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Introduction

The problem of enclosing a fixed area inside a figure in the plane with least
perimeter was known since the times of ancient Greeks. They knew that the
optimal solution was a circle, although they did not prove this fact precisely
but just by approximation. Surprisingly, the first rigorous proof was found
only in the 19th century. First Steiner showed that, if a solution exists, then
it is necessarily a ball and, some years later, Carathéodory completed the
proof showing the existence of the minimizers. We could generalize this
problem, for example, trying to find two sets of fixed areas which minimize
the perimeter of their boundary. In general, this problem could be set with
N subsets of Rn. This is called partitioning problem.

In this thesis we are going to study exactly this problem. Namely, we
define an N -cluster in Rn as a collection of N sets of finite perimeter and
with finite and non null Lebesgue measure. Moreover, these sets have to
intersect pairwise in null measure sets. Given a cluster E = {E1, . . . , EN}, we
define its perimeter as the Hn−1-measure of

N⋃
i=1

∂∗Ei

and we denote it by P (E). Given m ∈ RN+ , we want to find, among all the
N -clusters of Rn with |Ei| = mi, the one which minimizes the perimeter. In
other words, we have to determine

inf
{
P (E) : E N -cluster, m(E) = m

}
As we have already told, it is well known that the case N = 1 admits as

unique minimizer the n-dimensional ball. Moreover, notice that it has very
good geometric regularity properties. For the case N ≥ 2, the first question
to face is whether this problem admits a solution, that is if there exists (at
least) a N -cluster of Rn which realizes the infimum. A cluster of this kind is
called minimizer. The other aspect to study is if this minimizer has some
relevant regularity properties.

We will proceed in this way. The first chapter will be entirely dedicated
to the proof of the existence of the minimizers. We followed and detailed
the version of [6]. The basic idea of the proof is to consider a minimizing
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viii Introduction

sequence, i.e. which perimeter converges to the infimum value, and show
that, up to extracting a subsequence, it converges to a certain admissible
cluster. We’ll start presenting in detail the problem, defining precisely a
cluster, its perimeter and the partitioning problem. Immediately after we
will deduce the basic properties of these quantities. The first important step
for the proof is the compactness criterion stated in Section 1.2. In fact, under
some suitable assumptions on the the minimizing sequence, this criterion will
allow us to extract a converging subsequence. The two statements in Section
1.3 represent the second important step. Indeed, we will see that we can
locally modify our cluster through a diffeomorphism around some interface
points with a precise estimation on the volumes of the transformed chambers
and on the perimeter of a generic Hn−1-rectifiable set. In particular, if we
modify our cluster changing also the volumes of the chambers, thanks to that
theorem we can restore the original measures.

In the second chapter, instead, we are going to study the regularity of
minimizers, starting from the general case and then analysing some particular
ones. First of all, we will prove an important theorem for N -clusters in Rn.
We will discover that minimizers have constant mean curvature hypersurfaces
as boundaries. Then we are going to focus just on planar examples. For these
kind of clusters we will see that they are characterized by having a finite
number of arcs or line segments in their boundaries and they satisfy the 120◦

rule. This says that the boundary arcs meet in threes at a finite number of
points forming 120◦ angles. These facts were first proved by [7] in 1994. In
this thesis, we detail that proof. Exploiting these informations for the case
of N = 2, we can entirely characterize the 2-minimizer clusters as standard
double bubbles, that is clusters formed by two connected chambers and three
arcs meeting at two vertices. In fact, in this case it is possible to show that
the chambers and the exterior have to be connected. This is a key point
since it is not obvious for other kind of problems (see [2]). Lastly, we will
consider the case of N = 4, recently developed in [9], [10]. We will prove that
the optimal cluster with chambers of the same area admits a very curious
configuration. It is formed by two quadrangular regions and two triangular
ones. The firsts have a line segment in common and are adjacent to both the
triangular regions. Moreover the entire cluster is symmetric w.r.t. both the
line segment above and its axis.

Although we are going to deal only with the these matters, other very
important results about the characterization of some minimizing clusters
have been proved in the last twenty years. For example, in 2002 Wichiramala
proved that the standard triple bubble is the unique 3-minimizing cluster in
the plane (see [12]). This cluster is formed by three connected regions and
its boundary is composed by six circular arcs, joining in four points with the
120◦ rule (see Figure 1a).

A different way of looking at the problem is given by Wichiramala in
[13] with the so called weak approach. As we have already told, one of the



Introduction ix

(a) (b)

Figure 1: The standard triple bubble with three equal areas in figure (a).
The honeycomb formed by the hexagon tile in figure (b).

biggest obstacles is proving that every chamber is connected. With the
weak approach, we consider also clusters with chambers of areas greater
than the correct ones. In this way, for example, we can easily reduce to
the case of an exterior connected. In fact we can incorporate the bounded
connected components of the exterior inside other chambers. Then, the area
of some bubble increases, the cluster remains admissible thanks to the weak
assumption, but its perimeter decreases.

Some results were found also in the three-dimensional space. One of the
most important is the proof of the double bubble conjecture. It states that
the standard double bubble in R3, formed by three spherical surfaces meeting
at angles of 120◦ along a common circle, is the optimal 2-cluster. A proof of
this conjecture was given in [5] in 2002.

Finally also the case N = ∞ has been studied. This is the so called
Honeycomb conjecture [3] and it affirms that, in a certain sense, the honeycomb
represent the way of enclosing infinitely many (equal) areas with the least
perimeter (see Figure 1b). Precisely, let T be a network in R2 such that
T = R2 \ T has infinitely many connected components with the same area 1.
Then

lim sup
r→0+

P (T ∩Br)
area(T ∩Br)

≥ 4
√

12

The equality is attained exactly for the regular hexagonal tile.





Notation

With the following list we want to fix some notation that we are going to use
in this thesis.

Ln Lebesgue measure on Rn.
|E| Ln-measure of the set E ⊆ Rn.
ωn Ln-measure of a ball with unitary radius.
Hn−1 (n− 1)-Hausdorff measure on Rn.
#I,H0(I) cardinality of the set I.
≈ equivalence of two (n− 1)-dimensional sets. We say that

E,F are Hn−1-equivalent whenever Hn−1(E∆F ) = 0,
that is if they differ on a set of null Hn−1-measure.

θs(E)(x) s-dimensional density of the set E ⊆ Rn at the point

x ∈ Rn, i.e. θs(E)(x) = lim
r→0+

Hs(E ∩B(x, r))

ωsrs
.

E(t) set of points of Rn with density w.r.t. E equal to t.
∂∗E reduced boundary of the set of finite perimeter E.
νE(x) outer unit normal vector to E at x.
P (E;F ) perimeter of the set E of finite perimeter inside F .
⊂⊂ compactly contained.
Ckc set of the Ck function with compact support.
Br n-dimensional ball of radius r centered in the origin.
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CHAPTER 1
Existence of the minimum

The aim of this chapter is to start explaining in detail the theory of the
minimizing cluster. First we’ll define an N -cluster, its perimeter and what
we mean by a partitioning problem and a minimizing cluster. In particular,
we will devote most of the chapter to the long proof of the existence of the
minimum in a partitioning problem.

1.1 Partitioning problem and basic properties

An N -cluster E in Rn is a collection {E(h)}Nh=1 of sets in Rn of finite perimeter
with N ∈ N, N ≥ 1 and

0 <
∣∣E(h)

∣∣ < +∞, h = 1, . . . , N∣∣E(h) ∩ E(k)
∣∣ = 0, h, k = 1, . . . , N, h < k

Thus if h 6= k, E(h), E(k) may intersect in a non-empty set but its Ln-measure
is null.

We call the sets E(1), . . . , E(N) chambers of the cluster E . We define also
the exterior chamber E(0) as

E(0) = Rn \
N⋃
h=1

E(h)

In this way, {E(h)}Nh=0 is a partition of Rn up to a set of Lebesgue measure
null; we notice that

∣∣E(0)
∣∣ =∞. By convenience, we set

m(E) = (
∣∣E(h)

∣∣)Nh=1 ∈ RN+

and we call it measure vector, or volume vector. Its entries are exactly the
volumes of the chambers of E . Clearly it belongs to RN+ because, by definition
of N -cluster,

∣∣E(h)
∣∣ > 0 for every h = 1, . . . , N .

1
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Figure 1.1: In figure it is represented an example of a 3-cluster in the plane.

Now we define the interfaces as the sets given by the intersection of the
reduced boundaries of two different chambers, namely

E(h, k) = ∂∗E(h) ∩ ∂∗E(k), h, k = 0, . . . , N, h 6= k

We notice that the interfaces are Hn−1-rectifiable sets because, by De Giorgi’s
structure theorem, we know that the reduced boundary of any set of finite
perimeter is of that kind.

Now we are ready to define the perimeter of a cluster. The perimeter of
E in F ⊆ Rn is

P (E ;F ) =
∑

0≤h<k≤N
Hn−1

(
E(h, k) ∩ F

)
and its perimeter is

P (E) = P (E ;Rn) =
∑

0≤h<k≤N
Hn−1

(
E(h, k)

)
Now let’s explain what a partitioning problem and a minimizing cluster

are. Given m ∈ RN+ , the partitioning problem in Rn associated to m is
finding a cluster with prescribed chambers volumes and which minimizes the
perimeter. Namely, we want to determine

inf{P (E) : m(E) = m} (1.1)

where E is a N -cluster in Rn with sptµE(h) = ∂E(h) for every h = 1, . . . , N .
If E is a cluster which perimeter realizes the infimum, we say that E is a
minimizing, or minimal, cluster for the problem defined by m.

This first chapter will be entirely devoted to the proof of the following
theorem, which states the existence of the minimizers.

Theorem 1.1. Given non-negative integers n,N ≥ 2 and m ∈ RN+ , there
exist minimizing N -clusters in Rn for the partitioning problem associated
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to m, that is the problem (1.1) admits minimum. Moreover, if E is such a
minimizer, E is bounded, i.e. there exists R > 0 such that

E(h) ⊆ BR, h = 1, . . . , N

As usual, we would like to define a convergence of clusters. In order to do
this, we define the "distance" of two clusters. Given N -clusters E , E ′, their
distance in F ⊆ Rn is

dF (E , E ′) =
N∑
h=1

∣∣∣F ∩ (E(h)∆E ′(h)
)∣∣∣

and their (simple) distance is

d(E , E ′) = dRn(E , E ′) =
N∑
h=1

∣∣E(h)∆E ′(h)
∣∣

It is easily seen that d is not a distance in the usual sense. Indeed, if E(h) and
E ′(h) differ by a null Ln measure set for some h = 1, . . . , N , their distance
is zero although they are not equal. Using these definitions of distance, we
say that a sequence of N -clusters {Ek}k∈N in Rn locally converges to E , and
we write Ek

loc−→ E , if for every compact set K ⊆ Rn, dK(Ek, E) → 0 as
k →∞. We simply say that {Ek}k∈N converges to E , and we write Ek → E ,
if d(Ek, E)→ 0 as k →∞. This means that there is convergence whenever
the measure of the sets difference goes to zero. Thus we can say that this is
a convergence in a measure sense.

The following proposition is interesting for two reasons. The first is that it
tells us how we can express the perimeter of a cluster through the perimeters
of its chambers. In this way, we can use all the known properties of the
perimeter of the sets of finite perimeter. The second is that it provides the
lower semicontinuity of the relative perimeter of a cluster into an open set.
This is crucial for the existence of the minimizer.

Proposition 1.2. Given an N -cluster E in Rn and a subset F ⊆ Rn it
holds

P (E ;F ) =
1

2

N∑
h=0

P (E(h);F ) (1.2)

Moreover if A is an open set of Rn and {Ek}k∈N is a sequence of N -clusters
such that Ek

loc−→ E, then

P (E ;A) ≤ lim inf
k→∞

P (Ek;A) (1.3)
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Proof. Let’s prove that P (E ;F ) = 1
2

∑N
h=0 P (E(h);F ). We claim that the

interfaces {E(h, k)}0≤h6=k≤N are disjoint and that ∂∗E(h) ≈ ∪Nk=0,k 6=hE(h, k).
We are going to prove them later. If these statements are true then we have∑

0≤h<k≤N
Hn−1

(
E(h, k) ∩ F

)
=

1

2

∑
0≤h6=k≤N

Hn−1
(
E(h, k) ∩ F

)

=
1

2

N∑
h=0

Hn−1

 N⋃
k=0,k 6=h

E(h, k) ∩ F


=

1

2

N∑
h=0

Hn−1
(
∂∗E(h) ∩ F

)
=

1

2

N∑
h=0

P (E(h);F )

Let’s prove the two previous statements.

1. First of all, we show that two distinct interfaces are disjoint. Let
x ∈ E(h, k)∩E(h, j) for different indices h, k, j in {0, . . . , N}. Then, by
Federer’s theorem, x ∈ E(h)(1/2) ∩ E(k)(1/2) ∩ E(j)(1/2) and so

1 ≥
∣∣B(x, r) ∩ (E(h) ∪ E(k) ∪ E(j))

∣∣
ωnrn

=

=

∣∣B(x, r) ∩ E(h)
∣∣

ωnrn
+

∣∣B(x, r) ∩ E(k)
∣∣

ωnrn
+

∣∣B(x, r) ∩ E(j)
∣∣

ωnrn

→ 1

2
+

1

2
+

1

2
=

3

2

which is clearly a contradiction. Then

E(h, k) ∩ E(h, j) = ∅ (1.4)

2. Now we verify that

∂∗E(h) = M ∪
N⋃

k=0,k 6=h
E(h, k) (1.5)

for a certain set M with Hn−1 (M) = 0. Clearly, all the interfaces
{E(h, k)}k=0,...,N,k 6=h are subsets of ∂∗E(h) and so

N⋃
k=0,k 6=h

E(h, k) ⊆ ∂∗E(h)
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Viceversa, if x ∈ ∂∗E(h) then x ∈ E(h)(1/2) = (Rn \ E(h))(1/2) = N⋃
k=0,k 6=h

E(k)

(1/2)

. According to the following lemma 1.3 and Fed-

erer’s theorem, there exist sets M ′,M ′′ ⊆ Rn of null Hn−1 measure
such that  N⋃

k=0,k 6=h
E(k)

(1/2)

⊆M ′ ∪
N⋃

k=0,k 6=h
E(k)(1/2)

⊆M ′′ ∪
N⋃

k=0,k 6=h
∂∗E(k)

Then we conclude that

∂∗E(h) ⊆

 N⋃
k=0,k 6=h

E(k)

(1/2)

∩ ∂∗E(h)

⊆M ′′ ∪
N⋃

k=0,k 6=h

(
∂∗E(k) ∩ ∂∗E(h)

)
= M ′′ ∪

N⋃
k=0,k 6=h

E(h, k)

This proves (1.5).

Finally we have to demonstrate (1.3). This follows quite immediately
by (1.2) and the lower semicontinuity of P ( · ;A) with respect to the conver-
gence of finite perimeter sets "in measure". Indeed, since Ek → E , we have
Ek(h) → E(h) for every h = 0, . . . , N . Then, by the semicontinuity, we get
P (E(h);A) ≤ lim inf

k→∞
P (Ek(h);A) and so we can deduce that

P (E ;A) =
1

2

N∑
h=0

P (E(h);A)

≤ 1

2

N∑
h=0

lim inf
k→∞

P (Ek(h);A)

≤ lim inf
k→∞

1

2

N∑
h=0

P (Ek(h);A)


= lim inf

k→∞
P (Ek;A)

which proves (1.3).
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Lemma 1.3. Let E,F ⊆ Rn two sets of finite perimeter with |E ∩ F | = 0.
Then

(E ∪ F )1/2 ⊆M ∪
((

E(1/2) ∩ F (0)
)
∪
(
F (1/2) ∩ E(0)

))
(1.6)

for some null Hn−1-measure set M ⊆ Rn.

Proof. Let x ∈ (E ∪ F )(1/2); then, as r → 0+, it holds that

1

2
←
∣∣B(x, r) ∩ (E ∪ F )

∣∣
ωnrn

=

∣∣B(x, r) ∩ E
∣∣

ωnrn
+

∣∣B(x, r) ∩ F
∣∣

ωnrn
(1.7)

and so x ∈ E(1/2) if and only if x ∈ F (0). So let x /∈ E(1/2) ∩ F (1/2),
that is x /∈ F (0) ∩ E(0). For sure x /∈ E(1) and x /∈ F (1) because it would
contradict (1.7). Then x ∈ ∂eE \E(1/2) and x ∈ ∂eF \ F (1/2). By Federer’s
theorem, we know that

Hn−1
(
∂eE \ ∂∗E

)
= 0, Hn−1

(
∂eF \ ∂∗F

)
= 0

and so, necessarily, x ∈M for some M ⊆ Rn with Hn−1 (M) = 0.

By the previous proposition, some interesting consequences follow.

Remark 1.4. The equality (1.2) is useful because we can deduce some
easy and interesting facts. Indeed the perimeter of a cluster E in Rn is
invariant with respect to rigid motions and, choosen λ > 0, it holds true that
P (λE) = λn−1P (E). These are clear consequences of (1.2) and the analogous
formulas valid for any sets of finite perimeter.

Remark 1.5. It is easy to see that P (E) = Hn−1
(⋃N

h=1 ∂
∗E(h)

)
. In fact,

since we have shown that ∂∗E(h) ≈ ∪k 6=hE(h, k), then

N⋃
h=1

∂∗E(h) ≈
N⋃
h=1

⋃
k 6=h
E(h, k) ≈

⋃
0≤h<k≤N

E(h, k)

This proves the equivalence of perimeter initially stated.

We end this section with some important remarks.

Remark 1.6. If x ∈ E(h, k), 0 ≤ h < k ≤ N and j 6= h, k then

νE(h)(x) = −νE(k)(x) (1.8)

θn(E(j))(x) = 0 (1.9)

Moreover, there exists a set M ⊆ Rn with Hn−1 (M) = 0 such that for every
x ∈ E(h, k) \M

θn−1(∂∗E(j))(x) = 0 (1.10)
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Indeed, it is known that if E,F are sets of locally finite perimeter, E ⊆ F
and x ∈ ∂∗E ∩ ∂∗F then νE(x) = νF (x). Then, considering E = E(h), F =
Rn \ E(k), up to a set of null Ln-measure, E ⊆ F and so

νE(h)(x) = νRn\E(k)(x) = −νE(k)(x)

which demonstrates (1.8). Now let’s prove (1.9). As x ∈ E(h, k) = ∂∗E(h) ∩
∂∗E(k), then x ∈ E(h)(1/2) ∩ E(k)(1/2) and so

∣∣B(x, r) ∩ E(h)c
∣∣

ωnrn
=

∣∣B(x, r) ∩ E(k)
∣∣

ωnrn
+

∣∣∣B(x, r) ∩
(
∪i 6=h,kE(i)

)∣∣∣
ωnrn

provides, as r → 0+, ∣∣∣B(x, r) ∩
(
∪i 6=h,kE(i)

)∣∣∣
ωnrn

→ 0

In particular ∣∣B(x, r) ∩ E(j)
∣∣

ωnrn
→ 0, r → 0+

that is θn(E(j))(x) = 0. We finally prove (1.10). We recall corollary 6.5 of
[6]: if E is a Borel set, s ∈ (0, n), and Hs(E ∩K) <∞ for all the compact
sets K in Rn, then for Hs-a.e. x ∈ Rn \ E,

θs(E)(x) = lim
r→0

Hs(B(x, r) ∩ E)

ωsrs
= 0

Since ∂∗E(j) is a Borel set and Hn−1
(
∂∗E(j) ∩K

)
= P (E(j);K) < ∞ for

each compact set K ⊆ Rn, then for Hn−1-almost every x ∈ Rn \ ∂∗E(j),
θn−1(∂∗E(j))(x) = 0. Reminding that E(h, k) ⊆ Rn \ ∂∗E(j), we conclude
that, for some M ⊆ Rn with Hn−1(M) = 0 and for every x ∈ E(h, k) \M ,
θn−1(∂∗E(j))(x) = 0.

The next remark gives us a slightly generalization of what we have already
proved in (1.5).

