1

0

1

sp+2|x|

(∫ s

0

|Zu(x+ t, y + t, [(x+ t)3 − x3]/6)| dt
)p

x2 · s
2

x
ds x2 dx dy

≤
∫
{|x|≤1, |y|≤1}

∫ 1

0

(
1

s

∫ s

0

|Zu(x+ t, y + t, [(x+ t)3 − x3]/6)| dt
)p

x2 dx dy.

Using Hardy inequality the last line above is

≤
∫
{|x|≤1, |y|≤1}

∫ 1

0

|Zu(x+ t, y + t, [(x+ t)3 − x3]/6)|p dt x2 dx dy

≤
∫
{|x|≤1, |y|≤2, x≤σ}

∫ 1

−1

|Zu(σ, y, (σ3 − x2)/6|p dσ x2 dx dy

≤
∫
{|σ|≤1, |y|≤2, 0≤z≤1}

|Zu(σ, y, z)|p dσ dy dz

where we put x+ t = σ in s and (σ3 − x3)/6 = z in x.
This concludes the estimate along the first path.

In the second step we have to estimate∫
{x≥d, x′≥d}

1

dp+2|x|
|∆|px2x′2 dx dy dx′ dy′

where

∆ = u(x′, y + x′ − x, (x′3 − x3)/6)− u(x′, y′, (x′3 − x3)/6 + (y′ − y − x′ + x)x′2/2)

=

∫ y′−y−x′+x

0

X2u(x′, y + x′ − x+ t, (x′3 − x3)/6 + tx′2/2) dt.

Being u with compact support, we may integrate over R2 × R2 instead of {x ≥ d, x′ ≥ d}.
We get then∫
R2×R2

1

dp+2|x|

∣∣∣∣∫ h2−h1

0

X2u

(
x+ h1, y + h1 + t,

(x+ h1)3 − x3

6
+ t

(x+ h1)2

2

)
dt

∣∣∣∣p x2(x+h1)2 dx dy dh1 dh2

after the change of variables x′ = x+h1 and y′ = y+h2; notice that |h2−h1| ≤ |h2|+ |h1| ≤
|x′ − x| +

√
|y′ − y|

√
|y′ − y| ≤ d. With the change of variable h2x = k2 we get that the

previous integral is

≤
∫
R2×R2

1

dp+2

∣∣∣∣∫ d

0

∣∣∣∣X2u

(
x+ h1, y + h1 + t,

(x+ h1)3 − x3

6
+ t

(x+ h1)2

2

)∣∣∣∣ dt∣∣∣∣p (x+h1)2 dx dy dh1 dk2;
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here d = |h1|+
√
|k2|. With the change of variable k2 = h2

3 −→ dk2 = 2h3dh3 we finally get

≤
∫
R2

dh

∫
R2

1

|h|p+1

∣∣∣∣∣
∫ |h|

0

∣∣∣∣X2u

(
x+ h1, y + h1 + t,

(x+ h1)3 − x3

6
+ t

(x+ h1)2

2

)∣∣∣∣ dt
∣∣∣∣∣
p

(x+h1)2 dx dy

where we used |h3| ≤ d, h = (h1, h3) and then d ' |h|. We proceed with the chain of
inequalities; in order to get rid of the h1 in the inner integral we put x + h1 = x̄ in x and
y + h1 + t = ȳ in y from which we get

≤
∫
R2

dh

∫
R2

1

|h|p+1

∣∣∣∣∣
∫ |h|

0

∣∣∣∣X2u

(
x̄, ȳ,

x̄3 − (x̄− h1)3

6
+ t

x̄2

2

)∣∣∣∣ dt
∣∣∣∣∣
p

x̄2 dx̄ dȳ =: L;

then with the last linear change (x̄3 − (x− h1)3)/6 + tx̄2/2 = τ x̄2/2 in t; notice that∣∣∣∣ x̄3 − (x̄− h1)3

6

∣∣∣∣ =

∣∣∣∣ x̄3 − x̄3 − h3
1 + 3x̄2h1 + 3x̄h2

1

6

∣∣∣∣ ≤ Cx̄2|h1| ≤ Cx̄2|h|

and then 0 ≤ τ ≤ C ′|h| for a suitable constant C ′ > 0. Then

L ≤
∫
R2

dh

∫
R2

1

|h|p+1

∣∣∣∣∣
∫ |h|

0

∣∣∣∣X2u

(
x̄, ȳ, τ

x̄2

2

)∣∣∣∣ dτ
∣∣∣∣∣
p

x̄2 dx̄ dȳ

≤
∫
R2

dh

|h|p+1

[∫ C′|h|

0

(∫
R2

∣∣∣∣X2u

(
x̄, ȳ,

x̄2

2
τ

)∣∣∣∣p x̄2 dx̄ dȳ

)1/p

dτ

]p

where we used Minkowski integral inequality in the last step in order to exchange integration
in dτ with integration in dx̄ dȳ. We can now proceed with “spherical” coordinates in |h|:

≤
∫ ∞

0

[
1

s

∫ s

0

(∫
R2

∣∣X2u(x̄, ȳ, x̄2τ/2)
∣∣p x̄2 dx̄ dȳ

)1/p

dτ

]p
ds

≤
∫ ∞

0

∫
R2

|X2u(x̄, ȳ, x̄2s/2)|px̄2 dx̄ dȳ ds

≤
∫ ∞

0

∫
R2

|X2u(x, y, z)|p dx dy dz.

where we used Hardy inequality in the second line and a last change of variable x̄2s/2 = z
in s. Also the estimate along the second path has been done.

We have now to deal with the descent. As we have done in the case of A1, we use Lie
brackets, noticing that [X1 + X2, X2] = [X1, X2] = x ∂

∂z
; this time one application of com-

mutators will be enough; using Lemma 1.1.2 we can estimate the time required to reach the
plane z = 0 which should be comparable with the distance d between the two points w and
q. The scheme is the same used few pages above:
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−X1 −X2

τ

X2τ−X2 τ

Q X1 +X2

τ

where Q =
(
x′, y′, x

′3

6
− x3

6
+ (y′ − y − x′ + x)x

′2

2

)
; we have to estimate the time of the de-

scent. More explicitely:

Q =

(
x′, y′,

x′3

6
− x3

6
+ (y′ − y − x′ + x)

x′2

2

)
X1+X2−−−−→

(
x′ + τ, y′ + τ,

(x′ + τ)3

6
− x3

6
+
x′2

2
(y′ − y + x− x′)

)
X2−→
(
x′ + τ, y′ + 2τ,−x

3

6
+ (y′ − y − x′ + x)

x′2

2
+

(x′ + τ)3

6
+ τ

(x′ + τ)2

2

)
−X1−X2−−−−−→

(
x′, y′ + τ,

x′3

6
− x3

6
+ (y′ − y − x′ + x)

x′2

2
+ τ

(x′ + τ)2

2

)
−X2−−→

(
x′, y′,

τ 3

2
+ τ 2x′ − x3

6
+
x′3

6
+ (y′ − y − x′ + x)

x′2

2

)
and then the time τ should solve

τ 3

2
+ τ 2x′ = τ 2

(
x′ +

τ

2

)
=
x3

6
− x′3

6
− (y′ − y − x′ + x)

x′2

2︸ ︷︷ ︸
=z

.

We have τ ≤ x′; on the contrary, if x′ ≤ τ hold, it would mean x′3 ≤ τ 3 ≤ z id est
x′ ≤ 3

√
z <

3
√
dx′2, contradiction because we are in the case x′ ≥ d. Thus τ ≤ x′ leads to

τ 2x′ ≤ z and then τ ≤
√
z/x′. By Lemma 2.3.1

τ ≤
√
z

x′
= d((x′, y′, z), (x′, y′, 0)) ≤ c0d((x, y, 0), (x′, y′, 0)) = c0d

where we also used triangle inequality and the fact that

d((x′, y′, z), (x, y, 0)) ' d

because we followed the vector fields for a time comparable to d.