Remark 1.7. Consider Λ ⊆ {0, . . . , N}. Then

Hn−1

(
∂∗
( ⋃
h∈Λ

E(h)

)
\

⋃
h∈Λ,k /∈Λ

E(h, k)

)
= 0

Just by convenience, we will prove the remark with Λ = {1, 2}; the general
case has the same basic idea. We already know that

∂∗
(
E(1) ∪ E(2)

)
≈ (E(1)∪E(2))(1/2) ≈ (E(1)(1/2)∩E(2)(0))∪(E(1)(0)∩E(2)(1/2))
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Let’s consider just the term E(1)(1/2) ∩ E(2)(0). We prove that

E(1)(1/2) ∩ E(2)(0) ≈
N⋃
j=0
j 6=1,2

E(1)(1/2) ∩ E(j)(1/2) ≈
N⋃
j=0
j 6=1,2

∂∗E(1) ∩ ∂∗E(j)

Let x ∈ E(1)(1/2) ∩ E(j)(1/2) for some j = 0, . . . , N, j 6= 1, 2. Clearly x ∈
E(1)(1/2). Moreover x ∈ E(2)(0) because by

1 =

∣∣B(x, r) ∩ E(1)
∣∣

ωnrn
+

∣∣B(x, r) ∩ E(j)
∣∣

ωnrn
+

N∑
i=0
i 6=1,j

∣∣E(i) ∩B(x, r)
∣∣

ωnrn

we find that
N∑
i=0
i 6=1,j

∣∣E(i) ∩B(x, r)
∣∣

ωnrn
→ 0, r → 0+

and so x ∈ E(2)(0). Hence we have

N⋃
j=0
j 6=1,2

E(1)(1/2) ∩ E(j)(1/2) ⊆ E(1)(1/2) ∩ E(2)(0)

Viceversa, from (1.6) and the above argument, for some null Hn−1-measure
sets M3,M4, . . . ,M , we get

E(1)(1/2) ∩ E(2)(0) ⊆

(
N⋃
j=0
j 6=1,2

E(j)

)(1/2)

=

(
E(3) ∪

N⋃
j=0

j 6=1,2,3

E(j)

)(1/2)

⊆M3 ∪ E(3)(1/2) ∪

(
N⋃
j=0

j 6=1,2,3

E(j)

)(1/2)

⊆M4 ∪ E(3)(1/2) ∪ E(4)(1/2) ∪

(
N⋃
j=0

j 6=1,2,3,4

E(j)

)(1/2)

⊆ · · · ⊆M ∪
N⋃
j=0
j 6=1,2

E(j)(1/2)

and so

E(1)(1/2) ∩ E(2)(0) ⊆M ∪
N⋃
j=0
j 6=1,2

(
E(j)(1/2) ∩ E(1)(1/2)

)
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Thus we conclude that

E(1)(1/2) ∩ E(2)(0) ≈
N⋃
j=0
j 6=1,2

(
E(1)(1/2) ∩ E(j)(1/2)

)
≈

N⋃
j=0
j 6=1,2

(
∂∗E(1) ∩ ∂∗E(j)

)

So finally we get

∂∗(E(1) ∪ E(2)) ≈
(
E(1) ∪ E(2)

)(1/2) ≈

≈
⋃
i=1,2

N⋃
j=0
j 6=1,2

(
∂∗E(i) ∩ ∂∗E(j)

)
=

⋃
i∈Λ,j /∈Λ

E(i, j)

1.2 Compactness criterion and some
technical lemmas

In order to prove the existence of the minimum and reminding the Direct
Method of the Calculus of Variation, it is very important to have a compact-
ness criterion. The following proposition ensures us exactly this: given a
sequence of N -clusters satisfying some quite restrictive hypotheses, we are
able to extract a subsequence converging to another N -cluster E .

Proposition 1.8. Let R > 0 and {Ek}k∈N a collection of N -clusters in
Rn such that

sup
k∈N

P (Ek) <∞ (1.11)

Ek(h) ⊆ BR, h = 1, . . . , N, k ∈ N (1.12)
inf
k∈N

min
h=1,...,N

∣∣Ek(h)
∣∣ > 0 (1.13)

Then there exists a subsequence {Ek(l)}l∈N and an N -cluster E such that
Ek(l) → E as l→∞.

Proof. We recall a similar proposition holding true for sequences of sets of
finite perimeter. If {Ek}k∈N is a collection of sets of finite perimeter such
that for some R > 0

sup
k∈N

P (Ek) <∞

Ek ⊆ BR, ∀k ∈ N
(1.14)

then there exists a subsequence {Ek(l)}l∈N and a set of finite perimeter E
such that

Ek(l) → E ⊆ BR, l→∞ (1.15)
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We notice that each sequence {Ek(h)}k∈N, h = 1, . . . , N satisfies the hypothe-
ses of the statement. Indeed, as

sup
k∈N

P (Ek) = sup
k∈N

1

2

N∑
h=0

P (Ek(h))

 <∞

then, for all h = 1, . . . , N , supk∈N P (Ek(h)) <∞. Moreover, by assumption
(1.12) it holds true also Ek(h) ⊆ BR and so we can conclude that, for
h = 1, . . . , N , there exist subsequences converging. In order to find the
subsequence {Ek(l)}l∈N, we proceed in this way. Let h = 1. We extract a
subsequence {Ek1(l)(1)}l∈N from {Ek(1)}k∈N with

Ek1(l)(1)→ E(1)

for some E(1) ⊆ Rn of finite perimeter. Now let h = 2. As {Ek1(l)(2)}l∈N
satisfies hypothesis (1.14), we extract a subsequence {Ek2(l)(2)}l∈N from
{Ek1(l)(2)}l∈N, converging to some set E(2). It holds, as l→∞,

Ek2(l)(1)→ E(1)

Ek2(l)(2)→ E(2)

Repeating this proceeding until h = N , we find the subsequence {Ek(l)}l∈N
setting k(l) = kN (l), l ∈ N.

Now let’s prove that {E(h)}h=1,...,N is an N -cluster.

• For each h = 1, . . . , N , E(h) is a set of finite perimeter in Rn with∣∣E(h)
∣∣ < +∞. This easily follows from (1.15).

• It holds
∣∣E(h)

∣∣ > 0. Indeed, by hypothesis (1.13), we know that for
every h = 1, . . . , N inf

k∈N

∣∣Ek(h)
∣∣ > 0. Since for each h = 1, . . . , N we

have
∣∣∣Ek(l)(h)

∣∣∣ l→∞−→ ∣∣E(h)
∣∣, the conclusion is deduced immediately.

• Finally
∣∣E(h) ∩ E(k)

∣∣ = 0 for every distinct h, k = 1, . . . , N . In fact we
have

Ek(l)(h) ∩ Ek(l)(k)→ E(h) ∩ E(k), l→∞

Hence, since
∣∣∣Ek(l)(h) ∩ Ek(l)(k)

∣∣∣ = 0 for any l ∈ N, we conclude that∣∣E(h) ∩ E(k)
∣∣ = 0.

Fixed m ∈ RN+ , consider the partitioning problem

γ = inf{P (E) : m(E) = m}
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and a minimizing sequence {Ek}k∈N. This means that for every k ∈ N, Ek is
an N -cluster with m(Ek) = m and that

lim
k→∞

P (Ek) = γ

Clearly γ <∞. In fact we can take the N -cluster E ′ given by N disjoint
balls with radii {rh}Nh=1 such that ωhrnh = m(h). In this way

γ ≤ P (E ′) <∞

Then we can assume that the minimizing sequence {Ek}k∈N satisfies
supk∈N P (Ek) < P (E ′) <∞. Moreover

inf
k∈N

min
h=1,...,N

∣∣Ek(h)
∣∣ = inf

k∈N
min

h=1,...,N
m(h) > 0

Thus two of the assumptions in proposition 1.8 are satisfied. It is not
obvious that, up to extracting subsequences, it holds Ek(h) ⊆ BR for some
R > 0, for every k ∈ N, h = 1, . . . , N . In fact, even if E is the minimizer,
the sequence {Ek}k∈N = {xk + E}k∈N with xk

k→∞−→ ∞ is a minimizing
sequence which clearly do not satisfy the second hypothesis of 1.8. The
following statement provides a sufficient condition which guarantees that we
can suppose the minimizing sequence uniformly bounded.

Proposition 1.9. Let R > 0, L ∈ N, {Ek}k∈N N -clusters and {Ωk}k∈N a
sequence of finite sets such that:

Ek(h) ⊆
⋃
x∈Ωk

B(x,R), k ∈ N, h = 1, . . . , N

H0(Ωk) ≤ L, k ∈ N

Then there exists a sequence {E ′k}k∈N of N -clusters such that

P (E ′k) = P (Ek), m(E ′k) = m(Ek), k ∈ N
E ′k(h) ⊆ B13L2R, k ∈ N, h = 1, . . . , N

(1.16)

Proof. First of all, for every k ∈ N we define the sets {Fk,i}
L(k)
i=1 as the

connected components of
⋃
x∈Ωk

B(x,R). In particular for every k ∈ N, Fk,i
is an union of closed balls with non empty intersection and L(k) ≤ L since
H0(Ωk) ≤ L. Moreover, if Fk,i =

⋃n(k,i)
j=1 B(xj , R), we get

diam(Fk,i) ≤ 2Rn(k, i) ≤ 2LR

We claim that
Fk,i ⊆ B(zk,i, 4RL)
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for some zk,i. In fact, if x̄, ȳ ∈ Fk,i are such that |x̄− ȳ| = diam(Fk,i),
consider the point zk,i = x̄+ȳ

2 ∈ C(Fk,i) (here C(Fk,i) denotes the convex hull
of Fk,i). Since diam(C(Fk,i)) = diam(Fk,i) ≤ 2RL, then

max{d(z, zk,i) : z ∈ Fk,i} ≤ 2RL

and so for sure Fk,i ⊆ B(zk,i, 4RL). Thus we define xk,i = −zk,i + 9RLien;
translating the set Fk,i using xk,i we have

xk,i + Fk,i ⊆ B(9RLien, 4RL)

Notice that we have chosen xk,i in such a way that {B(9RLien, 4RL)}L(k)
i=1

are disjoint, and consequently the sets {xk,i + Fk,i}i are too. Then for every
k ∈ N we define the map

fk :
⋃
x∈Ωk

B(x,R)→ Rn

x 7→ x+ xk,i, if x ∈ Fk,i

and the new clusters {E ′k}k∈N with chambers

E ′k(h) = fk
(
Ek(h)

)
, h = 1, . . . , N

Hence

E ′k(h) = fk

L(k)⋃
i=1

(Ek(h) ∩ Fk,i)


=

L(k)⋃
i=1

xk,i +
(
Ek(h) ∩ Fk,i

)
=

L(k)⋃
i=1

E ′k,i(h)

with Ek,i(h) = Ek(h) ∩ Fk,i, E ′k,i(h) = xk,i + Ek,i(h). Furthermore E ′k,i(h) ⊆
B(9RLien, 4RL) for every k ∈ N, i = 1, . . . , L(k) and we notice that it holds

L⋃
i=1

B(9RLien, 4RL) ⊆ B13RL2

Now we have to prove that {E ′k}k∈N are clusters satisfying the required
conditions (1.16). Clearly

∣∣E ′k(h)
∣∣ =

∣∣Ek(h)
∣∣. Indeed

∣∣E ′k(h)
∣∣ =

L(k)∑
i=1

|E ′k,i(h)| =
L(k)∑
i=1

∣∣Ek,i(h)
∣∣ =

∣∣Ek(h)
∣∣
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The equality of the perimeters follows from this fact: if E ⊆ F1 ∪ F2 is a set
of finite perimeter and dist(F1, F2) > 0 then P (E) = P (E ∩F1) +P (E ∩F2).
Indeed, as Ek(h) =

⋃L(k)
i=1 Ek,i, we have

P (Ek(h)) =

L(k)∑
i=1

P (Ek,i) =

L(k)∑
i=1

P (E ′k,i) = P (E ′k(h))

and thus finally

P (E ′k) =
1

2

N∑
h=0

P (E ′k(h)) =
1

2

N∑
h=0

P (Ek(h)) = P (Ek)

The rest of the proof shows that E ′k is an N -cluster. First of all, E ′k(h) is
clearly a set of finite perimeter for every h = 1, . . . , N , by its definition. Since∣∣E ′k(h)

∣∣ =
∑L(k)

i=1

∣∣∣E ′k,i(h)
∣∣∣, then for every h = 1, . . . , N it holds:

•
∣∣E ′k(h)

∣∣ > 0 because
∣∣∣E ′k,i(h)

∣∣∣ =
∣∣Ek(h) ∩ Fk,i

∣∣ > 0 for at least one
i = 1, . . . , L(k);

•
∣∣E ′k(h)

∣∣ < +∞ because
∣∣∣E ′k,i(h)

∣∣∣ < +∞ for every i = 1, . . . , L(k).

Lastly ∣∣E ′k(h) ∩ E ′k(l)
∣∣ =

L(k)∑
i=1

∣∣∣E ′k,i(h) ∩ E ′k,i(l)
∣∣∣ = 0

as
∣∣∣E ′k,i(h) ∩ E ′k,i(l)

∣∣∣ =
∣∣Ek,i(h) ∩ Ek,i(l)

∣∣ ≤ ∣∣Ek(h) ∩ Ek(l)
∣∣ = 0. This con-

cludes the proof of the proposition.

Using the confinement proposition 1.9 in order to have a family of clusters
uniformly bounded and the compactness criterion 1.8, we get the following
corollary.

Corollary 1.10. Let R > 0, L ∈ N and {Ek}k∈N satisfying the hypotheses
of proposition 1.9. Moreover let us assume that

sup
k∈N

P (Ek) <∞, inf
k∈N

min
h=1,...,N

∣∣Ek(h)
∣∣ > 0

Then there exist {E ′k(h)}k∈N a sequence of N -clusters, and E N -cluster such
that

P (E ′k) = P (Ek), m(E ′k) = m(Ek), k ∈ N
E ′k(h) ⊆ B13L2R, k ∈ N, h = 1, . . . , N

E ′k
k→∞−→ E
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In particular, if {Ek}k∈N is a minimizing sequence for the partitioning problem

inf{P (E) : m(E) = m}

then {E ′k}k∈N is a minimizing sequence for the same problem too.

Proof. The corollary is an immediate consequence of the two previous propo-
sitions. In fact using 1.9 we can construct a sequence of clusters {E ′k}k∈N
which satisfies the hypotheses of 1.8. Then, up to extracting a subsequence,
E ′k → E for some N -cluster E .

Now we are going to state two important lemmas. The first one is the
Nucleation Lemma and it guarantees that, given a set of finite perimeter E
there exists a discrete set I of points such that the union of the balls with
center in I and radius 2 covers almost entirely E, that is up to a certain error
ε. Moreover the volumes of the balls centered at a point of I with radius 1
can be uniformly bounded from below in ε.

Lemma 1.11 (Nucleation lemma). There is a constant c(n) > 0 with
the following property. Consider a set of finite perimeter E with |E| ∈ (0,∞)
and

ε ≤ min

{
|E| , P (E)

2nc(n)

}
Then we can find a finite set of points I ⊆ Rn such that∣∣∣∣E \ ⋃

x∈I
B(x, 2)

∣∣∣∣ < ε (1.17)

∣∣E ∩B(x, 1)
∣∣ ≥ (c(n)

ε

P (E)

)n
, x ∈ I (1.18)

Moreover the balls {B(x, 1)}x∈I are disjoint and the cardinality of I is bounded
by a constant depending on ε, namely

#I ≤ |E|
(
P (E)

c(n)ε

)n
(1.19)

Proof. First step. We claim that there exists a constant c(n) > 0 such that
if F is a closed set of Rn with

∣∣{x ∈ E : dist(x, F ) > 1}
∣∣ ≥ ε then there is

x ∈ E(1) with

dist(x, F ) > 1∣∣E ∩B(x, 1)
∣∣ ≥ (c(n)

ε

P (E)

)n
Assuming the claim true, we construct the set I in this way. Applying the
claim to F = ∅, since dist(x, ∅) = +∞, the hypothesis is clearly satisfied
and so we can find x1 ∈ E(1) such that

∣∣E ∩B(x1, 1)
∣∣ ≥ (c(n) ε

P (E)

)n
. We

set I = {x1}. Suppose that, iterating the proceeding, we have determined
I = {xi}si=1 with

∣∣xi − xj∣∣ > 2 for i 6= j and with (1.18) holding true. Then:
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• if
∣∣E \⋃x∈I B(x, 2)

∣∣ < ε we can stop and thus the lemma is proved;

• otherwise, if
∣∣E \⋃s

x=1B(xi, 2)
∣∣ ≥ ε, setting F :=

⋃s
x=1B(xi, 1) it

holds ∣∣{x ∈ E : dist(x, F ) > 1}
∣∣ ≥ ε (1.20)

because

E \
s⋃

x=1

B(xi, 2) ⊆ {x ∈ E : dist(x, F ) > 1}

Indeed if x ∈ E \
⋃s
x=1B(xi, 2) then x ∈ E and, for every i = 1, . . . , s,

|x− xi| > 2. In particular, by the last inequality, we have that
dist(x,B(xi, 1)) > 1 for any i = 1, . . . , s and then

dist(x, F ) = min
i=1,...,s

dist(x,B(xi, 1)) > 1

By (1.20), we can apply the claim, which provides the existence of a
point xs+1 ∈ E(1) such that dist(xs+1.F ) > 1 and

∣∣E ∩B(xs+1, 1)
∣∣ ≥ (c(n)

ε

P (E)

)n
Since dist(xs+1, F ) > 1, it holds |xs+1 − xi| > 2 for every i = 1, . . . , s.
In fact, if yi is the intersection of the line segment [xs+1, xi] and B(xi, 1)
then

|xs+1 − xi| = |xs+1 − yi|+ |yi − xi| > 2

Finally we redefine I = {xi}s+1
i=1 .

We iterate this proceeding up to (1.17) holds true. It ends in a finite number
of steps because |E| < ∞ and the balls {B(xi, 1)}si=1 are disjoint. Finally
also (1.19) holds true. In fact

|E| =
#I∑
i=1

∣∣E ∩B(xi, 1)
∣∣+

∣∣∣∣∣∣E \
#I⋃
i=1

B(xi, 1)

∣∣∣∣∣∣
≥

#I∑
i=1

∣∣E ∩B(xi, 1)
∣∣

≥ #I
∣∣E ∩B(xj , 1)

∣∣ with j realizing the minimum

≥ #I
(
c(n)

ε

P (E)

)n
Thus (1.19) follows.
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Second step. In order to prove the claim, let’s show the following statement.
Statement: if α ≥ n, x ∈ E(1), and

∣∣E ∩B(x, 1)
∣∣ < ( 1

2α

)n
(1.21)

then there exists rx ∈ (0, 1) such that P (E;B(x, rx)) > α
∣∣E ∩B(x, rx)

∣∣.
Let m(r) =

∣∣E ∩B(x, r)
∣∣ for r > 0 and assume by contradiction that

P (E;B(x, r)) ≤ αm(r), ∀r ∈ (0, 1)

Since for almost every r ∈ (0, 1) it holds m′(r) = Hn−1
(
E ∩ ∂B(x, r)

)
, we

have

P (E ∩B(x, r)) = P (E;B(x, r)) +Hn−1
(
E ∩ ∂B(x, r)

)
≤ αm(r) +m′(r)

for a.e. r ∈ (0, 1). Then, reminding the non-sharp isoperimetric inequality
P (F ) ≥ |F |(n−1)/n, we get for a.e. r ∈ (0, 1)

αm(r) +m′(r) ≥ P (E ∩B(x, r)) ≥ m(r)(n−1)/n (1.22)

Now we estimate αm(r). As m is increasing, m(r) ≤ m(1) <
(

1
2α

)n
for every

r ∈ (0, 1); then αm(r)1/n < 1
2 and

αm(r) ≤ m(r)(n−1)/n

2

Thus, taking (1.22) into account, we find out that

m(r)(n−1)/n

2
≤ m′(r) for a.e. r ∈ (0, 1)

Since x ∈ E(1), we can divide by m(r)(n−1)/n > 0. Therefore the last
inequality becomes

m′(r)m(r)1/n−1 ≥ 1

2
, for a.e. r ∈ (0, 1)

that is n
(
m(r)1/n

)′
≥ 1

2 . Integrating this in (0, r), we get

m(r) ≥
(
r

2n

)n
, for r ∈ (0, 1)

As r → 1−, we have m(1) ≥
(

1
2n

)n
, which implies, by (1.21),

1

2α
>

1

2n
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This is a contradiction, since we have assumed α ≥ n.

Third step. Let’s finally prove the claim. Assume by contradiction
that for every positive constant c(n) there exists a closed set F in Rn with∣∣{x ∈ E : dist(x, F ) > 1}

∣∣ ≥ ε and such that, however we choose x ∈ E(1)

with dist(x, F ) > 1, it holds

∣∣E ∩B(x, 1)
∣∣ < (c(n)

ε

P (E)

)n
Define α ∈ R such that c(n)ε

P (E) = 1
2α , that is α = 1

2c(n)
P (E)
ε . As by assumption

ε ≤ P (E)
2nc(n) , we get

1

2α
=
c(n)ε

P (E)
≤ 1

2n

and so α ≥ n. If x ∈ E(1) and dist(x, F ) > 1, then
∣∣E ∩B(x, 1)

∣∣ < ( 1
2α

)n
and so, from what we have just seen in the second step, there exists rx ∈ (0, 1)
such that

P (E;B(x, rx)) > α
∣∣E ∩B(x, rx)

∣∣ (1.23)

Set F = {B(x, rx)|x ∈ E(1), dist(x, F ) > 1}. As

sup{diam(B̄)|B̄ ∈ F} ≤ 1

we can apply Besicovitch theorem to F : there exist ξ(n) (depending only
on n) and subfamilies F1, . . . ,Fξ(n) such that each Fi is disjoint, at most
countable and

C := {x ∈ E(1), dist(x, F ) > 1} ⊆
ξ(n)⋃
i=1

⋃
B̄∈Fi

B̄

Hence we deduce that, for some F ′ ∈ {F1, . . . ,Fξ(n)}, we have

|C| =
∣∣{x ∈ E, dist(x, F ) > 1}

∣∣
≤ ξ(n)

∑
B̄(x,rx)∈F ′

∣∣E ∩ B̄(x, rx)
∣∣

<
ξ(n)

α

∑
B̄(x,rx)∈F ′

P (E; B̄(x, rx))

≤ ξ(n)P (E)

α

= ξ(n)P (E)
2c(n)ε

P (E)
= 2εξ(n)c(n)
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Choosing c(n) = 1
2ξ(n) , we find∣∣∣{x ∈ E(1)| dist(x, F ) > 1}

∣∣∣ < ε

which contradicts the hypothesis on F . Thus the claim is proved.

Remark 1.12. From the above lemma and in particular applying the claim
to F = ∅, we find that, if E is a set of finite perimeter with 0 < |E| <∞ and
ε = min

{
|E| , P (E)

2nc(n)

}
, then there exists x ∈ Rn such that

∣∣E ∩B(x, 1)
∣∣ ≥ min

{
c(n)

|E|
P (E)

,
1

2n

}n
In fact, if ε satisfies ε = |E| then there exists x ∈ Rn such that

∣∣E ∩B(x, 1)
∣∣ ≥ ( c(n)ε

P (E)

)n
=

(
c(n) |E|
P (E)

)n
≥ min

{
c(n) |E|
P (E)

,
1

2n

}n
Instead, if ε = P (E)

2nc(n) then

∣∣E ∩B(x, 1)
∣∣ ≥ ( c(n)ε

P (E)

)n
=

(
1

2n

)n
≥ min

{
c(n) |E|
P (E)

,
1

2n

}n
The following lemma provides a way to redefine a new N -cluster E ′ which

reduces the perimeter with a very precise estimation.

Lemma 1.13 (Truncation lemma). Let F ⊆ Rn be a closed set, E an
N -cluster in Rn, u(x) = dist(x, F ) and α > 0 such that

N∑
h=1

∣∣E(h) \ F
∣∣ ≤ α

Then there exists r0 ∈ [0, 7nα1/n] such that the new N -cluster E ′ defined as

E ′(h) = E(h) ∩ {x ∈ Rn : u(x) ≤ r0}, h = 1, . . . , N

satisfies the following estimation on the perimter:

P (E ′) ≤ P (E)− d(E , E ′)
4α1/n

Proof. By simplicity we write {u < r} for {x ∈ Rn : u(x) < r}.
If
∑N

h=1

∣∣E(h) \ F
∣∣ = 0, we set r0 = 0. In fact in this case each E(h)

is "contained in measure" in F . Then, setting r0 = 0 and consequently
E ′(h) = E(h) ∩ {u ≤ 0} = E(h) ∩ F = E(h), we have d(E , E ′) = 0 and
P (E) = P (E ′).
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Then we can assume that
∑N

h=1

∣∣E(h) \ F
∣∣ > 0. We define the function

m : R≥0 → R≥0 as m(r) =
∑N

h=1

∣∣E(h) ∩ {u > r}
∣∣. Notice that m(r) ≤ α

because m(r) ≤
∑N

h=1

∣∣E(h) ∩ F c
∣∣ ≤ α. Since u is a Lipschitz function and

|∇u| = 1 almost everywhere on Rn, then, thanks to the generalized coarea
formula applied to u, we have∣∣E(h) ∩ {u > r}

∣∣ =

∫
E(h)∩{u>r}

|∇u| dLn

=

∫
R
P
(
{u > t}; E(h) ∩ {u > r}

)
dt

=

∫
R
Hn−1

(
E(h) ∩ {u > r} ∩ {u = t}

)
dt

=

∫ +∞

r
Hn−1

(
E(h) ∩ {u = t}

)
dt

Hence m(r) =
∑N

h=1

∫ +∞
r Hn−1

(
E(h) ∩ {u = t}

)
dt and, for almost every

r > 0,

m′(r) = −
N∑
h=1

Hn−1
(
E(h) ∩ {u = r}

)
(1.24)

As m(0) > 0, we have spt(m) = [0, r1] for some r1 > 0. We claim that
either E(h) ⊆ {u ≤ 7nα1/n} for each h = 1, . . . , N , or there exists some
r0 < 7nα1/n such that the cluster E ′ defined above satisfies

P (E ′) ≤ P (E)− m(r0)

4α1/n

If the claim is true then:

• in the first case setting r0 = 7nα1/n we have E ′(h) = E(h), h = 1, . . . , N
and so P (E ′) = P (E);

• in the second case, observing that

d(E , E ′) =
N∑
h=1

∣∣E(h)∆E ′(h)
∣∣

=

N∑
h=1

∣∣E(h) \ E ′(h)
∣∣

=
N∑
h=1

∣∣E(h) ∩ {u > r0}
∣∣ = m(r0)

the claim provides to distance r0 which we were looking for.
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Thus, proving the claim, we end the proof of the lemma.
In order to demonstrate the claim, it is enough to show that either r1 <

7nα1/n or P (E) ≥ P (Er0) + m(r0)

4α1/n for some r0 < 7nα1/n (here Er(h) = E(h)∩
{u ≤ r}). In fact, if r1 < 7nα1/n, then 0 =

∑M
h=1

∣∣∣E(h) ∩ {u > 7nα1/n}
∣∣∣ and

so, up to a set of null Ln-measure, E(h) ⊆ {u ≤ 7nα1/n}, h = 1, . . . , N .
Let’s assume by contradiction the following inequalities true:

r1 ≥ 7nα1/n (1.25)

P (E) < P (Er) +
m(r)

4α1/n
, ∀r < 7nα1/n (1.26)

We rewrite the quantities P (E), P (Er), for almost every r > 0, as

P (E) = P (E ; {u < r}) + P (E ; {u > r})

and

P (Er) =
1

2

N∑
h=0

P (Er(h))

=
1

2

N∑
h=1

P (E(h) ∩ {u < r}) +
1

2
P (Er(0))

= P (E ; {u < r}) +

N∑
h=1

Hn−1
(
E(h) ∩ {u = r}

)
In fact for h = 1, . . . , N and for a.e. r > 0 it holds

P (E(h) ∩ {u < r}) = P (E(h); {u < r}) +Hn−1(E(h) ∩ {u = r})

P (Er(0)) = P (E(0); {u < r}) +
N∑
h=1

Hn−1(E(h) ∩ {u = r})

Then, taking into account also (1.26), we find

P (E ; {u > r}) <
N∑
h=1

Hn−1
(
{u = r} ∩ E(h)

)
+
m(r)

4α1/n
, for a.e. r < 7nα1/n

(1.27)
Adding 1

2

∑N
h=1Hn−1

(
{u = r} ∩ E(h)

)
to both the side of (1.27), we have,

for a.e. r < 7nα1/n,

1

2

N∑
h=1

P (E(h) ∩ {u > r}) < 3

2

N∑
h=1

Hn−1
(
{u = r} ∩ E(h)

)
+
m(r)

4α1/n
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Using the non-sharp isoperimeteric inequality, we find that

1

2

N∑
h=1

P (E(h) ∩ {u > r}) ≥ 1

2
P

 N⋃
h=1

E(h) ∩ {u > r}


≥ 1

2

 N∑
h=1

∣∣E(h) ∩ {u > r}
∣∣(n−1)/n

=
1

2
m(r)(n−1)/n

Finally, since m is not increasing, m(r) ≤ m(0)1/nm(r)(n−1)/n ≤ α1/nm(r)(n−1)/n

and so
m(r)

4α1/n
≤ m(r)(n−1)/n

4

Then, taking into account (1.24) and the previous inequalities, we get

m(r)(n−1)/n

2
< −3

2
m′(r) +

m(r)(n−1)/n

4

and so
m(r)(n−1)/n < −6m′(r)

for almost every r < 7nα1/n. As r1 ≥ 7nα1/n, m(r) > 0 if r < 7nα1/n and
then, dividing by m(r) > 0 and recognising a derivative, we find

n
(
m(r)1/n

)′
< −1

6

Taking the integral in (0, 7nα1/n) of the last inequality we have

m(7nα1/n)1/n −m(0)1/n < − 1

6n
(7nα1/n − 0)

and thus
7

6
α1/n < m(0)1/n −m(7nα1/n) ≤ m(0)1/n

This contradicts the initial hypothesis that m(0) ≤ α and it ends the proof
of the lemma.

1.3 Volume restoration diffeomorphisms

In this section we are going to prove two important statements. The first one
is a lemma that ensures the existence of a family of diffeomorphisms which
locally modify E around an interface point z ∈ E(h, k) and with a controlled
bound on the variation of the perimeter. Moreover it is provided an estimate
of the first order measure variations of the chambers {E ′(i)}Ni=1 inside the
ball B(z, ε).
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Lemma 1.14. Let δ > 0, E an N -cluster in Rn, 0 ≤ h < k ≤ N , and
z ∈ E(h, k) point of null density for ∂∗E(j) (that is θn−1(∂∗E(j))(z) = 0) for
every j 6= h, k. Then there exist ε(E , z, δ) > 0, ε1(E , z, δ) > 0, ε2(E , n, ε1) > 0,
C0(n, ε1) > 0, and a family of diffeomorphisms {ft}|t|<ε1 such that:

(i) for |t| < ε1, {x ∈ Rn|x 6= ft(x)} ⊂⊂ B(z, ε);

(ii) if E ′ is another N -cluster with d(E , E ′) < ε2, |t| < ε1, j 6= h, k, and
i = 1, . . . , N , then∣∣∣∣ ddt ∣∣ft(E ′(h)) ∩B(z, ε)

∣∣− 1

∣∣∣∣ < δ (1.28)∣∣∣∣ ddt ∣∣ft(E ′(k)) ∩B(z, ε)
∣∣+ 1

∣∣∣∣ < δ (1.29)∣∣∣∣ ddt ∣∣ft(E ′(j)) ∩B(z, ε)
∣∣∣∣∣∣ < δ (1.30)∣∣∣∣∣ d2

dt2
∣∣ft(E ′(i)) ∩B(z, ε)

∣∣∣∣∣∣∣ < C0 (1.31)

(iii) given a Hn−1-rectifiable set Σ in Rn, it holds∣∣∣Hn−1
(
ft(Σ)

)
−Hn−1 (Σ)

∣∣∣ ≤ C0Hn−1 (Σ) |t| , |t| < ε1 (1.32)

Proof. First step. In this first step we are going to construct the diffeomor-
phisms ft, |t| < ε1. Let’s consider ε > 0, ν ∈ Sn−1, u ∈ C∞c ((−n−1/2, n−1/2))
with u ≥ 0, u(0) > 0. We define v(x) = c

∏N
i=1 u(xi) with c ∈ Rn such

that
∫
Rn−1 v(x′, 0)dx′ = 1; by continuity we can always find such constant c.

Notice that v ∈ C∞c (B1). Then we define vε ∈ C∞c (Bε) as

vε(x) =
1

εn−1
v

(
x

ε

)
It holds∫

Rn−1

vε(x
′, 0)dx′ =

1

εn−1

∫
Rn−1

v

(
x′

ε
, 0

)
dx′ =

∫
Rn−1

v(y′, 0)dy′ = 1

and, for some C ∈ R,

∇vε(x) =
1

εn
(∇v)

(
x

ε

)
∣∣∇vε(x)

∣∣ ≤ C

εn
, x ∈ Rn

since v ∈ C∞c (B1). Now we choose Qν , orthogonal n× n matrix such that
Qν(ν) = en and we define T ∈ C∞c (B(z, ε),Rn)

T (x) := T [ε, z, ν](x) = vε(Qν(x− z))ν



1.3. Volume restoration diffeomorphisms 23

Then, for every x ∈ Rn,

∇T (x) = νD(vε(Qν(x− z))) = ν(Dvε)(Qν(x− z))Qν∣∣∇T (x)
∣∣ =

√
trace(QTν Dvε(Qν(x− z))T νT νDvε(Qν(x− z))Qν)

=
∣∣Dvε(Qν(x− z))

∣∣ ≤ C

εn

Finally we set

f : R× Rn → Rn, f(t, x) = ft(x) = x+ tT (x)

Notice that, if |t| < ε1 for ε1 sufficiently small, then {ft}|t|<ε1 are diffeomor-
phisms with {x ∈ Rn x 6= ft(x)} ⊂⊂ B(z, ε). In fact, since ft are proper
maps (i.e. for every K ∈ Rn compact, f−1

t (K) is compact), setting

Σt = {x : det(Dft(x)) = 0}

it is enough to show that Σt = ∅ for |t| < ε1. As Dft(x) = Id + tDT (x),
λ = 0 is an eigenvalue of Dft(x) if and only if tDT (x)v = −v, for some v 6= 0.
Since

∣∣DT (x)
∣∣ ≤ C

εn , every eigenvalue λ of DT (x) satisfies |λ| ≤ C
εn . Then

we can determine ε1 small enough and independent on x, such that tDT (x)
does not have −1 as eigenvalue, for every |t| < ε1. Thus Σt = ∅. Finally, it is
easy to see that {x ∈ Rn : x 6= ft(x)} ⊂⊂ B(z, ε) because

{x ∈ Rn : x 6= ft(x)} = {x ∈ Rn : T (x) 6= 0}

which is compactly contained in B(z, ε).

Second step. Now choose z ∈ E(h, k) for 0 ≤ h < k ≤ N in such a way
that (1.10) holds true. Then define ν = νE(h) and T, ft exactly as in the
previous part. First of all, we notice that if E is a set of finite perimter and
Σ is a Hn−1-rectifiable set in Rn then we have:∣∣ft(E) ∩B(z, ε)

∣∣ =
∣∣ft(E ∩B(z, ε))

∣∣ =

∫
E∩B(z,ε)

Jft(x)dx

Hn−1
(
ft(Σ)

)
=

∫
Σ
JΣft(x)dHn−1 (x)

Moreover Jft, JΣft are smooth function in t. Now we claim that, if V is an
hyperplane in Rn and S is an n× n matrix, the map

S 7→ JV (Id +S) =
√

det
(
(Id +S)TV (Id +S)V

)
is locally Lipschitz, uniformly on V . We will need a weaker statement and now
we prove it. Since S 7→ Φ(S) = det

(
(Id +S)TV (Id +S)V )

)
is a polynomial
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with respect to the entries of S, it is clearly a C∞ function of S. Then, as
Φ(0) = 1, there exists δ′ such that

∣∣Φ(S)− 1
∣∣ < 1/2 for every |S| < δ′. This

means that if the norm of S is sufficiently small, the value of Φ(S) is close to
1. Moreover, since x 7→

√
x is C∞ in (0,+∞), then the function JV (Id +S)

is C∞ for |S| < δ′, and so it is Lipschitz, with Lipschitz constant LV .
Now we prove that we can find a constant L greater than every Lipschitz
constant LV . In fact let QV the orthonormal matrix that moves the basis
{e1, . . . , en−1} into the orthonormal basis {v1, . . . , vn−1} of V , hyperplane of
Rn. Then

(Id +S)V = (Id +S)QV

and

(Id +S)TV (Id +S)V = QTV (Id +S)T (Id +S)QV

As ΦQ(S) = det
(

(Id +S)TV (Id +S)V

)
is a polynomial with respect to the

entries of Q, which staisfies
∣∣qij∣∣ ≤ 1, Q = (qij), then we can find a majorant

of Φ′Q(S) independent on Q. Thus the constant L is determined. By the
claim we get

∣∣∣JΣft(x)− 1
∣∣∣ =

∣∣∣JΣ(Id +tT (x))− JΣ(Id)
∣∣∣

=
∣∣∣JTxΣ(Id +tT (x))− JTxΣ(Id)

∣∣∣
≤ L

∣∣tT (x)
∣∣ ≤ LC

εn
|t| =: C0 |t|

Then we can conclude that

∣∣∣Hn−1
(
ft(Σ)

)
−Hn−1 (Σ)

∣∣∣ ≤ ∫
Σ

∣∣∣JΣft(x)− 1
∣∣∣ dHn−1 (x)

≤ C0Hn−1 (Σ) |t|

which proves (1.32).
Now let’s prove (i). If |t| < ε1, ft is a diffeomorphism with ft(x) = x if

x /∈ B(z, ε). Then

d
dt
Jft =

d2

dt2
Jft = 0, on Rn \B(z, ε)

sup
x∈Rn

∣∣∣∣ ddtJft
∣∣∣∣+

∣∣∣∣∣ d2

dt2
Jft

∣∣∣∣∣ ≤ C ′, for some C ′ > 0
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Thus we find that∣∣∣∣∣ d2

dt2
∣∣ft(E ′(i)) ∩B(z, ε)

∣∣∣∣∣∣∣ =

∣∣∣∣∣ d2

dt2
∣∣ft(E ′(i) ∩B(z, ε))

∣∣∣∣∣∣∣
=

∣∣∣∣∣ d2

dt2

∫
E ′(i)∩B(z,ε)

Jft(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
E ′(i)∩B(z,ε)

d2

dt2
Jft(x)dx

∣∣∣∣∣
≤ C ′

∣∣E ′(i) ∩B(z, ε)
∣∣ ≤ C ′ ∣∣B(z, ε)

∣∣ ≤ C0

up to increasing the previous value of C0 = C0(n, ε). This proves (1.31).
Now we are going to do a simplification. In fact we notice that∣∣∣∣ ddt ∣∣ft(E ′(i)) ∩B(z, ε)

∣∣− d
dt
∣∣ft(E(i)) ∩B(z, ε)

∣∣∣∣∣∣
=

∣∣∣∣∣
∫
E ′(i)∩B(z,ε)

d
dt
Jft(x)dx−

∫
E(i)∩B(z,ε)

d
dt
Jft(z)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫

(E ′(i)\E(i))∩B(z,ε)
Jft(x)dx−

∫
(E(i)\E ′(i))∩B(z,ε)

Jft(x)dx

∣∣∣∣∣
≤ C ′

(∣∣(E ′(i) \ E(i)) ∩B(z, ε)
∣∣+
∣∣(E(i) \ E ′(i)) ∩B(z, ε)

∣∣)
≤ C ′

∣∣E(i)∆E ′(i)
∣∣ ≤ C ′d(E , E ′)

Then, it is enough to prove estimations (1.28)-(1.30) with E = E ′. In fact
if these inequalities are proved for E = E ′, by the triangular inequality and
decreasing the value of ε2, we can see that also the others are true. For
example, if ∣∣∣∣ ddt ∣∣ft(E(h)) ∩B(z, ε)

∣∣− 1

∣∣∣∣ = sδ < δ, s ∈ (0, 1)

then

∣∣∣∣ ddt ∣∣ft(E ′(h)) ∩B(z, ε)
∣∣− 1

∣∣∣∣ ≤
≤
∣∣∣∣ ddt ∣∣ft(E ′(h)) ∩Bz(ε)

∣∣− d
dt
∣∣ft(E(h)) ∩Bz(ε)

∣∣∣∣∣∣+

∣∣∣∣ ddt ∣∣ft(E(h)) ∩Bz(ε)
∣∣− 1

∣∣∣∣
≤ C ′d(E , E ′) + sδ

So, as d(E , E ′) < ε2, up to decreasing the value of ε2, we can assume that
C ′d(E , E ′) + sδ < δ. Moreover, we will prove the inequalities just for t = 0.
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Indeed, by (1.31) we know that d
dt

∣∣ft(E ′(i)) ∩B(z, ε)
∣∣ is Lipschitz in t, for

every i = 1, . . . , N . Therefore, if

d
dt
∣∣ft(E(h)) ∩B(z, ε)

∣∣
|t=0
∈ (1− δ, 1 + δ)

then, up to taking ε1 sufficiently small, we have

d
dt
∣∣ft(E(h)) ∩B(z, ε)

∣∣ ∈ (1− δ, 1 + δ), for every |t| < ε1

Resuming, we prove the estimations of (ii) with E = E ′, t = 0. Set Qi = QνE(i) .
Notice that, since sptT ⊂⊂ B(z, ε) and ft(E) ∩ B(z, ε)c = E ∩ B(z, ε)c, it
holds

d
dt
∣∣ft(E) ∩B(z, ε)

∣∣
|t=0

=

∫
∂∗E∩B(z,ε)

T · νE dHn−1

Then, by the change of variables x = g(z) := z + εy, we have

T (x) = vε(Qh(x− z))νE(h)(z)

= vε(Qh(εy))νE(h)(z)

=
1

εn−1
v(Qhy)νE(h)(z)

and so
d
dt
∣∣ft(E(i)) ∩B(z, ε)