Now we estimate∫
R2×R2

x2x′2

dp+2|x|
dx dy dx′ dy′

(∫ τ̄

0

∣∣∣∣Zu(x′ + τ, y′ + τ,
(x′ + τ)3

6
− x3

6
+
x′2

2
(y′ − y + x− x′)

)∣∣∣∣ dτ)p .
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With the change of variables x′ − x = h1 > 0 in x′ and y′ − y = h2 in y′ the previous is

≤
∫
R2×R2

x2(x+ h1)2

dp+2|x|
dx dy dh1 dh2(∫ d

0

∣∣∣∣Zu(x+ h1 + τ, y + h2 + τ,
(x+ h1 + τ)3

6
− x3

6
+

(x+ h1)2

2
(h2 − h1)

)∣∣∣∣ dτ)p
where now d = |x′ − x| +

√
|y′ − y||x| = |h1| +

√
|h2||x|. A second change of variables

h2x = h̃2 says that the chain of inequalities continues with

≤
∫
R2×R2

(x+ h1)2

dp+2
dx dy dh1 dh̃2

(∫ d

0

∣∣∣∣∣Zu
(
x+ h1 + τ, y +

h̃2

x
+ τ, . . .

)∣∣∣∣∣ dτ
)p

.

The third change of variables h̃2 = h
2

2 leads to

.
∫
R2×R2

(x+ h1)2

dp+1
dx dy dh1 dh2

(∫ d

0

∣∣∣∣∣Zu
(
x+ h1 + τ, y +

h
2

2

x
+ τ, . . .

)∣∣∣∣∣ dτ
)p

since h2 =

√
h̃2 =

√
h2|x| =

√
|y′ − y||x| < d. The most tricky part of this computation

starts here with the fourth change of variables in τ :

(x+ h1 + τ)2σ =
(x+ h1 + τ)3

6
− x3

6
+

(x+ h1)2

2
(h2 − h1) (2.10)

the differential turns out to be

dσ =
(x+ h1 + τ)4/2− 2(x+ h1 + τ)[(x+ h1 + τ)3/6− x3/6 + (x+ h1)2(h2 − h1)/2]

(x+ h1 + τ)4︸ ︷︷ ︸
=1/Φ

dτ ;

after some elementary computations (which should be split into two cases: case −(x +
h1)2(x + h1 + τ)(h2 − h1) > 0 and case −(x + h1)2(x + h1 + τ)(h2 − h1) ≤ 0) we get that
|Φ| ≤ C for a suitable constant C ∈ R, provided that x ≤ d/8. With similar computations
we have that |σ| ≤ kd = k|h| (remember that τ ∈ [0, |h|]). Thus our integral inequalities
chain continues with

.
∫
R2×R2

(x+ h1)2

dp+1
dx dy dh1 dh2

(∫ d

0

∣∣∣∣Zu(x+ h1 + τ̂ , y +
h2

x
+ τ̂ , (x+ h1 + τ̂)2σ

)∣∣∣∣ dσ)p
with τ̂ = τ̂(h1, h2, σ, x). As we did before, we use now Minkowski inequality for integrals in
order to exchange integration in dh = dh1 dh2 with integration in dx dy:

. C(p)

∫
R2

dh1 dh2

|h|p+1

∫ |h|
0

(∫
R2

∣∣∣∣Zu(x+ h1 + τ̂ , y +
h2

x
+ τ̂ , (x+ h1 + τ̂)2σ

)∣∣∣∣p dx dy
)1/p

dσ

p .
A fifth change of variables pushes us towards the final result: x = x + h1 + τ̂ in x and

y = y + h
2

2/x+ τ̂ in y:

. C(p)

∫
R2

dh1 dh2

|h|p+1

[∫ |h|
0

(∫
R2

|Zu(x, y, x2σ)|p (x− τ̂)2

(1 + τ̂ ′)
dx dy

)1/p

dσ

]p

. C(p)

∫
R2

dh1 dh2

|h|p+1

[∫ C|h|

0

(∫
R2

|Zu(x, y, x2σ)|p x2

(1 + τ̂ ′)
dx dy

)1/p

dσ

]p
;
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differentiating the identity 2.10 in x it is possible to show that 1 + τ ′ is bounded from below
provided that d ≤ x/16 (it is enough to use (x + h1 + τ) ∼ x and other trivial inequalities
involving x and the distance). “Spherical” coordinates in |h|, Hardy inequality and the
change of variable z = x2σ in σ allow us to conclude the estimate. The further steps of the
path may be done with similar ideas, and thus are omitted.

This concludes the proof for A4; the proofs for the cases A2 and A3 may be obtained
combining techniques from the proof of the case A1 and techniques from the proof of the
case A4.
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