∣∣
|t=0

=

∫
∂∗E(i)∩B(z,ε)

T (x) · νE(i)(x)dHn−1(x)

= νE(h)(x) ·
∫
∂∗E(i)−z

ε
∩B

v(Qhy) νE(i)(z + εy)dHn−1(y)

If j 6= h, k, we find∣∣∣∣ ddt ∣∣ft(E(j)) ∩B(z, ε)
∣∣
|t=0

∣∣∣∣ ≤ 1 ·

∣∣∣∣∣
∫
∂∗E(j)−z

ε
∩B

v(Qhy) νE(j)(z + εy)dHn−1(y)

∣∣∣∣∣
≤ sup

x∈Rn

∣∣v(x)
∣∣ · ∫

∂∗E(j)−z
ε

∩B
dHn−1(y)

= sup
Rn
|v|Hn−1

(
∂∗E(j)− z

ε
∩B(0, 1)

)
= sup

Rn
|v|Hn−1

(
∂∗E(j) ∩B(z, ε)

ε
− z
)

= sup
Rn
|v|
Hn−1

(
∂∗E(j) ∩B(z, ε)

)
εn−1

As we have choosen z ∈ E(h, k) such that (1.10) holds true, then

Hn−1
(
∂∗E(j) ∩B(z, ε)

)
εn−1

→ 0, ε→ 0+
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and thus, up to take ε sufficiently small, we have∣∣∣∣ ddt ∣∣ft(E(j)) ∩B(z, ε)
∣∣
|t=0

∣∣∣∣ < δ

which proves (1.30). Now let’s prove the case i = h. We notice that, if
y ∈ νE(h)(z)⊥, then 0 = Qh(y) ·Qh(νE(h)(z)) = Qh(y) · en, i.e. Qh(y) = (x′, 0)
for some x′ ∈ Rn−1. Thus, by this fact and the convergence of the blow-ups,
we get:

lim
ε→0+

d
dt
∣∣ft(E(h)) ∩B(z, ε)

∣∣
|t=0

=

= lim
ε→0+

νE(h)(z) ·
∫
∂∗E(h)−z

ε
∩B

v(Qhy)νE(h)(z + εy)dHn−1(y)

= νE(h)(z) ·
∫
νE(h)(z)⊥∩B

v(Qhy)νE(h)(z)dHn−1(y)

=

∫
νE(h)(z)⊥∩B

v(Qhy)dHn−1(y)

=

∫
Rn−1

v(x′, 0)dx′ = 1

and so also (1.28) is proved. Finally, recalling that νE(h)(z) = −νE(k)(z) and
νE(h)(z)

⊥ = νE(k)(z)
⊥, we find

lim
ε→0+

d
dt
∣∣ft(E(k)) ∩B(z, ε)

∣∣
|t=0

=

= lim
ε→0+

νE(h)(z) ·
∫
∂∗E(k)−z

ε
∩B

v(Qh(y))νE(k)(z + εy)dHn−1(y)

= νE(h)(z) ·
∫
νE(k)(z)⊥∩B

v(Qh(y))νE(k)(z)dHn−1(y)

= −
∫
Rn−1

v(x′, 0)dx′ = −1

Now we are going to state and prove another important theorem. We use
the previous lemma in order to find a family of diffeomorphisms with local
variations around some interfaces points and indexed on small volume changes.
This means that we can modify our clusters, through these diffeomoriphisms
which can restore the desired measures. Moreover, it provides a very important
bound on the perimeter variation in terms of the relative measures change.

The basic idea of the proof is the following. First of all, we are going to
construct the set of interfaces points with a certain procedure. Then, thanks
to lemma 1.14, we will define diffeomorphisms Ψ(·, ·) indexed on a generic
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variable t. The key idea will be to define some maps ψh(t) as the difference
between the measures of Ψ(t, E ′(h)) and E ′(h) and to provide the inverse
maps ϕ of these functions. Then we will place t = ϕ(a), a ∈ RN+1.

Define by convenience V = {a ∈ RN+1 :
∑N

h=0 a(h) = 0}

Theorem 1.15. Let E be an N -cluster in Rn. There exist η, ε1, ε2, C1, R >
0 such that for every N -cluster E ′ in Rn with d(E , E ′) < ε2 the following
property holds. There exists a C1 map Φ: ((−η, η)N+1 ∩ V )×Rn → Rn such
that:

i) for every a ∈ (−η, η)N+1 ∩ V , the diffeomorphism Φ(a, ·) is "supported"
in an union of disjoint balls centered in intereface points {zα}Mα=1 of E:
namely

{x ∈ Rn : x 6= Φ(a, x)} ⊆
M⋃
α=1

B(zα, ε1) ⊆ BR

with
∣∣zα − zβ∣∣ > ε1 for each 1 ≤ α < β ≤M , N ≤M ≤ 2N2;

ii) for every a ∈ (−η, η)N+1 ∩ V ,
∣∣Φ(a, E ′(h)) ∩BR

∣∣ =
∣∣E ′(h) ∩BR

∣∣+ a(h);

iii) for every a ∈ (−η, η)N+1 ∩ V and Hn−1-rectifiable set Σ,

∣∣∣Hn−1
(
Φ(a,Σ)

)
−Hn−1 (Σ)

∣∣∣ ≤ C1Hn−1 (Σ)
N∑
h=0

∣∣a(h)
∣∣

iv) choosen another family of interface points {yα}Mα=1 with yα, zα belonging
to the same interface of E and

∣∣yα − yβ∣∣ > ε1, then there exist positive
constants η′, ε′1, ε

′
2, C

′
1, R

′ such that all the previous statements hold true
with η′, ε′1, ε

′
2, C

′
1, R

′, {yα} in place of η, ε1, ε2, C1, R, {zα}.

Proof. Step one. We start the proof giving some useful definitions. We
say that E(h) and E(k) are neighboring chambers if Hn−1

(
E(h, k)

)
> 0.

We say that E(h) and E(k) are linked chambers if there is a sequence of
neighboring chambers that starts with E(h) and ends with E(k). We call it
linking sequence. If E(h) and E(k) are linked chambers, their order of link is
the minimum cardinality of a linking sequence.

Let us prove that every chamber is linked with E(0). First of all, there
is at least one chamber neighboring with E(0). Suppose by contradiction
that, for every h = 1, . . . , N , we have Hn−1

(
E(h, 0)

)
= 0. Then, since

∂∗E(0) ≈ ∪Nh=1E(h, 0), we get

P

 N⋃
h=1

E(h)

 = P (E(0)) =
N∑
h=1

Hn−1
(
E(h, 0)

)
= 0
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and so
∣∣∣⋃N

h=1 E(h)
∣∣∣ = 0, which is clearly a contradiction. With a similar

argument we prove that every chamber is linked with E(0). Indeed, let
Λ ⊂ {1, . . . , N} the set of the indices k such that E(k) is linked to E(0). Since
Hn−1

(
E(h, k)

)
= 0 whenever h ∈ Λ, k /∈ Λ (because E(h) is linked to E(0)

while E(k) is not) and

∂∗
( ⋃
h∈Λ

E(h)

)
≈
⋃
h∈Λ

⋃
k/∈Λ

E(h, k)

then

P

⋃
h∈Λ

E(h)

 = 0

This implies that
∣∣⋃

h∈Λ E(h)
∣∣ = 0 and so

∣∣E(h)
∣∣ = 0 for at least one h =

1, . . . , N : contradiction.
Thus for every h, k = 1, . . . , N , E(h) is linked to E(0) and E(h) is linked to
E(k).

Now we are going to construct the sequence of interface points {zα}Mα=1. As
we know that E(0) and E(1) are linked, there is a sequence of pairwise neighbor-
ing chambers E(h0), E(h1), . . . , E(hM1) with h0 = 0, hM1 = 1,M1 ≤ N . We
can choose points z1 ∈ E(h0, h1), z2 ∈ E(h1, h2), . . . , zM1 ∈ E(hM1−1, hM1).
Then we determine other points zM1+1, zM1+2, . . . , z2M1 starting from E(1)
and arriving in E(0) with an analogous procedure. In this way we have
constructed the set {zα}2M1

α=1. We iterate this procedure with E(0), E(2) and
find the set of points {zα}2M2

α=2M1+1, then with E(0) and E(3), E(0) and E(4)

up to E(0) and E(N). In this way, we have determined the set {zα}Mα=1, with
N ≤M ≤ 2N2.

Now, we are going to define the matrix L. Set, for every α = 1, . . . ,M ,
the indices h(α), k(α) ∈ {0, . . . , N} as the ones for which

• zα ∈ E(h(α), k(α));

• h(α+ 1) = k(α) for 1 ≤ α ≤M − 1;

• h(1) = k(M) = 0.

In other words, zα is to be found when we move from E(h(α)) to E(k(α)).
Then define

Liα =


1, if i = h(α)
−1, if i = k(α)
0, otherwise

for i = 0, . . . , N and α = 1, . . . ,M . This means that Liα = 1 if and only if
i = h(α), that is zα leaves E(i).

We claim that the matrix L = (Liα) has rank equal to N . We can assume,
without loss of generality, that the chambers are labeled in such a way that
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their orders of link with respect to E(0) are increasing. In particular the
order of E(1) is 1. Setting, for every i ∈ {1, . . . , N}, β(i) ∈ {1, . . . ,M} as
the first column index for which Liβ(i) 6= 0, we state that

Liβ(i) = −1, i = 1, . . . , N

Ljβ(i) = 0, if i+ 1 ≤ j ≤ N, i ≤ N − 1
(1.33)

Notice that β(i) represents the first point index α ∈ {1, . . . ,M} such that
i = h(α) or i = k(α), that is zβ(i) = zα enters or exits E(i). We give a quick
proof of (1.33). Consider i = 1. Clearly z1 is the first point which enters E(1)
and so β(1) = 1. Then we have L1β(1) = −1 and

L =


1 −1 · · · · · ·
−1 1 · · · · · ·
0 0 · · · · · ·
...

...
. . .


Moreover Liβ(1) = 0 for every i ≥ 2 because each column has just two non-
zero entries. Similar arguments hold true for the other chambers of order 1
E(2), . . . , E(m1).

Now consider i = m1 + 1 and suppose, by convenience, that E(m1 + 1)
has order 2. For some l = 1, . . . ,m1, E(l) and E(m1 + 1) are neighboring
chambers. Then, we determine z2m1+1 ∈ E(0, l) and z2m1+2 ∈ E(l,m1 + 1).
Clearly β(m1 + 1) = 2m1 + 2 and

L0,2m1+1 = 1 Ll,2m1+2 = 1

Ll,2m1+1 = −1 Lm1+1,2m1+2 = −1

This and the arguments of the previous case prove (1.33).
Now we are going to use (1.33) to prove that rankL = N . For every

h = 1, . . . , N , we define vh as L·,β(h) ∈ RN+1, that is the β(h)-column of L.
Then {vh}h=1,...,N is a subset of the columns of L. We notice that they are
N linearly independent vectors. In fact

{vh}h=1,...,N =


1 · · · · · · · · ·
−1 · · · · · · · · ·
0 −1 · · · · · ·
0 0 −1 · · ·
...

... 0
. . .


because Liβ(i) = −1. Moreover the columns of L belong to V , because each
of them has exactly one component equal to 1 and another equal to −1, and
V is an N -dimensional vector space. By this, we conclude that rankL = N .
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Step two. In this step we are just going to state a kind of inversion
theorem. If ε, k, C > 0 we can find η = η(ε, k, C) > 0 such that the following
property holds. Given ψ : (−ε, ε)M → V with ψ(0) = 0, ∇ψ(0) of rank N
and ∣∣∇ψ(0)w

∣∣ ≥ k |w| , ∀w ∈W∣∣∣∇2ψ(t)
∣∣∣ ≤ C, ∀t ∈ (−ε, ε)M

where W = (ker∇ψ(0))⊥, then there exists ϕ : (−η, η)N+1 ∩ V →W with

ϕ(0) = 0, ψ(ϕ(a)) = a,
∣∣ϕ(a)

∣∣ ≤ 2

k
|a|

This proposition states that it is possible to have, under suitable condition
on the function ψ, a (local) right-side inverse function, defined on the set
(−η, η)M ∩V which does not depend on the function ψ. Moreover this inverse
ϕ is a Lipschitz continuous function.

Step three. Let L be the matrix defined in Step one. We know that
rankL = N and that ImL = V . There exists a vector subspace W ≤ RM
where L|W : W → V is an isomorphism. We state that, for every δ > 0 small
enough, there exists k > 0 such that, if L′ is a matrix with ImL′ = V and∣∣Liα − L′iα∣∣ < δ, i = 1, . . . , N, α = 1, . . . ,M

then, setting W ′ = (kerL′)⊥, L′|W ′ : W ′ → V is an isomorphism and∣∣L′w∣∣ ≥ k |w| , w ∈W ′ (1.34)

It is easy to see that W ′ = 〈w1, . . . , wN 〉 is an N -dimensional vector
subspace of RM . Thus in order to prove that L′|W ′ is an isomorphism, it
is enough to show that {L′w1, . . . , L

′wN} are linearly independent. Finally,
condition (1.34) is equivalent to∣∣L′u∣∣ ≥ k, u ∈W ′, |u| = 1

that is
∣∣L′·∣∣ has a minimum k > 0 independent on δ. This is true because we

can bound, with a simple computation, the difference of the minima m−m′,
respectively of |L·| and

∣∣L′·∣∣, in terms of δ. Since m > 0, then also m′ > 0
for δ sufficiently close to zero.

Step four. Now we want to construct the diffeomorphism Φ. Apply-
ing the previous lemma to each point zα, we determine positive constants
ε, ε1, ε2, C,R and diffeomorphisms {fαt }|t|<ε such that

{x ∈ Rn : x 6= fαt (x)} ⊂⊂ B(zα, ε1) ⊆ BR |t| < ε
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and, for every N -cluster E ′ with d(E , E ′) < ε2, it holds∣∣∣∣ ddt ∣∣fαt (E ′(h(α))) ∩B(zα, ε)
∣∣− 1

∣∣∣∣ < δ∣∣∣∣ ddt ∣∣fαt (E ′(k(α))) ∩B(zα, ε)
∣∣+ 1

∣∣∣∣ < δ∣∣∣∣ ddt ∣∣fαt (E ′(j)) ∩B(zα, ε)
∣∣∣∣∣∣ < δ, j 6= h(α), k(α)∣∣∣∣∣ d2

dt2
∣∣fαt (E ′(i)) ∩B(zα, ε)

∣∣∣∣∣∣∣ < C, i = 0, . . . , N

(1.35)

for α = 1, . . . ,M and |t| < ε. Moreover∣∣∣Hn−1
(
fαt (Σ)

)
−Hn−1 (Σ)

∣∣∣ < CHn−1 (Σ) |t|

whenever Σ is an Hn−1-rectifiable set of Rn and |t| < ε. Up to decreasing the
value of ε1, we can assume that

∣∣zα − zβ∣∣ > ε1 for α 6= β; thus {B(zα, ε1)}α
are disjoint balls lying at mutually positive distance.

Let us define Ψ: (−ε, ε)M × Rn → Rn as

Ψ(t, x) = f1
t1 ◦ f

2
t2 ◦ · · · ◦ f

M
tM

(x), t = (t1, . . . , tM )

Since variations of the {fαt }α are on disjoint balls, it holds

Ψ(t, x) = fαtα(x), if x ∈ B(zα, ε1)

Moreover notice that {x ∈ Rn : x 6= Ψ(t, x)} ⊆
⋃M
α=1B(zα, ε1).

Let us fix a cluster E ′. We define the map ψ : (−ε, ε)M → V as

ψh(t) =
∣∣Ψ(t, E ′(h)) ∩BR

∣∣− ∣∣E ′(h) ∩BR
∣∣

=
M∑
α=1

(∣∣fαtα(E ′(h)) ∩B(zα, ε1)
∣∣− ∣∣E ′(h) ∩B(zα, ε1)

∣∣)
for h = 0, . . . , N . What follows holds:

• ψ(0) = 0.

•
∣∣∇2ψ(t)

∣∣ ≤ C for every t ∈ (−ε, ε)M . In fact

∂ψh(t)

∂tα
=

∂

∂tα

∣∣fαtα(E ′(h)) ∩B(zα, ε1)
∣∣

∂2ψh(t)

∂tβ∂tα
=


∂2

∂t2α

∣∣fαtα(E ′(h)) ∩B(zα, ε1)
∣∣ ≤ C, if β = α

0, otherwise
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• Since

Dψ(0) =

(
∂ψh(0)

∂tα

)
h,α

and by (1.35) we know that L′ = Dψ(0) satisfies

∣∣Liα − L′iα∣∣ < δ, i = 0, . . . , N, α = 1, . . . ,M

Moreover ImL′ = V .

• Then, by Step three we conclude that
∣∣L′w∣∣ ≥ k |w| for every w ∈W ′

and for some positive constant k.

These four points state the validity of the hypotheses of Step two propo-
sition. Thus there exist η > 0 and ϕ : (−η, η)N+1 ∩ V → RM such that
ϕ(0) = 0 and

ψ(ϕ(a)) = a,
∣∣ϕ(a)

∣∣ ≤ 2

k
|a|

for every a ∈ (−η, η)N+1 ∩ V . Finally define Φ: ((−η, η)M ∩ V )× Rn → Rn
as

Φ(a, x) = Ψ(ϕ(a), x)

We deduce the following assertions.

i) Clearly {x 6= Φ(a, x)} ⊆
⋃M
α=1B(zα, ε1) ⊂⊂ BR for some ε1 > 0 and

{zα}Mα=1 with
∣∣zα − zβ∣∣ > ε1 if α 6= β.

ii) Since ψh(t) =
∣∣Ψ(t, E ′(h)) ∩BR

∣∣− ∣∣E ′(h) ∩BR
∣∣, then we have

∣∣Φ(a, E ′(h)) ∩BR
∣∣ = ψh(ϕ(a)) +

∣∣E ′(h) ∩BR
∣∣

= a(h) +
∣∣E ′(h) ∩BR

∣∣
for every a ∈ (−η, η)N+1 ∩ V .
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iii) If Σ is a Hn−1-rectifiable set of Rn then∣∣∣Hn−1
(
Φ(a,Σ)

)
−Hn−1 (Σ)

∣∣∣ =
∣∣∣Hn−1

(
Ψ(ϕ(a),Σ)

)
−Hn−1 (Σ)

∣∣∣
=

∣∣∣∣∣∣∣Hn−1

 M⋃
α=1

fαϕα(a)(Σ) ∩B(zα, ε1)

−Hn−1

 M⋃
α=1

Σ ∩B(zα, ε1)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
M∑
α=1

(
Hn−1

(
fαϕα(a) ∩B(zα, ε1)

)
−Hn−1

(
Σ ∩B(zα, ε1)

))∣∣∣∣∣∣
≤ C

M∑
α=1

Hn−1
(
Σ ∩B(zα, ε1)

) ∣∣ϕα(a)
∣∣

≤ C
√
M
∣∣ϕ(a)

∣∣Hn−1 (Σ)

≤ C
√
M

2

k
Hn−1 (Σ) |a|

≤ C1Hn−1 (Σ)
N∑
h=0

∣∣a(h)
∣∣

for some C1 > 0.

iv) Following the contruction made in this proof it is easily seen that these
conclusions hold true also for other interface points {yα}α with other
positive constant η′, ε′1, ε′2, C ′1, R′.

With the following corollary, we want to generalize the results of the
previous theorem inside an open set A.

Corollary 1.16. Let E a N -cluster and A ⊆ Rn an open set. Assume
that for every h = 1, . . . , N there exists a connected component Ã of A such
that ∣∣∣Ã ∩ E(0)

∣∣∣ > 0,
∣∣∣Ã ∩ E(h)

∣∣∣ > 0 (1.36)

Then the conclusions of the previous theorem keep holding true with the points
{zα} satisfying

B(zα, ε1) ⊂⊂ A

for each α = 1, . . . ,M .

In fact it is enough to show that (1.36) implies that E(0) and E(h) are
linked in Ã. This means that there exists a sequence of neighboring chambers
in Ã, i.e. E(h0), E(h1), . . . , E(hM ) with h0 = 0, hM = h and

Hn−1
(
E(hi, hi+1) ∩ Ã

)
> 0, i = 0, . . . ,M − 1
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This is proved in lemma 1.17. The proof is based on three steps with the
repetition of the same argument.

Lemma 1.17. Given a connected open set A ⊆ Rn and an N -cluster E such
that ∣∣E(h) ∩A

∣∣ > 0,
∣∣E(k) ∩A

∣∣ > 0

then E(h) and E(k) are linked in A.

Proof. Without loss of generality, we can assume that
∣∣E(i) ∩A

∣∣ > 0 for
every i = 1, . . . , N . Let h = 0, k = 1 and define for i = 0, 1, Λi ⊆ {0, . . . , N}
as the set of the indices of the chambers linked with E(i) in A. Then 0 /∈ Λ0

and 1 /∈ Λ1. Let us assume by contradiction that E(0), E(1) are not linked in
A; this implies that 0 /∈ Λ1, 1 /∈ Λ0. Then Λ0,Λ1 ⊆ {2, . . . , N} and they are
disjoint.

1. We claim that Λ0 6= ∅. If Λ0 = ∅, then for every h = 1, . . . , N ,
Hn−1

(
A ∩ E(h, 0)

)
= 0 and so

P (E(0);A) =
N∑
h=1

Hn−1
(
E(h, 0) ∩A

)
= 0

This implies that either
∣∣A \ E(0)

∣∣ = 0 or
∣∣E(0) ∩A

∣∣ = 0. In both cases
we have contradictions, because we would have either

∣∣E(1) ∩A
∣∣ = 0

or
∣∣E(0) ∩A

∣∣ = 0. Similarly Λ1 6= ∅.

2. Now we prove that Λ0 ∪ Λ1 = {2, . . . , N}. In fact if Λ′ = {2, . . . , N} \
(Λ0 ∪ Λ1) 6= ∅ then

P

( ⋃
h∈Λ′

E(h);A

)
=

∑
h∈Λ′,k /∈Λ′

Hn−1
(
E(h, k) ∩A

)
= 0

Thus we would have either∣∣∣∣∣∣A ∩
⋃
h∈Λ′

E(h)

∣∣∣∣∣∣ = 0, or

∣∣∣∣∣∣A \
⋃
h∈Λ′

E(h)

∣∣∣∣∣∣ = 0

which leads to contradictions. This implies that Λ0 ∪ Λ1 = {2, . . . , N}.

3. Now consider E =
⋃
h∈{0}∪Λ0

E(h). We have

P (E0;A) =
∑

h∈{0}∪Λ0

∑
{1}∪Λ1

Hn−1
(
E(h, k) ∩A

)
= 0

and so either
|A ∩ E0| = 0, or

∣∣A \ E0

∣∣ = 0

In the first case we would have
∣∣A ∩ E(0)

∣∣ = 0, while in the second one∣∣A ∩ E(1)
∣∣ = 0, which are contradictions.
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This ends the proof of the lemma.

The following is the last statement necessary to prove the existence of
the minimizing clusters. It is a corollary of the previous theorem and it
asserts that, if E ′ and F are clusters which differ in a small ball centered at
an arbitrary point x and E ′ is sufficiently close to E in measure, then it is
possible to determine another cluster F ′ with the same enclosed volumes of
E ′ and with controlled variation of the perimeter w.r.t. F ′.

Corollary 1.18. Let E an N -cluster in Rn. Then there exist r, ε, C > 0
such that the following property holds. For every E ′,F N -clusters and for
every x ∈ Rn such that

d(E , E ′) < ε

F(h)∆E ′(h) ⊂⊂ B(x, r), h = 1, . . . , N

there exists another N -cluster F ′ with

F ′(h)∆F(h) ⊂⊂ Rn \ B̄(x, r), h = 1, . . . , N (1.37)
m(F) = m(F ′) (1.38)∣∣P (F)− P (F ′)

∣∣ ≤ CP (E ′)
∣∣m(F)−m(E ′)

∣∣ (1.39)

In particular, if E is a minimizing cluster and F(h)∆E(h) ⊂⊂ B(x, r) for
every h = 1, . . . , N then

P (E) ≤ P (F) + C
∣∣m(F)−m(E)

∣∣
Proof. The basic idea of this proof is that, thanks to the previous theorem,
we can modify a cluster in such a way that the chambers volumes are fixed.

We know that there exist η, ε1, ε2, C, {zα}α, {yα}α with the properties
of theorem 1.15. If E ′ is another N -cluster with d(E , E ′) < ε2 there exist
diffeomorphisms Φ1,Φ2 : ((−η, η)N+1 ∩ V ) × Rn → Rn such that for every
a ∈ (−η, η)N+1 ∩ V it holds

{x ∈ Rn : x 6= Φ1(a, x)} ⊂⊂
M⋃
α=1

B(zα, ε1)

{x ∈ Rn : x 6= Φ2(a, x)} ⊂⊂
M⋃
α=1

B(yα, ε1)

Up to decreasing the value of ε1, fixed x ∈ Rn and r < ε1/2, we have either

B(zα, ε1) ∩B(x, r) = ∅, α = 1, . . . ,M
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or

B(yα, ε1) ∩B(x, r) = ∅, α = 1, . . . ,M

Without loss of generality, we can assume to be in the first case. Up to
decreasing the value of r in such a way that ωnrn < η, setting a(h) :=∣∣E ′(h) ∩B(x, r)

∣∣− ∣∣F(h) ∩B(x, r)
∣∣ and a = (a(h))h=0,...,N , we have

a ∈ (−η, η)N+1 ∩ V

In fact, clearly a(h) ∈ (−η, η), since
∣∣B(x, r)

∣∣ < η and a ∈ V because

N∑
h=0

a(h) =

N∑
h=0

∣∣E ′(h) ∩B(x, r)
∣∣− N∑

h=0

∣∣F(h) ∩B(x, r)
∣∣

=
∣∣B(x, r)

∣∣− ∣∣B(x, r)
∣∣ = 0

Then we can modify the cluster F through Φ1(a, ·); namely we define

F ′(h) = Φ1(a,F(h))

for every h = 1, . . . , N . In this way we get what follows.

• F ′(h)∆F(h) ⊂⊂
⋃N
α=1B(zα, ε1) ⊆ Rn \ B̄(x, r) and so (1.37) is proved.

• The volumes are preserved. In fact

∣∣F ′(h)
∣∣ =

∣∣Φ1(a,F(h)) \B(x, r)
∣∣+
∣∣F(h) ∩B(x, r)

∣∣
=
∣∣Φ1(a, E ′(h)) \B(x, r)

∣∣+
∣∣F(h) ∩B(x, r)

∣∣
=
∣∣Φ1(a, E ′(h))

∣∣− ∣∣E ′(h) ∩B(x, r)
∣∣+
∣∣F(h) ∩B(x, r)

∣∣
=
∣∣E ′(h)

∣∣+ a(h)−
∣∣E ′(h) ∩B(x, r)

∣∣+
∣∣F(h) ∩B(x, r)

∣∣
=
∣∣E ′(h)

∣∣
We have used the fact that F(h) and E ′(h) do not differ outside B(x, r)
and ∣∣Φ1(a, E ′(h))

∣∣ = a(h) +
∣∣E ′(h)

∣∣
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• Finally we have to prove (1.39). It holds

P (F ′)− P (F) =
1

2

N∑
h=0

Hn−1
(
∂∗Φ1(a,F(h))

)
−Hn−1

(
∂∗F(h)

)
=

1

2

N∑
h=0

Hn−1
(
Φ1(a, ∂∗F(h))

)
−Hn−1

(
∂∗F(h)

)
=

1

2

N∑
h=0

(
Hn−1

(
Φ1(a, ∂∗F(h)) ∩B(x, r)

)
+Hn−1

(
Φ1(a, ∂∗F(h)) \B(x, r)

)
−Hn−1

(
∂∗F(h) ∩B(x, r)

)
−Hn−1

(
∂∗F(h) \B(x, r)

) )
=

1

2

N∑
h=0

(
Hn−1

(
∂∗F(h) ∩B(x, r)

)
+Hn−1

(
Φ1(a, ∂∗E ′(h)) \B(x, r)

)
−Hn−1

(
∂∗F(h) ∩B(x, r)

)
−Hn−1

(
∂∗E ′(h) \B(x, r)

) )
=

1

2

N∑
h=0

(
Hn−1

(
Φ1(a, ∂∗E ′(h))

)
−Hn−1

(
∂∗E ′(h)

))
=

1

2

N∑
h=0

∑
k 6=h

(
Hn−1

(
Φ1(a, E ′(h, k))

)
−Hn−1

(
E ′(h, k)

))
=

∑
0≤h<k≤N

(
Hn−1

(
Φ1(a, E ′(h, k))

)
−Hn−1

(
E ′(h, k)

))

and so we get

∣∣P (F)− P (F ′)
∣∣ ≤ ∑

0≤h<k≤N

∣∣∣Hn−1
(
Φ1(a, E ′(h, k))

)
−Hn−1

(
E ′(h, k)

)∣∣∣
≤ C0

∑
0≤h<k≤N

Hn−1
(
E ′(h, k)

) N∑
j=0

∣∣a(j)
∣∣

= C0P (E ′)
N∑
j=0

∣∣a(j)
∣∣
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Since

∣∣a(0)
∣∣ =

∣∣∣∣∣∣−
N∑
i=1

a(i)

∣∣∣∣∣∣ ≤
N∑
i=1

∣∣∣∣∣F(i)
∣∣− ∣∣E ′(i)∣∣∣∣∣ ≤ √N ∣∣m(F)−m(E ′)

∣∣
we can finally conclude that∣∣P (F)− P (F ′)

∣∣ ≤ C0P (E ′)
√
N
∣∣m(F)−m(E ′)

∣∣
= C1P (E ′)

∣∣m(F)−m(E ′)
∣∣

which proves (1.39).

In particular, if E is a minimizing cluster, choosing E ′ = E and F such
that F(h)∆E(h) ⊂⊂ B(x, r), then there exists an N -cluster F ′ with

P (E) ≤ P (F ′) ≤ P (F) + C1P (E)
∣∣m(F)−m(E)

∣∣
If C = max{C1P (E), P (E)}, then

P (E) ≤ P (F) + C
∣∣m(F)−m(E)

∣∣ .
Thus the proof is completed.

1.4 Proof of the existence

Proof. Part one. Let us fix a volume vector m. Define the smallest and the
biggest volume of m and perimeter as

mmin = min{m(h) : h = 1, . . . , N}
mmax = max{m(h) : h = 1, . . . , N}

and

pmin = inf{P (Ek(h)) : k ∈ N, h = 1, . . . , N} > 0

pmax = sup{P (Ek(h)) : k ∈ N, h = 1, . . . , N} <∞

Consider a minimizing sequence {Ek}k∈N for the partitioning problem as-
sociated to m. For every h = 1, . . . , N , we define the sequences of points
{xk(h)}k∈N such that∣∣Ek(h) ∩B(xk(h), 1)

∣∣ ≥ min

{
c(n)

Ek(h)

P (Ek(h))
,

1

2n

}n
≥ min

{
c(n)

mmin

pmax
,

1

2n

}n
(1.40)

This property is ensured by remark 1.12. Define S > 0 such that

ωnS
n

2
=

N∑
j=1

m(j) =

N∑
j=1

∣∣Ek(j)∣∣
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Without loss of generality, up to rescaling the volumes m(h), we can assume
S = 1. By the just given definition, it follows that

⋃N
j=1(Ek(j)∩B(xk(h), S))

has a volume at most half of B(xk(h), S) and so∣∣Ek(0) ∩B(xk(h), S)
∣∣ ≥ ωnS

n

2

We say that {xk(h)}k and {xk(h′)}k are asymptotically close whenever

lim inf
k→∞

∣∣xk(h)− xk(h′)
∣∣ < S

Moreover we say that they don’t tear apart if there exist {h1, . . . , hl} with
{xk(hi)}k, {xk(hi+1)}k asymptotically close for i = 1, . . . , l − 1 and h1 =
h, hl = h′. Then we can partitionate {1, . . . , N} into {Λj}sj=1 in such a way
that for every j = 1, . . . , s and h, h′ ∈ Λj , the sequences {xk(h)}k, {xk(h′)}k
don’t tear apart. Up to extracting subsequences, there exists, for j = 1, . . . , s
and h, h′ ∈ Λj , the limit

lim
k→∞

xk(h)− xk(h′) ∈ BNS

For every j = 1, . . . , s, we choose hj ∈ Λj and we define, for h ∈ Λj ,

ω(h) = lim
k→∞

xk(h)− xk(hj)

Provided k is large enough, we have⋃
h∈Λj

B(xk(h), S) ⊂⊂ B(xk(hj), 2NS)

In fact, if x ∈ B(xk(h), S) and
∣∣xk(h)− xk(hj)

∣∣ ≤ NS+ 1/2 for k sufficiently
large, then ∣∣x− xk(hj)∣∣ ≤ ∣∣x− xk(h)

∣∣+
∣∣xk(h)− xk(hj)

∣∣ < 2NS

Now we are going to construct a new cluster E∗k . Let’s proceed in this way.
We notice that we have determined s pieces for each chamber Ek(h):

Ek(h) ∩
⋃
l∈Λj

B(xk(l), S), j = 1, . . . , s

Let us define the translation vectors yk,j as

vj = 4(N + 1)Sjen

yk,j = vj − xk(hj)

and the new cluster E∗k as

E∗k (h) =

s⋃
j=1

yk,j +

Ek(h) ∩
⋃
l∈Λj

B(xk(l), S)
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It is easy to see that since

Ek(h) ∩
⋃
h∈Λj

B(xk(h), S) ⊂⊂ B(xk(hj), 2NS)

then

yk,j +

Ek(h) ∩
⋃
h∈Λj

B(xk(h), S)

 ⊂⊂ yk,j +B(xk(hj), 2NS) = B(vj , 2NS)

(1.41)
Notice that, by the previous choice of the vectors {vj}j , the balls {B(vj , 2NS)}j
are disjoint and at mutually distance 4S. Recall that, by (1.40), for h ∈ Λj
we have ∣∣E∗k (h) ∩B(xk(h) + yk,j , S)

∣∣ ≥ ∣∣Ek(h) ∩B(xk(h), S)
∣∣

≥ min

{
c(n)

mmin

pmax
,

1

2n

}n
> 0

In particular we have
inf
k∈N

min
h=1,...,N

∣∣E∗k (h)
∣∣ > 0 (1.42)

Moreover

P (E∗k (h)) ≤
s∑
j=1

P

(
Ek(h) ∩

⋃
h∈Λj

B(xk(h), S)

)

≤
s∑
j=1

P (Ek(h)) +
s∑
j=1

∑
h∈Λj

P
(
B(xk(h), S)

)
≤ spmax +NnωnS

n−1

which implies
sup
k∈N

P (E∗k ) <∞ (1.43)

Thus, using (1.41), (1.42), (1.43) and the compactness criterion 1.9, we
can state that there exists a minimizing subsequence converging to a certain
cluster E∗. By convenience, we denote again with {Ek}k this subsequence.
Moreover we notice that∣∣E∗(h) ∩B(vj + ω(h), S)

∣∣ ≥ min

{
c(n)

mmin

pmax
,

1

2n

}n
∣∣E∗(0) ∩B(vj + ω(h), S)

∣∣ ≥ ωnS
n

2

whenever h ∈ Λj . These inequalities follow from the convergence

E∗k (h) ∩B(xk(h) + yk,j , S)→ E∗(h) ∩B(vj + ω(h), S)
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and the continuity of the norm | · | with respect to the measure convergence.
The two inequalities imply that E∗(h), E∗(0) are linked in B(vj + ω(h), S).
Thus consider

A =
s⋃
j=1

⋃
h∈Λj

B(vj + ω(h), S)

Thanks to the restoration volume theorem, we can assert that there exist
positive constants ε, C depending just on E∗ and maps

Φk : ((−ε, ε)N+1 ∩ V )× Rn → Rn

such that

{x ∈ RN : x 6= Φk(a, x)} ⊂⊂ A∣∣Φk(a, E∗k (h)) ∩A
∣∣ =

∣∣E∗k (h) ∩A
∣∣+ a(h)∣∣∣Hn−1

(
Φk(a,Σ)

)
−Hn−1 (Σ)

∣∣∣ ≤ CHn−1 (Σ)

N∑
h=0

∣∣a(h)
∣∣

where Σ is an arbitrary Hn−1-rectifiable set of Rn. We would like to construct
maps Ψk with the following properties:

{x ∈ Rn : x 6= Ψk(a, x)} ⊂⊂
N⋃
h=1

B(xk(h), S)∣∣Ψk(a, Ek(h))
∣∣ =

∣∣Ek(h)
∣∣+ a(h)∣∣∣Hn−1

(
Ψk(a,Σ)

)
−Hn−1 (Σ)

∣∣∣ ≤ CHn−1 (Σ)
N∑
h=0

∣∣a(h)
∣∣

This is the basic idea. Since, for h ∈ Λj , it holds

B(xk(h) + yk,j , S) = B(xk(h) + vj − xk(hj), S)→ B(vj + ω(h), S)

as k →∞, and the diffeomorphisms Φk have variations on a compact subset
of
⋃s
j=1

⋃
h∈Λj

B(vj + ω(h), S), then we can define Ψk as

Ψk(a, x) = −yk,j + Φk(a, x+ yk,j)

if x+ yk,j ∈
⋃
h∈Λj

B(vj + ω(h), S).
The map is well defined because, if

Ck,j =

{
x ∈

⋃
h∈Λj

B(vj + ω(h), S) : x 6= Φk(a, x)

}
then the translated sets C̃k,j = Ck,j − yk,j , j = 1, . . . , s are always disjoint.
Indeed, looking at the proof of theorem 1.15, we can choose the diffeomor-
phisms in such a way that the support is small enough. As a consequence, it
is easy to see that the sets Ck,i − yk,i, Ck,j − yk,j for i 6= j are disjoint. Let
us prove the validity of the three above properties.
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• We have

{x ∈ Rn : x 6= Ψk(a, x)} =

s⋃
j=1

(−yk,j + Ck,j)

since x 6= Ψk(a, x) if and only if x+ yk,j 6= Φk(a, x+ yk,j) for x+ yk,j ∈⋃
h∈Λj

B(vj + ω(h), S). Moreover it holds

Ck,j − yk,j ⊂⊂
⋃
h∈Λj

B(vj + ω(h), S)− yk,j =
⋃
h∈Λj

B(xk(hj) + ω(h), S)

Since for k large xk(h) ∼ ω(h) + xk(hj) (that is they are enough close),
then

Ck,j − yk,j ⊂⊂
⋃
h∈Λj

B(xk(h), S)

This proves the first of the three properties.

• Set C̃k =
⋃s
j=1 C̃k,j as the "support" of Ψk. Let’s compute

∣∣Ψk(a, Ek(h))
∣∣.

We have∣∣∣Ψk(a, Ek(h)) ∩ C̃k
∣∣∣ =

∣∣∣Ψk(a, Ek(h) ∩ C̃k)
∣∣∣

=

s∑
j=1

∣∣∣Φk

(
a, (Ek(h) ∩ C̃k,j) + yk,j

)∣∣∣
=

∣∣∣∣∣∣
s⋃
j=1

Φk

(
a, (yk,j + Ek(h)) ∩ Ck,j)

∣∣∣∣∣∣
= a(h) +

∣∣∣∣∣∣
s⋃
j=1

(
(yk,j + Ek(h)) ∩ Ck,j

)∣∣∣∣∣∣
= a(h) +

s∑
j=1

∣∣∣Ek(h) ∩ C̃k,j
∣∣∣

= a(h) +
∣∣∣Ek(h) ∩ C̃

∣∣∣
• Let Σ be a Hn−1-rectifiable set. Without loss of generality, we assume

that Σ is contained in C̃k,j . Then∣∣∣Hn−1
(
Ψk(a,Σ)

)
−Hn−1 (Σ)

∣∣∣ =
∣∣∣Hn−1

(
Φk(a,Σ + yk,j)

)
−Hn−1

(
Σ + yk,j

)∣∣∣
≤ CHn−1

(
Σ + yk,j

) N∑
h=0

∣∣a(h)
∣∣

= CHn−1 (Σ)

N∑
h=0

∣∣a(h)
∣∣
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Part two. Let ε0 satisfying the hypotheses of the Nucleation Lemma for
every Ek(h), that is

ε0 ≤ min

{
mmin,

pmin

2nc(n)

}
Then there exist points {xk(h, i)}

L(h,k)
i=1 such that∣∣∣∣∣∣Ek(h) \

L(h,k)⋃
i=1

B(xk(h, i), 2)

∣∣∣∣∣∣ ≤ ε0

L(h, k) ≤mmax

(
pmax

c(n)ε0

)n
Define

Fk =

( N⋃
h=1

B̄(xk(h), S)

)
∪
( N⋃
h=1

L(h,k)⋃
i=1

B̄(xk(h, i), 2)

)
Since

N∑
h=1

∣∣Ek(h) \ Fk
∣∣ ≤ Nε0

we may apply the Truncation Lemma to Ek, Fk, α = Nε0. It follows that
there exist rk ∈ [0, 7n(Nε0)1/n] such that the cluster E ′ defined as

E ′k(h) = Ek(h) ∩ {uk ≤ rk}, uk(x) = dist(x, Fk)

satisfies
P (E ′k) ≤ P (Ek)−

d(Ek, E ′k)
4(Nε0)1/n

We notice that

d(Ek, E ′k) =
N∑
h=1

∣∣Ek(h) \ E ′k(h)
∣∣ =

N∑
h=1

∣∣Ek(h) ∩ {uk > rk}
∣∣

≤
N∑
h=1

∣∣∣∣∣∣Ek(h) \
L(h,k)⋃
i=1

B̄(xk(h, i), 2)

∣∣∣∣∣∣ < Nε0

because {uk > rk} ⊆ Rn \ Fk ⊆ Rn \
⋃L(h,k)
i=1 B̄(xk(h, i), 2)

Now we would like to define new clusters E ′′k in order to restore the
chambers measures of Ek, through the diffeomorphisms previously constructed.
We set

ak(h) =
∣∣Ek(h)

∣∣− ∣∣E ′k(h)
∣∣ =

∣∣Ek(h) ∩ {uk > rk}
∣∣ , h = 1, . . . , N

ak(0) = −
N∑
h=1

ak(h)
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Provided that ε0 is small enough, ak ∈ (−ε1, ε1)N+1 ∩ V . Define the new
cluster E ′′ as

E ′′k (h) = Ψk(ak, E ′k(h)), h = 1, . . . , N, k ∈ N

Since {x 6= Ψk(ak, x)} ⊂⊂
⋃N
h=1B(xk(h), S) ⊆ Fk ⊆ {uk ≤ rk}, then

Ψk(ak, Ek(h)) ∩ {uk ≤ rk} = Ψk(ak, Ek(h) ∩ {uk ≤ rk}) = Ψk(ak, E ′k(h))

In particular, recalling one of the three properties characterizing Ψk, we get

ak(h) =
∣∣Ψk(ak, Ek(h))

∣∣− ∣∣Ek(h)
∣∣

=
∣∣Ψk(ak, Ek(h)) ∩ {uk ≤ rk}

∣∣− ∣∣Ek(h) ∩ {uk ≤ rk}
∣∣

=
∣∣Ψk(ak, E ′k(h))

∣∣− ∣∣E ′k(h)
∣∣

Then we deduce ∣∣E ′′k (h)
∣∣ =

∣∣Ψk(ak, E ′k(h))
∣∣

= ak(h) +
∣∣E ′k(h)

∣∣ =
∣∣Ek(h)

∣∣
that is

m(E ′′) = m(E)

Moreover, we can provide the following perimeter estimation.

P (E ′′k ) =
∑

0≤h<l≤N
Hn−1(Ψk(ak, E ′k(h, l)))

≤
∑

0≤h<l≤N

(
Hn−1(E ′k(h, l)) + CHn−1

(
E ′k(h, l)

) N∑
j=0

∣∣a(j)
∣∣ )

= P (E ′k) + C1P (E ′k)
N∑
j=0

∣∣a(j)
∣∣

≤ P (Ek)−
d(Ek, E ′k)

4(Nε0)1/n
+ C1P (E ′k)

N∑
j=0

∣∣a(j)
∣∣

If P (Ek)→ γ then P (Ek) ≤ 2γ for k sufficiently large. Moreover

N∑
h=0

∣∣ak(h)
∣∣ ≤ 2

N∑
h=1

∣∣ak(h)
∣∣ = 2d(Ek, E ′k)

Thus we can conclude that

P (E ′′k ) ≤ P (Ek)−
d(Ek, E ′k)

4(Nε0)1/n
+ 4C1γd(Ek, E ′k)

≤ P (Ek) +

(
4C1γ −

1

4(Nε0)1/n

)
d(Ek, E ′k)
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The last term is smaller than P (Ek) provided that ε0 is sufficiently small.
Hence {E ′′k }k is a minimizing sequence satisfying the hypotheses of proposition
1.8. Notice that we have just to prove (1.12). This follows from the fact that

E ′′k (h) = Ψk(ak, E ′k(h)) = Ψk(ak, Ek(h)) ∩ {uk ≤ rk} ⊆ {uk ≤ rk}

and that

{uk ≤ rk} ⊆
N⋃
h=1

(
B̄(xk(h), S + rk) ∪

L(h,k)⋃
i=1

B̄(xk(h, i), 2 + rk)

)

In fact for every k ∈ N we have rk ≤ 7n(Nε0)1/n and the number of points
{xk(h)}h, {xk(h, i)}h,i can be uniformly bounded in k. Then

E ′′k (h) ⊆
⋃
x∈Ωk

B(x,R)

for some R > 0 and sets {Ωk}k∈N with uniformly bounded cardinality.
Thus, thank to proposition 1.8, we conclude that {E ′′k }k admits a converg-

ing subsequence E ′′k(l) → E . The N -cluster E is a minimum of the original
partitioning problem.

Finally we prove that such a minimizer is bounded. Indeed if E is not
bounded then, applying the previous construction to the sequence {Ek}k = E ,
we have another sequence {E ′′k }k of cluster with

P (E ′′k ) < P (Ek) = P (E), m(E ′′k ) = m(Ek) = m

which is a contradiction.



CHAPTER 2
Regularity and planar cases

In the first chapter we showed the existence of the minimum for a partitioning
problem. Now we would like to deepen the topic and see if we are able to get
informations about the minimizers.

In the first part of this second chapter, we are going to detail the study
of the minimal clusters in Rn, in particular about their regularity. We’ll see
that the interfaces of a minimal cluster are analytic hypersurfaces of Rn with
constant mean curvature. Later, we are going to focus on some specific cases
in R2. First of all we will prove the regularity properties of the cluster in
the plane: the most relevant one is the 120◦ rule. Then we are going to
characterize entirely the 2-minimizing clusters and to provide a symmetry
property for the 4-cluster.

2.1 Regularity of the minimizers in Rn

The aim of this section is to prove the following theorem.

Theorem 2.1. Let E be a minimizing cluster in Rn. Then for every 0 ≤
h < k ≤ N , the interface E(h, k) is an analytic constant mean curvature
surface in Rn which satisfies

N∑
h=0

Hn−1
(
∂E(h) \ ∂∗E(h)

)
= 0

In order to prove the theorem, we are going to use the following lemma
and its corollary. The lemma states that, if Λ is a subset of indices and the
measure of the parts of E(h), h ∈ Λ inside a certain ball B(x, r) is sufficiently
small, then each E(h), h ∈ Λ is disjoint in measure with respect to B(x, r/2).

Lemma 2.2 (Infiltration). If E is a minimizing cluster in Rn, there
exist positive constants ε0 < ωn, r0 > 0 such that for every x ∈ Rn, r < r0

and Λ ⊆ {0, . . . , N} with∑
h∈Λ

∣∣E(h) ∩B(x, r)
∣∣ ≤ ε0r

n (2.1)

47
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it holds ∣∣E(h) ∩B(x, r/2)
∣∣ = 0, h ∈ Λ

In the next corollary we are going to prove that the sets E(h, k)∩B(x, rx),
0 ≤ h < k ≤ N , for a certain rx > 0, are analytic hypersurfaces with constant
mean curvature. In order to prove that, we are going to apply some powerful
theorems concerning the regularity theory of minimal sets of finite perimeter.
(see [6], chapters 21, 27, 28). Later we are going to state and prove a simplified
version of these theorems.

Corollary 2.3. Let E be a minimizing cluster in Rn and x ∈ ∂E(h)∩∂E(k)
such that

lim
r→0+

∣∣E(h) ∩B(x, r)
∣∣

ωnrn
+

∣∣E(k) ∩B(x, r)
∣∣

ωnrn
= 1 (2.2)

Then there exists rx > 0 such that∣∣E(i) ∩B(x, rx)
∣∣ = 0

whenever i 6= h, k. Moreover E(h), E(k) are volume-constrained perimiter
minimizers inside B(x, rx). In particular, if either 2 ≤ n ≤ 7 or n ≥ 8 but
x ∈ E(h, k) then

∂E(h) ∩ ∂E(k) ∩B(x, rx) = E(h, k) ∩B(x, rx)

is a constant mean curvature analytic hypersurface in Rn.

Proof. Let ε0, r0 be the constants of the previous lemma. By (2.2) and setting
Λ = {0, . . . , N} \ {h, k}, it follows that

lim
r→0+

∣∣⋃
i∈Λ E(i) ∩B(x, r)

∣∣
ωnrn

= 0

and so, for a certain fixed r̃ < r0, it holds∣∣⋃
i∈Λ E(i) ∩B(x, r̃)

∣∣
ωnr̃n

≤ ε0

ωn

Then, using the lemma, we have∣∣E(i) ∩B(x, r̃/2)
∣∣ = 0, i 6= h, k

Thus we can set rx = r̃/2 and the first part of corollary is proved.
Now we are going to show that E(h) is a volume-constrained perimeter

minimizer inside B(x, rx). Let F ⊆ Rn be a set with

|F | =
∣∣E(h)

∣∣ , E(h)∆F ⊂⊂ B(x, rx)
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We define the cluster E ′ as

E ′(h) = (E(h) \B(x, rx)) ∪ (B(x, rx) ∩ F ) ≡ F
E ′(k) = (E(k) \B(x, rx)) ∪ (B(x, rx) \ F )

E ′(i) = E(i), i 6= h, k

Notice that E ′(h) coincides with F , because E(h) and F do not differ outside
B(x, rx) and E ′(h) is defined as F inside B(x, rx). The new cluster is a
competitor because

∣∣E ′(h)
∣∣ = |F | =

∣∣E(h)
∣∣ and∣∣E ′(k)

∣∣ =
∣∣E(k) \B(x, rx)

∣∣+
∣∣B(x, rx) \ F

∣∣
=
∣∣E(k) \B(x, rx)

∣∣+
∣∣B(x, rx)

∣∣− ∣∣B(x, rx) ∩ F
∣∣

=
∣∣E(k) \B(x, rx)

∣∣+
∣∣B(x, rx)

∣∣− ∣∣B(x, rx) ∩ E(h)
∣∣

=
∣∣E(k) \B(x, rx)

∣∣+
∣∣B(x, rx) ∩ E(k)

∣∣
=
∣∣E(k)

∣∣
Thus m(E) = m(E ′). By minimality, we have

P (E) ≤ P (E ′)

and so
P (E(h)) + P (E(k)) ≤ P (E ′(h)) + P (E ′(k)) (2.3)

Since, up to null Ln measure sets, E(k)∆E ′(k) = E(h)∆F ⊂⊂ B(x, rx), then
from (2.3) it follows that

P (E(h);B(x, rx))+P (E(k);B(x, rx)) ≤ P (E ′(h);B(x, rx))+P (E ′(k);B(x, rx))

Thus either
P (E(h);B(x, rx)) ≤ P (E ′(h);B(x, rx))

or
P (E(k);B(x, rx)) ≤ P (E ′(k);B(x, rx))

In the first case we would have P (E(h);B(x, rx)) ≤ P (F ;B(x, rx)). Now
let’s consider the second case. Since P (E(i);B(x, rx)) = 0 as a consequence
of
∣∣E(i) ∩B(x, rx)

∣∣ = 0, we have

P (E(h);B(x, rx)) =

N∑
j=0
j 6=h

Hn−1
(
E(h, j) ∩B(x, rx)

)
= Hn−1

(
E(h, k) ∩B(x, rx)

)
= P (E(k);B(x, rx))

Moreover, as
∣∣(E ′(k)∆F c) ∩B(x, rx)

∣∣ = 0,

P (E ′(k);B(x, rx)) = P (F c;B(x, rx)) = P (F ;B(x, rx))



50 Chapter 2. Regularity and planar cases

Then, we can finally conclude that

P (E(h);B(x, rx)) ≤ P (F ;B(x, rx))

This proves that E(h) is a volume-constrained perimeter minimizer.
Thanks to the just shown minimality of E(h), E(k) and some regularity

theorems that we are not going to deepen, if either 2 ≤ n ≤ 7 or n ≥ 8 but
x ∈ E(h, k), then E(h, k) ∩B(x, rx) = ∂E(h) ∩ ∂E(k) ∩B(x, rx) is a constant
mean curvature analytic hypersurface in Rn.

Remark 2.4. By the previous corollary, we know that, if x ∈ E(h, k) there
exists rx such that

E(h, k) ∩B(x, rx)

is an analytic constant mean curvature hypersurface in Rn. Then, covering
E(h, k) with ∪x∈E(h,k)E(h, k)∩B(x, rx) and using the compactness of E(h, k),
we deduce that E(h, k) is an analytic hypersurface too. Moreover, each
connected component of E(h, k), has constant mean curvature.

Proof of the lemma. We are going to consider only the case Λ = {2, . . . , N}
and x = 0. By corollary 1.18, we know that there exist constant r0, C > 0 such
that, given an N -cluster F with F(h)∆E(h) ⊂⊂ Br0 for every h = 1, . . . , N ,
then

P (E) ≤ P (F) + C
∣∣m(E)−m(F)

∣∣
Define, for s > 0,

Es = Bs ∩
N⋃
h=2

E(h)

and m : (0,+∞)→ (0,+∞) as

m(s) = |Es|

It is known that, for almost every s > 0,

m′(s) =

N∑
h=2

Hn−1
(
E(h) ∩ ∂Bs

)
Moreover, for almost every s > 0,

N∑
h=0

Hn−1
(
∂∗E(h) ∩ ∂Bs

)
= 0

In fact, since {∂Bs}s is a family of disjoint Borel sets and Hn−1 ∂∗E(h) is
a Radon measure, then Hn−1

(
∂∗E(h) ∩ ∂Bs

)
> 0 at most in a countable set

of indices s.
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Now there could be two possibilities:∑
h≥2

Hn−1
(
Bs ∩ E(h, 1)

)
≥
∑
h≥2

Hn−1
(
Bs ∩ E(h, 0)

)
or ∑

h≥2

Hn−1
(
Bs ∩ E(h, 0)

)
≥
∑
h≥2

Hn−1
(
Bs ∩ E(h, 1)

)
Without loss of generality, we can assume that we are in the first case. We
define the new cluster F as

F(0) = E(0)

F(1) = E(1) ∪ Es
F(h) = E(h) \Bs, h = 2, . . . , N

Notice that, since E and F differ just on Bs, if s < r0 then E(h)∆F(h) ⊆
Bs ⊂⊂ Br0 . Thus, in this case,

P (E) ≤ P (F) + C
∣∣m(E)−m(F)

∣∣ (2.4)

The following estimations hold:

P (E ;Rn \ B̄s) = P (F ;Rn \ B̄s) (2.5)

P (E ; ∂Bs) =
1

2

N∑
h=0

Hn−1
(
∂∗E(h) ∩ ∂Bs

)
= 0, for a.e. s > 0 (2.6)

P (F ; ∂Bs) =
1

2

N∑
h=0

P (F(h); ∂Bs) = m′(s), for a.e. s > 0 (2.7)

Let us briefly show the last equality. If h ≥ 2 then, for almost every s > 0,

∂∗F(h) ∩ ∂Bs = (∂∗(E(h) \Bs)) ∩ ∂Bs ≈ ∂Bs ∩ E(h)(1)

and so

P (F(h); ∂Bs) = Hn−1
(
∂∗F(h) ∩ ∂Bs

)
= Hn−1

(
E(h)(1) ∩Bs

)
If h = 1 then, for almost every s > 0,

∂∗F(1) ∩ ∂Bs ≈

⋃
h≥2

E(h)

(1)

∩ ∂Bs

and so

P (F(1); ∂Bs) = Hn−1
(
∂∗F(1) ∩ ∂Bs

)
=
∑
h≥2

Hn−1
(
E(h)(1) ∩ ∂Bs

)
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If h = 0 then, for almost every s > 0,

P (F(0); ∂Bs) = Hn−1
(
∂∗E(0) ∩ ∂Bs

)
= 0

Hence, putting all these equalities together, we get

P (F ; ∂Bs) =
1

2

N∑
h=0

P (F(h); ∂Bs)

=
1

2

P (F(0); ∂Bs) + P (F(1); ∂Bs) +
∑
h≥2

P (F(h); ∂Bs)


=

1

2

∑
h≥2

Hn−1
(
E(h)(1) ∩ ∂Bs

)
+
∑
h≥2

Hn−1
(
E(h)(1) ∩ ∂Bs

)
=
∑
h≥2

Hn−1
(
E(h)(1) ∩ ∂Bs

)
= m′(s)

Finally we have also∣∣m(E)−m(F)
∣∣ ≤ N∑

h=1

∣∣∣∣∣E(h)
∣∣− ∣∣F(h)

∣∣∣∣∣
=
∣∣∣∣∣E(1)

∣∣− ∣∣F(1)
∣∣∣∣∣+

∑
h≥2

∣∣∣∣∣E(h)
∣∣− ∣∣F(h)

∣∣∣∣∣
= |Es|+

∑
h≥2

∣∣E(h) ∩Bs
∣∣ = 2 |Es|

(2.8)

Thus, by (2.4) and (2.8), we get

P (E ;Bs)+P (E ; ∂Bs)+P (E ;Bc
s) ≤ P (F ;Bs)+P (F ; ∂Bs)+P (F ;Bc

s)+2C |Es|

and, by (2.5)-(2.7), it holds for almost every s > 0

P (E ;Bs) ≤ P (F ;Bs) +m′(s) + 2C |Es| (2.9)

Now we claim that

P (E ;Bs)− P (F ;Bs) ≥
m(s)(n−1)/n −m′(s)

2

Let’s prove the claim. It holds
N∑
h=2

P (E(h);Bs) ≥ P (Es;Bs) = P (Es ∩Bs)−Hn−1 (∂Bs ∩ Es)

≥ P (Es ∩Bs)−Hn−1

∂Bs ∩ N⋃
h=2

E(h)


= P (Es)−m′(s) ≥ |Es|(n−1)/n −m′(s)
= m(s)(n−1)/n −m′(s)
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As
∣∣F(h) ∩Bs

∣∣ = 0 for h ≥ 2, then P (F(h);Bs) = 0. Thus we have

2
(
P (E ;Bs)− P (F ;Bs)

)
= P (E(1);Bs) +

∑
h≥2

P (E(h);Bs)− P (F(1);Bs)

≥ P (E(1);Bs)− P (E(1) ∪ Es;Bs) +m(s)(n−1)/n −m′(s)
≥ m(s)(n−1)/n −m′(s)

because

P (E(1);Bs)− P (E(1) ∪ Es;Bs) =

=
N∑
h=0
h6=1

Hn−1
(
E(h, 1) ∩Bs

)
−

N∑
k=0
k 6=0

Hn−1
(
E(k, 0) ∩Bs

)
=
∑
h≥2

Hn−1
(
E(h, 1) ∩Bs

)
−
∑
k≥2

Hn−1
(
E(k, 1) ∩Bs

)
≥ 0

by the initial hypothesis. Thus the claim is proved.
Recalling also (2.9), we get

P (F ;Bs) +
m(s)(n−1)/n −m′(s)

2
≤ P (E ;Bs) ≤ P (F ;Bs) +m′(s) + 2Cm(s)

and so
m(s)(n−1)/n ≤ 3m′(s) + 4Cm(s)

Let ε0 ≤
(

1
12n

)n
< 1 and (2.1) be valid. Up to decreasing the value of

r0 < 1/(8C), a simple computation leads to

4Cm(s) ≤ m(s)(n−1)/n

2

for a.e. s ∈ (0, r). Taking into account the last two inequalities, we get

m(s)(n−1)/n ≤ 6m′(s), for a.e. s ∈ (0, r)

which can be written also as

1 ≤ 6
m′(s)

m(s)(n−1)/n
= 6n(m(s)1/n)′

Let [r∗,+∞) be the support of m, r∗ ≥ 0. Then, considering without loss
of generality r > r∗ and integrating on (r∗, r) the last inequality, we get

r − r∗ = 6n(m(r)1/n −m(r∗)
1/n) = 6nm(r)1/n ≤ 6n(ε0r

n)1/n ≤ 6n
1

12n
r

that is
r∗ ≥

r

2

Since m(r∗) = 0 and m is increasing, we have m( r2) = 0.
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x

y

γ

A B

A(γ)

Figure 2.1: In the figure is represented a Lipschitz curve γ from A to B with
prescribed area A(γ).

2.2 A perimeter minimizing variational
problem

Let’s start explaining the general idea of this problem. Given two fixed
distinct points A and B, we would like to find the Lipschitz curve of minimal
length with A,B as endpoints and with fixed enclosed area. Namely, if
γ : [0, 1]→ R2 is a Lipschitz curve, we define the functional L and A as

L(γ) =

∫ 1

0
|γ̇| dt

A(γ) =
1

2

∫ 1

0
γ · γ̇⊥dt

Here x⊥ = (x2,−x1) if x = (x1, x2). The first functional represents the
length of the curve γ. The second one, up to the sign, is the area of the
region enclosed by the curve and the line segment AB.

Define also the set of the admissible curves as

A = {γ : [0, 1]→ R2 : γ ∈ Lip([0, 1],R2), γ(0) = A, γ(1) = B,A(γ) = v}

with A = (0, 0), B = (1, 0), v ∈ R. We are going to study the problem

min
γ∈A

L(γ) (2.10)

Existence. Let’s start proving the existence of the minimizer. Consider a
minimizing sequence {γ(n)}n∈N ⊆ A , that is

L(γ(n))→ l := inf
γ∈A

L(γ)
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Since L <∞, we can assume that, for a certain C > 0 and for every n ∈ N,

L(γ(n)) ≤ C <∞

We recall that by the Poincaré inequality, if f ∈W 1,1
0 (0, 1) then there exists

a constant C1 > 0 such that∫ 1

0

∣∣f(x)
∣∣ dx ≤ C1

∫ 1

0

∣∣f ′(x)
∣∣ dx

Then, for a fixed γ̃ ∈ A, we have γ(n) − γ̃ ∈W 1,1
0 ((0, 1),R2) and so∫ 1

0

∣∣∣γ(n)
∣∣∣ dt ≤ ∫ 1

0

∣∣∣γ(n) − γ̃
∣∣∣ dt+

∫ 1

0
|γ̃| dt

≤ C1

(∫ 1

0

∣∣∣γ̇(n) − ˙̃γ
∣∣∣ dt)+

∫ 1

0
|γ̃| dt

≤ C1

(∫ 1

0

∣∣∣γ̇(n)
∣∣∣ dt+

∫ 1

0

∣∣∣ ˙̃γ∣∣∣ dt)+

∫ 1

0
|γ̃| dt ≤ D

for a certain D ∈ R, independent on n. Thus {γ(n)}n is bounded in
W 1,1((0, 1),R2). In particular, it admits a subsequence converging to γ̄
weakly in W 1,1((0, 1),R2). We recall this subsequence γ(n). Moreover we can
assume that this subsequence converges to γ̄ also in L1.

By Tonelli’s theorem, we deduce that L is lower semicontinuous with
respect to the weak topology of W 1,1((0, 1),R2). Then

L(γ̄) ≤ lim inf
n→∞

L(γ(n)) = inf
γ∈A

L(γ)

Thus the problem admits minimum in W 1,1((0, 1),R2). Moreover, by the
strictly convexity of L, the minimum is unique.

Let’s prove that A(γ̄) = v. It holds∣∣∣A(γ̄)−A(γ(n))
∣∣∣ =∣∣∣∣∣

∫ 1

0
γ̄ · ˙̄γ⊥ − γ(n) · γ̇(n)⊥dt

∣∣∣∣∣ ≤∣∣∣∣∣
∫ 1

0
γ̄ · ˙̄γ⊥ − γ̄ · γ̇(m)⊥ + γ̄ · γ̇(m)⊥ − γ(n) · γ̇(m)⊥ + γ(n) · γ̇(m)⊥ − γ(n) · γ̇(n)⊥dt

∣∣∣∣∣ ≤∣∣∣∣∣
∫ 1

0
γ̄ · ( ˙̄γ − γ̇(m))⊥dt

∣∣∣∣∣+

∣∣∣∣∣
∫ 1

0
γ̇(m)⊥ · (γ̄ − γ(n))dt

∣∣∣∣∣+

∣∣∣∣∣
∫ 1

0
(γ̇(m) − γ̇(n))⊥ · (γ(n) − γ̄ + γ̄)dt

∣∣∣∣∣
Choose ε > 0. Using the weak convegence of γ̇(n) L

1

⇀ ˙̄γ and the boundness
of γ̄ ∈ AC((0, 1),R2), we find that the first term goes to zero as m → ∞.
Then determine m such that∣∣∣∣∣

∫ 1

0
γ̄ · ( ˙̄γ − γ̇(m))⊥dt

∣∣∣∣∣ ≤ ε
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form ≥ m. By the strong convergence γ(n) L
1

→ γ̄ and the estimation
∣∣∣γ̇(m)⊥

∣∣∣ ≤
Lm for a certain Lm ∈ R+ (since γ(m) is Lipschitz continuous), we get that
the second term goes to zero too as n→∞. In particular determine n such
that, for every n ≥ n, ∣∣∣∣∣

∫ 1

0
γ̇(m)⊥ · (γ̄ − γ(n))dt

∣∣∣∣∣ ≤ ε
Finally, with similar arguments, it is easy to show that also the third term is
smaller that ε if m = m and n is sufficiently large. This proves that∣∣∣A(γ̄)−A(γ(n))

∣∣∣ ≤ 3ε

for n large. Then v = A(γ(n))
n→∞−→ A(γ̄) and so A(γ̄) = v.

Characterization of the solution. Now we would like to determine the
expression of γ̄. By convenience, let

f(ξ) = |ξ|

g(u, ξ) =
1

2
u · ξ⊥ − v

With this definition we have

L(γ̄) =

∫ 1

0
f( ˙̄γ)dt∫ 1

0
g(γ̄, ˙̄γ)dt = A(γ̄)− v = 0

Define, for fixed ϕ,ψ ∈ C∞c ((0, 1),R2), the functions

F (ε, h) = L(γ̄ + εϕ+ hψ) =

∫ 1

0
f( ˙̄γ + εϕ̇+ hψ̇) dt

G(ε, h) = A(γ̄ + εϕ+ hψ)− v =

∫ 1

0
g(γ̄ + εϕ+ hψ, ˙̄γ + εϕ̇+ hψ̇) dt

Notice that

G(0, 0) = 0, Gh(0, 0) =

∫ 1

0
(gu(γ̄, ˙̄γ)ψ + gξ(γ̄, ˙̄γ)ψ̇) dt

Since
0 =

d
dt
gξ(u, ξ) 6= gu(u, ξ)

then there exists ψ ∈ C∞c ((0, 1),R2) such that∫ 1

0

(
gξ(γ̄, ˙̄γ)ψ̇ + gu(γ̄, ˙̄γ)ψ

)
dt = 1



2.2. A perimeter minimizing variational problem 57

that is
Gh(0, 0) = 1 6= 0

Thus, by Dini’s theorem, we deduce that there exists h(ε) such that

G(ε, h(ε)) = 0, (2.11)

for ε ∈ (−ε0, ε0). This means that the curves γ̄ + εϕ + h(ε)ψ enclose the
corrected area. By (2.11), we get

0 =
d
dε
G(ε, h(ε))|ε=0 = Gε(0, 0) +Gh(0, 0)h′(0)

and so
h′(0) = −Gε(0, 0)

Finally, by the minimality of γ̄, we have

0 =
d
dε
F (ε, h(ε))|ε=0 = Fε(0, 0) + Fh(0, 0)h′(0) = Fε(0, 0) + λGε(0, 0)

with λ = −Fh(0, 0). Since

fξ(ξ) =
ξ

|ξ|
, gu(u, ξ) =

1

2
ξ⊥, gξ(u, ξ) = −1

2
u⊥

exploiting the last equality we get

0 =
∂

∂ε

(∫ 1

0
f( ˙̄γ + εϕ̇+ hψ̇) + λg(γ̄ + εϕ+ hψ, ˙̄γ + εϕ̇+ hψ̇)

)
|ε=0,h=0

=

∫ 1

0
fξ(γ̄) · ϕ̇+ λ

(
gu(γ̄, ˙̄γ) · ϕ+ gξ(γ̄,˙̄γ)ϕ̇

)
dt (2.12)

=

∫ 1

0

˙̄γ∣∣ ˙̄γ∣∣ · ϕ̇+ λ

(
1

2
˙̄γ⊥ · ϕ− 1

2
γ̄⊥ · ϕ̇

)
dt

We notice that∫ 1

0
ϕ(t) · ˙̄γ⊥(t)dt =

∫ 1

0

(∫ 1

0
ϕ̇(τ)χ[0,t](τ)dτ

)
· ˙̄γ⊥(t)dt

=

∫ 1

0

(∫ 1

τ

˙̄γ⊥(t)dt

)
· ϕ̇(τ)dτ

=

∫ 1

0

(
γ̄⊥(1)− γ̄⊥(τ)

)
· ϕ̇(τ)dτ

= −
∫ 1

0
γ̄⊥(τ) · ϕ̇(τ)dτ
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Thus the condition (2.12) becomes∫ 1

0

(
˙̄γ∣∣ ˙̄γ∣∣ − λγ̄⊥

)
· ϕ̇ dt = 0

for every ϕ ∈ C∞c ((0, 1),R2). This implies that there exists a constant vector
c = (c1, c2) ∈ R2 such that

˙̄γ∣∣ ˙̄γ∣∣ − λγ̄⊥ = c, for a.e. t ∈ (0, 1) (2.13)

Let’s consider the arc parametrization of γ̄:

γ̃(s) = γ̄(t(s)), s ∈ [0, L]

with t(s) = len−1(s), len(t) =
∫ t

0

∣∣ ˙̄γ(τ)
∣∣ dτ . Then (2.13) becomes

˙̃γ(s) = λγ̃⊥(s) + c for a.e. s ∈ [0, L] (2.14)

that is, if γ̃ = (γ̃1, γ̃2), {
˙̃γ1 = λγ̃2 + c1
˙̃γ2 = −λγ̃1 + c2

almost everywhere on (0, L). By (2.14), we deduce that ˙̃γ is continuous and,
iterating a similar argument, that it belongs to C∞((0, 1),R2). In particular
γ̃ is Lipschitz continuous. In fact γ̃(s) =

∫ s
0

˙̃γ(τ)dτ can be represented as
the integral of a continuous function. Then its derivative can be computed
for every s ∈ (0, L). Thus it is constantly equal to λγ̃⊥(s) + c, which is a
continuous function. In this way we see that γ̃ ∈ C1((0, L),R2).

Now let’s solve the differential equation (2.14) with initial condition
γ̃(0) = (0, 0). It is easy to see that the solution is{

γ̃1(s) = 1−cos(λs)
λ c2 + sin(λs)

λ c1

γ̃2(s) = sin(λs)
λ c2 − 1−cos(λs)

λ c1

and that it represents a circular arc with center in (1
2 ,
√

( 1
λ)2 − 1

4) and radius
r = 1

|λ| . We notice that the solution has constant mean curvature. The
constant c1, c2 satisfy the relationship

c2
1 + c2

2 = 1

and they can be determined using the constrain A(γ̄) = v. This ends the
proof of the existence and characterization of the solution of (2.10). Thus we
can affirm that the perimeter minimizer with fixed endpoints and enclosed
area is a circular arc.
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2.3 Regularity of minimal planar clusters

Now we are going to focus on the minimal clusters in R2. We already know
that, by the general regularity theorem, the minimizers have interfaces which
are constant mean curvature hypersurfaces. In R2 this means that they are
necessarily circular arcs or line segments. Moreover, since we are in the
particular case of the plane, we will be able to get other details about the
minimizers (Theorem 2.5). In the following sections, we are going to analyse
and characterize the minimal 2-clusters and 4-clusters.

Theorem 2.5. Let E = {E(1), . . . , E(N)} be the perimeter minimizer for a
partitioning problem in R2. Then

⋃N
h=0 ∂

∗E(h) is a finite union of circular
arcs or line segment meeting in threes at 120◦ angles at finitely many points.
Moreover, for every h, k = 0, . . . , N , each arc belonging to E(h, k) has the
same mean curvature and the set ∂E(h) \ ∂∗E(h) is discrete.

Remark 2.6. By theorem 1.15, we know that, given clusters E , E ′ suf-
ficiently close in a measure sense, we can find another cluster E ′′ with
m(E ′′) = m(E) which, setting C = 2C1 sup{P (E), P (E ′)} > 0, satisfies
the estimation

P (E ′′) ≤ P (E ′) + CN max
h=1,...,N

∣∣a(h)
∣∣

where a(h) =
∣∣E(h)

∣∣− ∣∣E ′(h)
∣∣. This can be done applying the diffeomorphism

to the chambers of E ′ and restoring the areas of E .

Remark 2.7. Since a segment is a circular arc with zero curvature, from
now we are going to call arc both a circular arc and a line segment.

Proof of the theorem. We are going to proceed in this way. We claim that:

1. ∂E(h) is a finite collection of rectifiable cycles;

2. ∂∗E(h) is the union of finitely many arcs;

3. the meeting arcs form 120◦ angles;

4. every arc contained in E(h, k) has the same mean curvature.

Let’s prove these statements.

1. Since ∂E(h) = M∪∂∗E(h), for someHn−1-null measure setM ∈ R2 and
∂∗E(h) is a rectifiable set, then ∂E(h) is formed by at most countably
many closed curves. Assume by contradiction that ∂E(h) has not a
finite number of cycles. Since the perimeter is finite, necessarily there
exists a cycle C of length 0 < ε < 4π/N2C̃, with C̃ = 2C1P (E). For
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sure, for some k 6= h, it holds H1(C ∩ ∂∗E(k)) ≥ ε/N . If R is the region
inside C, we define E ′ setting

E ′(k) = E(k) ∪R
E ′(h) = E(h) \R
E ′(i) = E(i), i 6= h, k

Then
P (E ′) ≤ P (E)− ε/N

Notice that, since P (E ′) ≤ P (E), we get C̃ = C = 2C1P (E). As a
consequence of the isoperimetric formula, the area of R is at most
ε2/4π and so it can be made as small as we want. In particular, for ε
sufficiently small, it is in (−η, η). Applying the diffeomorphism, we get
a new cluster E ′′ with m(E ′′) = m(E) and

P (E) ≤ P (E ′′) ≤ P (E ′) + CN
ε2

4π
≤ P (E)− ε

N
+ CN

ε2

4π

However this would imply that

4π

N2C
≤ ε

which is a contradiction with the initial choice of ε. Thus each chamber
has a finite number of cycles.

2. Now we prove that ∂E(h) is the union of finitely many arcs. First of all,
we show that there could not be infinite arcs meeting in threes, fours,
etc. We give a sketch of the proof of this fact. We say that a point A
is a k-point (for the cluster E) if there are k distinct arcs meeting in A.
In particular we say that A is a k-point for E(h1), E(h2), . . . , E(hk) if
the arcs meeting in A belongs to E(h1), . . . , E(hk). We want to prove
that there not exist infinite 3-points, 4-points, etc. By simplicity we
prove only the case of of 3-points. Assume by contradiction that A is a
3-point for E(h), E(k), E(j). Let us denote with E(h)(1), E(k)(1), E(j)(1)
the connected components of E(h), E(k), E(j) which contain A in their
boundaries. Let B,C other k-points, k ≥ 3, satisfying

B ∈ ∂E(h)(1) ∩ ∂E(j)(1)

C ∈ ∂E(h)(1) ∩ ∂E(k)(1)

Let D be another 3-point for E(h), E(k), E(j). If D /∈ ∂E(h)(1), then
D ∈ ∂E(h)(2), for another connected component E(h)(2) of E(h). Oth-
erwise D ∈ ∂E(h)(1). Let us write AB to denote the path from A to B
along the boundary of E(h)(1). In this case there could be only these
possibilities:
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• if D ∈ AC then D ∈ ∂E(j)(2), for some connected components
E(j)(2) of E(j);

• if D ∈ AB then D ∈ ∂E(k)(2), for some connected components
E(k)(2) of E(k);

• if D ∈ BC then D ∈ ∂E(k)(2) ∩ ∂E(j)(2), for some connected
components E(k)(2), E(j)(2) of E(k), E(j).

For each case, we have determined another connected component of
E(h), E(k) or E(j). Then, if there exist infinite 3-points, there are
infinite cycles. This is a contradiction.

Now we are going to use the variational problem of the previous section
in order to prove that the number of arcs in a minimal cluster is finite.
It is easy to see that we can always assume to have at least one k-point,
k ≥ 3. Let A be a k-point, k ≥ 3, and B another k-point, k ≥ 3, found
along one of the k arcs starting in A. We know that we can strictly
reduce the length of this curve with a single circular arc and without
changing the enclosed area. This clearly works also if A, B coincides
(by the isoperimetric inequality). Notice that A,B are k-points, k ≥ 3,
again. We can repeat this proceeding for every k-points, k ≥ 3, of the
cluster. Notice also that if there is a path with infinite 2-points and
with two k-points, k ≥ 3, as endpoints then, in the new cluster, these
2-points are not present. Instead, if there is a path with only 2-points,
then we can replace it with a single circumference.

Thus we have proved that, in the minimal cluster, there are not 2-points
and the k-points, k ≥ 3, are finite. In particular the number of arcs is
finite.

3. Now we are going to prove that there are only 3-points and that, in each
of them, the arcs meet at 120◦ angles. Without loss of generality, let 0 be
the k-point, k ≥ 3, and assume that there are arcs of ∂E(1), ∂E(2), ∂E(3)
meeting in 0. Define

T =
3⋃

h=1

∂E(h)

Tr = T ∩Br = Γ1(r) ∪ Γ2(r) ∪ Γ3(r)

T ′r =
1

r
Tr = Γ′1(r) ∪ Γ′2(r) ∪ Γ′3(r), Γ′i(r) =

1

r
Γi(r), i = 1, 2, 3

pi(r) = Γi(r) ∩ ∂Br, p′i(r) = Γ′i(r) ∩ ∂B1 =
1

r
pi(r), i = 1, 2, 3

Finally we set T ′0 as the limit set. The limit is in the blow-up sense,
that is the blow-ups of the sets E(1), E(2), E(3) converge to some sets
and T ′0 is the union of the boundaries of those sets. The limit T ′0 is the
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O

p′1(0)
p′2(0)

p′3(0)

1

(a)

r
O

rp′1(0)
rp′2(0)

rp′3(0)

p1(r)

p2(r)

p3(r)

(b)

Figure 2.2: In figure (a) we can see the set T ′0 which is formed by the three
lines connecting O to p′1(0), p′2(0), p′3(0) and the set T̃ ′0 which is
defined as the one with the bold lines. It is constructed in such
a way that the three segments, which start from O, p′1(0), p′2(0)
and have a common endpoint, meet forming 120◦ angles. In
figure (b) we see the set Tr formed by the three arcs starting
from O and reaching p1(r), p2(r), p3(r) and the set T̃r.

union of three line segments; we prove that they meet at 120◦ angles
at 0. Assume by contradiction that there is an angle α < 120◦. By a
simple geometric computation, we see that the set T̃ ′0 (look at Figure
2.2) provides a network with strictly smaller length than T ′0.

This means that
P (T̃ ′0) < P (T ′0)− β

for some β > 0. Define the sets

T̃r = rT̃ ′0, r > 0

Then we have
P (T̃r) = rP (T̃ ′0) < rP (T ′0)− βr (2.15)

By the convergence P (T ′r) → P (T ′0) for r → 0+ and the equality
P (T ′r) = P (Tr)

r we deduce that

P (Tr) = rP (T ′0) + o(r)

and so (2.15) becomes

P (T̃r) < P (Tr)− βr + o(r) (2.16)
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We modify the sets T̃r, calling it T̃r again, adding the arcs contained in
∂Br connecting p1(r) and rp′1(0), p2(r) and rp′2(0), p3(r) and rp′3(0).
With a simple computation, it is seen that

∣∣rp′i(0)− pi(r)
∣∣ ∼ r2 = o(r).

Then, also after the modification of T̃r , (2.16) still holds true.

Let Ẽr be the cluster which coincides with E outside the ball Br and
that has T̃r as "boundary" inside Br. Now we modify Ẽr in such a way
that it has the same areas of the cluster E . Provided r is sufficiently
small, we can apply the restoration volume theorem 1.15. Then, since∣∣a(h)

∣∣ ≤ πr2, we can restore the original areas with a quadratic cost.
If we keep calling T̃r the boundary of the cluster Ẽr inside Br, we have
that Ẽr is a N -cluster with m(E) = m(Ẽr) and

P (T̃r) < P (Tr)− βr + o(r) ≤ P (Tr)− β
2 r

This clearly contradicts the minimality of E because we would have

P (Ẽr) ≤ P (E)− β
2 r

for a certain r small enough.

Thus the initial hypothesis of the existence of an angle α < 120◦ leads
to a contradiction. Then the arcs necessarily meet in a 3-point with
three angles of exactly 120◦.

4. Finally we show that if C1, C2 are two arcs of E(h, k) then C1, C2 have
the same curvature.

We are going to use this notation. Let C be an arc with A,B as
endpoints. We denote with R its radius, with A the area enclosed by C
and the segment AB, with d the length of the segment connecting A,B,
with l the length of the arc and with θ the angle between AB and the
tangent to C in A (or equivalently in B). The following formulas hold

A(R, θ) = R2(θ − sin(θ) cos(θ))

l = 2Rθ

R =
d

2 sin(θ)

We say that an arc C ⊆ E(h, k) is convex in E(h) if, fixing the endpoints
and decreasing θ a little, the new arc is contained in E(h). Instead C is
said concave in E(k) if, fixing the endpoints and increasing θ a little, we
get an arc contained in E(k). Namely C is convex in E(h) (respectively
concave in E(k)) if there exists δθmax > 0 such that each arc with the
same endpoints of C and with angle θ− δθ, δθ ∈ (0, δθmax) (respectively
θ + δθ, δθ ∈ (0, δθmax)) is contained in E(h) (in E(k)).
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A(R, θ)
θ

(a)

E(h)

C1

C̃1

C̃2

C2

(b)

Figure 2.3: In figure (b) we can see the original chamber E(h) and the
modified one. The new arcs C̃1, C̃2 are represented with dashed
lines.

Assume that C1, C2 are both convex in E(h) (see Figure 2.3 (b)). More-
over assume by contradiction that C1, C2 have different curvature, that is
R1 6= R2. Without loss of generality, let R1 < R2, that d1

sin(θ1) <
d2

sin(θ2) .
Notice that we can assume also that R1 <∞. In fact, otherwise, we
would have R2 =∞ and so C1, C2 would have the same curvature. The
two arcs enclose the areas

A1 =
d2

1

4

θ1 − sin(θ1) cos(θ1)

sin2(θ1)
= A(R1, θ1) := A1(θ1)

A2 =
d2

2

4

θ2 − sin(θ2) cos(θ2)

sin2(θ2)
= A(R2, θ2) := A2(θ2)

for some angles θ1, θ2. The idea is the following. Keeping the endpoints
of C1 fixed, we reduce the angle θ1 in θ̃1 < θ1 and thus we have a new
arc C̃1. Since the area enclosed by C̃1 is smaller than the one inside C1,
we have to increase the angle θ2 in θ̃2 > θ2, again keeping fixed the
endpoints of C2, in order to restore the correct area. The new arc C̃2

has to satisfy the condition

A1 +A2 = A1(θ̃1) + A2(θ̃2)

As a consequence, the sum of length of C̃1 and C̃2 changes. In this way,
there should be a reduction of the length.

Let us detail this proceeding. The value of θ̃2 is determined by

A2(θ̃2) = A1 +A2 −A1(θ̃1)

Let l̃1, l̃2 be the length of C̃1, C̃2:

l̃1 =
d1θ̃1

sin(θ̃1)
, l̃2 =

d2θ̃2

sin(θ̃2)
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B2B1 C0C1 C2

Figure 2.4: Example of a standard double bubble.

and l̃ = l̃1 + l̃2. Then we have

dl̃
dθ̃1

= d1
sin(θ̃1)− θ̃1 cos(θ̃1)

sin2(θ̃1)
+ d2

sin(θ̃2)− θ̃2 cos(θ̃2)

sin2(θ̃2)
θ̃′2

=
d1

sin(θ̃1)

(
1− θ̃1 cos(θ̃1)

sin(θ̃1)

)
+

d2

sin(θ̃2)

(
1− θ̃2 cos(θ̃2)

sin(θ̃2)

)
θ̃′2

and

θ̃′2(θ̃1) = − d2
1

sin2(θ̃1)

sin2(θ̃2)

d2
2

 1

1− θ̃2
cos(θ̃2)

sin(θ̃2)

(1− θ̃1
cos(θ̃1)

sin(θ̃1)

)

Hence we get

dl̃
dθ̃1

=

(
1− θ̃1

cos(θ̃1)

sin(θ̃1)

)
d1

sin(θ̃1)

sin(θ̃2)

θ̃2

(
d2

sin(θ̃2)
− d1

sin(θ̃1)

)

We notice that, if θ̃1 = θ1, then l̃′(θ1) > 0 by the initial hypothesis on
R1, R2. Then, if there is a little decrease of θ1, we have a reduction of
the lenght l̃, keeping the enclosed area constant. This fact contradicts
the minimality of the cluster and so it proves the statement if C1, C2

are both convex (or concave) in E(h).

If C1, C2 are not both convex (or concave), there is a similar computation
which leads to the same conclusion.

This end the proof of the theorem.
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2.4 Standard double bubble

In this section we are going to focus on the simplest partitioning problem
in the plane: the case with only two chambers. In particular, thanks to the
regularity theorems of the previous sections and the fact that we are dealing
only with arcs, the arguments will be quite simplified.

From now, a cluster will be called also soap bubble cluster and its chambers
bubbles. With standard double bubble (see Figure 2.4) we mean a cluster with
two vertices and three arcs meeting in threes with 120◦ angles. The aim of
this section is to prove the following theorem.

Theorem 2.8. For each A1, A2 > 0, up to rotations and translations, there
exists an unique standard double bubble enclosing the areas A1, A2. Moreover
this is the unique minimizer for the partitioning problem associated to A1, A2.

Now, in order to prove the theorem, we are going to state and demonstrate
a series of lemmas and propositions.

Proposition 2.9. A 2-minimizer cluster E in R2, with both connected
bubbles and connected exterior, is a standard double bubble.

Proof. We notice that we can always assume the set E(1) ∪ E(2) to be
connected. Indeed if it wasn’t so, sliding the different connected components
up to their boundaries are tangent, we would have constructed a minimizing
cluster which contradicts the regularity theorems.

Consider the graph with the endpoints of the arcs of E as vertices and the
same arcs as edges. Thus we can apply Euler’s formula for connected planar
graphs. If V is the number of vertices, F the number of faces (included the
exterior) and E the number of edges of the graph, it holds

V − E + F = 2

Since in our case F = 3, we have

2E =
V∑
i=1

deg(vi) = 3V

where {vi}i are the vertices. Then we get

V = 2, E = 3

and so E is a standard double bubble.

Proposition 2.10. If a 2-minimizing cluster E has exterior connected
then it is a standard double bubble.
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Figure 2.5: In figure (b) we see the modified cluster.

Proof. We already know that if a 2-minimizer cluster has connected exterior
and connected bubbles then it is standard. Then it is enough to prove that
each bubble is connected. Let us assume by contradiction that there exists
a disconnected chamber. Let’s construct a graph G associated to E with
vertices in the bubbles and edges between adjacent chambers (in this case
the exterior is not considered as a bubble). By the regularity of a perimeter
minimizer and since the exterior is connected, G has no cycles. Then there
exists a vertex of the graph with degree equal to 1. Let’s denote with B
the connected component of E associated to this vertex. By definition, B is
adjacent just to one connected component of a bubble and to the exterior:
then it is composed by two arcs and two vertices P,Q. Now we are going to
get a contradiction using the regularity theorems.

In fact we construct the following clusters. Set S = Q; we modify the
original cluster by a reflection across the axis of PQ as in Figure 2.5. Move
S along the arc RQ until the modified bubble is tangent to another bubble.
If it is tangent we have a contradiction with the regularity theorem because
there is a 4-point. Otherwise S = R and also in this case we have a 4-point.

The following proposition states the existence of a standard double bubble
enclosing the right areas.
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Proposition 2.11. Given A1, A2 > 0 there exists a standard double bubble
which encloses the areas A1, A2. Moreover, up to rotations and translations,
it is unique.

Proof. Let A1 ≤ A2 and λ = A1
A2
∈ (0, 1]. We are going to construct a

standard double bubble {B1, B2} with

area(B1)

area(B2)
= λ

Consider two points A,B (the vertices) at distance 1. For a generic angle
θ ∈ [0, π/3), let’s define the standard double bubble through its arcs C0, C1, C2.
Each of them has A,B as endpoints and C0 forms an angle θ with the segment
AB, C2 is contained in the same half-plane of C0 and forms an angle 2π

3 + θ
with AB, C1 belongs to the other half-plane and has an angle 2π

3 − θ with
AB. The bubble B1 is the one enclosed by C0 and C1, the bubble B2 by C0

and C2 (see Figure 2.4).
If A(θ) represents the area "inside" an arc with distance 1 between its

endpoints and angle θ, then

area(B1) = A

(
2π

3
− θ
)

+ A(θ)

area(B2) = A

(
2π

3
+ θ

)
−A(θ)

Define the function

R(θ) =
area(B1)(θ)

area(B2)(θ)
=

A
(

2π
3 − θ

)
+ A(θ)

A
(

2π
3 + θ

)
−A(θ)

, θ ∈ [0, π/3)

Notice that, since A′′ > 0, area(B1)(θ) is strictly decreasing in θ. In fact

area(B1)′(θ) = −A′
(

2π

3
− θ
)

+ A′(θ)

and
A′(θ) < A′

(
2π

3
− θ
)

for θ ∈ [0, π/3). Similarly, we can see that area(B2) is increasing in θ. Hence
we deduce that R(θ) is strictly decreasing. Moreover it holds

R(0) = 1, R

(
π

3

)
= 0

Then R : [0, π/3)→ (0, 1] is a bijection and thus there exists θ ∈ [0, π/3) such
that

R(θ) = λ
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Finally, if t ∈ R>0 is such that area(tB1) = A1, then

A1

A2
= λ =

area(tB1)

area(tB2)
=

A1

area(tB2)

and so area(tB2) = A2. Thus the cluster {tB1, tB2} is a standard double
bubble which encloses the correct areas.

In the two following lemmas we prove the uniqueness up to rotations and
translations of the standard double bubble.

Lemma 2.12. Given two points V1, V2 and θ ∈ [0, π/3), there exist exactly
two standard double bubbles E , E ′with V1, V2 as vertices which form angles of
θ, 2π

3 − θ,
2π
3 + θ with the segment V1V2. Moreover each cluster is symmetric

w.r.t. the axis of V1V2 and E is the symmetric of E ′ w.r.t. the segment V1V2.

Proof. Let E be the cluster previously constructed and α, β the two half-
spaces determined by the segment V1V2. We can assume that the arc C0,
which forms with V1V2 the angle θ ∈ [0, π/3), is contained in α. Let E ′ be
another standard double bubble with the above properties and let C′0 be
the arc of E ′ which has the angle θ′ ∈ [0, π/3) with V1V2. If C′0 is contained
in α then C′0 = C0 and so E = E ′ because of the 120◦ rule. Otherwise, if
C′0 is contained in β, then C′0 is the symmetric of C0 w.r.t. V1V2. Then
the cluster E ′ can be uniquely constructed and it is the symmetric of E
w.r.t. V1V2. Moreover, by the symmetry properties of the circle, each arc
C0, C1, C2, C′0, C′1, C′2 is symmetric w.r.t. the axis of V1V2, and so also the two
clusters E , E ′.

Lemma 2.13. Let E , E ′ be two standard double bubbles enclosing the areas
A1, A2 > 0. Then, up to rotations and translations, they coincide.

Proof. Let V1, V2 the vertices of E and V ′1 , V ′2 those of E ′; set d, d′ as their
length. We prove that d = d′. Assume by contradiction that d < d′. Let
θ, θ′ the unique angles in [0, π/3) formed, respectively, by the arcs of E , E ′
with V1V2, V

′
1V
′

2 . Let’s denote with A(d, θ) the area enclosed by an arc with
angle θ and with d as distance between its endpoints. Then, with the same
notation used in this section, we have

areaB1(d, θ) = A

(
d,

2π

3
− θ
)

+ A(d, θ)

areaB2(d, θ) = A

(
d,

2π

3
+ θ

)
−A(d, θ)

Remember that areaB1 is decreasing in θ, while areaB2 is increasing. More-
over they are clearly increasing in d. Then we have

areaB1(d′, θ′) = A1 = areaB1(d, θ) < areaB1(d′, θ)
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which implies θ′ > θ. Similarly, we have

areaB2(d′, θ′) = A2 = areaB2(d, θ) < areaB2(d′, θ)

which implies θ′ < θ. Thus we have a contradiction and so d = d′. As a
consequence, we have θ = θ′ and so, up to rotations and translations, E and E ′
are two clusters with the same endpoints which form angles of θ, 2π

3 −θ,
2π
3 +θ.

By the previous lemma either E = E ′ or E is the symmetric of E ′ w.r.t. the
segment V1V2. Then, applying a rotation r of 180◦ with center in the middle
point of V1V2, we have r(E ′) = E .

Lemma 2.14. The perimeter of a standard double bubble is increasing w.r.t.
the larger of the two enclosed areas.

Proof. Assume, without loss of generality, that the distance between the two
vertices is 1. Then the perimeter of the cluster is

P (θ) = L(θ) + L

(
2π

3
+ θ

)
+ L

(
2π

3
− θ
)

with L(θ) = θ
sin θ . It is easy to see that L′, L′′ > 0 on (0, π). Moreover

L
(

2π
3 + θ

)
+ L

(
2π
3 − θ

)
is increasing in θ. In fact

L′′
(

2π

3
+ θ

)
+ L′′

(
2π

3
− θ
)
> 0

on (0, π/3) and so L′
(

2π
3 + θ

)
− L′

(
2π
3 − θ

)
is increasing. Since

L′
(

2π

3
+ θ

)
|θ=0

− L′
(

2π

3
− θ
)
|θ=0

= 0

then L′
(

2π
3 + θ

)
− L′

(
2π
3 − θ

)
> 0 on (0, π/3).

Hence P is increasing in θ. Since enhancing θ the area of the biggest
chamber rises, then P is increasing w.r.t. the area of the largest bubble.

In this proposition we are going to use the following notation. We denote
by P (A1, A2) the perimeter of the minimizing cluster of areas (A1, A2) and by
P0(A1, A2) the perimeter of the minimizing standard double bubble enclosing
(A1, A2). In general we write P ({B1, B2}) for the perimeter of the cluster
{B1, B2}.

Proposition 2.15. The exterior of a 2-minimizing cluster is connected.
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Proof. Let A1 ≥ A2 and {B1, B2} a perimeter minimizer for the partitioning
problem associated to A1, A2. Suppose by contradiction that the exterior
is not connected. It is easy to see that P (·, A2) has minimum in [A1,+∞)
and that P (A,A2) → ∞ as A → ∞. Set A′1 ∈ [A1,∞) as the value which
realizes the minimum of P (·, A2); moreover we take A′1 as big as possible. In
particular

P (A′1, A2) < P (A,A2) (2.17)

for every A > A′1. Let {B′1, B′2} a perimeter-minimizer associated to (A′1, A2).
For sure {B′1, B′2} has exterior connected. In fact, if it wasn’t so, we could con-
struct the cluster {B′′1 , B′2} incorporating the bounded connected components
of the exterior of {B′1, B′2} inside B′1. In this way, we have∣∣B′′1 ∣∣ > ∣∣B′1∣∣ , P ({B′′1 , B′2}) ≤ P ({B′1, B′2})

which contradicts the minimality of {B′1, B′2}.
Since {B′1, B′2} is a perimeter-minimizer with exterior connected then, by

proposition 2.10, it is a standard double bubble and so

P (A′1, A2) = P0(A′1, A2)

Now we have two possibilities: either A′1 > A1 or A′1 = A1. If A′1 > A1,
thanks to the last lemma, we have

P (A1, A2) ≥ P (A′1, A2) = P0(A′1, A2) > P0(A1, A2) ≥ P (A1, A2)

which is a contradiction. Now assume A′1 = A1. As the cluster {B1, B2} has
disconnected exterior, define {B′′1 , B2} incorporating the connected compo-
nents of the exterior of {B1, B2} inside B1 and let A′′1 =

∣∣B′′1 ∣∣ > A1. Then
we have

P (A1, A2) ≥ P ({B′′1 , B2}) ≥ P (A′′1, A2) > P (A1, A2)

by (2.17) and A′′1 > A1 = A′1. Also in this case we have a contradiction.
Then the exterior of {B1, B2} is connected.

Finally, we can give the proof of the main theorem of this section.

Proof of Theorem 2.8. We have just to put together the previous statements.
We know that the exterior of a perimeter-minimizer is connected and so it
is a standard double bubble. Moreover we know that the standard double
bubble enclosing two areas A1, A2 is unique up to rotations and translations.
This ends the proof.
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E1

E2E3

E4

(a)

E1

E2

E3E4

(b)

Figure 2.6: Figure (a) shows a cluster with the flower topology. Figure (b)
instead one with the sandwich topology.

2.5 Quadruple planar bubble

In this final section, we are going to deal with a partitioning problem in the
plane where there are four chambers. In particular we consider just the case
of four equal areas. We quickly summarize what states [9] and then we are
going to show the symmetric properties of these clusters. In that article it is
proved that, if E is a 4-cluster which minimizes the perimeter and encloses the
correct (equal) areas, then E has exactly four connected regions, two among
them are quadrangular and have a common edge while the remaining two are
triangular and are adjacent to both the quadrangular ones. The idea of the
article is the following. First of all, it can be proved that every connected
component of each chamber has at least three edges. This is true in general
for an N -cluster, N > 2. Moreover the number of edges can be bounded in
this way. If E(h) is a chamber with k connected components, C is one of
them andM is the total number of connected components of the cluster, then
C has at most M + 1− k edges. Then it is shown that a minimal cluster has
at most six connected components. Since it is not possible to have exactly six
connected components, because each chamber can not have three components
and there are not two different regions disconnected, then we reduce to the
case of five connected components. Analysing every possible configuration
with five components, we see that they are not admissible. Thus we deduce
that the minimal cluster has four connected components. Now there are
just two possible cases: the flower topology and the sandwich topology (see
Figure 2.6). The first is excluded and hence the only admissible cluster is
the one described before.

The aim of this is section is to prove the following symmetry theorem.

Theorem 2.16. Let a > 0. The minimizing cluster for the partitioning
problem associated to the volume vector (a, a, a, a) is, up to rotations, trans-
lations and modifications by zero measure sets, composed by four regions.
The regions E(1), E(2) are quadrangular and one is the reflection of the other
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through the segment in common between them. The regions E(3), E(4) are
triangular and one is the mirror-image of the other through the axis of the
common segment between E(1), E(2).

We give these two preliminary statements. We say that a cluster E is
stationary if the boundary of E is composed of arcs (circular arcs or line
segments) which meet in threes forming 120◦ angles and if, at each endpoint
of an arc, the sum of the signed curvature is zero. The following lemmas deal
with the stationarity of a cluster under some particular constructions.

Lemma 2.17. Stationarity is preserved under isometries, homotheties and
circle inversion.

Lemma 2.18. Let T be a triangular region of a stationary cluster E. Con-
sider the three arcs not edges of T that have a certain vertex of T as endpoint.
If these three arcs are prolonged inside T , they meet in a single point P inside
T with three 120◦ angles. The cluster obtained in this way is also stationary.

Now we are able to start the proof of the theorem. Let p0, p1, p2 the
vertices of the triangular region E(3) and p3, p4, p5 the ones of the other
triangular region E(4) (see Figure 2.7). We remove the chambers E(3), E(4)
and by lemma 2.18 we know that, extending the remaining arcs up to they
meet, we get a standard double bubble. Let us denote with E ′ = {E ′(1), E ′(2)}
this new cluster. From now we are going to identify the plane with C. Without
loss of generality (up to rotations, translations and rescaling) assume that the
vertices of E ′ are the points (0, 0), (1, 0). Since E ′ is a standard double bubble,
either E ′(1) or E ′(2) is convex. We can suppose that E ′(2) is convex and that
E ′(1) is contained in R× R≥0. Let θ ∈ [0, π/3) be the angle formed by the
arc separating E ′(1), E ′(2) and the line segment between the two vertices of
the cluster. We want to prove that θ = 0. Define F as the cluster obtained
from E through the circle inversion

R(ω) =
ω

|ω|2

By this we mean that F(i) = R(E(i)), i = 1, . . . , 4. Moreover define the
points qi = R(pi), i = 0, . . . , 5.

By lemma 2.17 we know that F is also stationary. We notice that, since
0 ∈ E(4), then F(4) is unbounded, while the exterior of E is mapped into
F(0) which is bounded. Moreover, we observe that the arcs p1p4, p0p3, p2p5,
which are contained in the edges of the cluster E ′, become three line segments
whose extensions meet in the point 1 with 120◦ angles. In fact since the arcs
of E ′ join the points 0 and 1, they are mapped into three half lines starting
at the point 1. They form 120◦ angles because R is a conformal function. In
particular, since the arc p0p3 forms an angle θ with the real axis, then also
the segment q0q3 forms an angle θ with the same axis.
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Figure 2.7: In figure (b) we see the original cluster E , while in figure (c) the
reflected one F .
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q3

q4
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Figure 2.8: In figure (a) we see that it is not possible to have an arc joining
q0 and q1 and tangent to the dashed lines.

Lemma 2.19. The points q0, q1, q2 are at the same distance r = r(θ) > 0
from the point 1. Similarly, the points q3, q4, q5 have the same distance
R = R(θ) > r from the point 1. It follows that

qi = 1 + rei(θ+2iπ/3), qi+3 = 1 +Rei(θ+2iπ/3), i = 0, 1, 2

Proof. This is an immediate consequence of the fact that q1 is an endpoint
of two circular arcs starting from q0 and q2 which form 120◦ angles in q1.
In fact, if the distances of q0 and q1 from 1 are different, then it is not be
possible to have an arc between q1 and q0 which forms 120◦ angles with the
two line segments, as it can be seen in Figure 2.8. In a similar way, it can be
proved the statement for the points q3, q4, q5.

Since the angles formed by the arcs meeting in q0, q1, q2 are 120◦, it follows
that the arcs q0q1, q1q2, q2q0 are centered, respectively, in q2, q0, q1. In fact
the perpendicular line to the segment q0q1 is also tangent to the arc q1q2 in
q1 and so q0q1 is the radius of the arc q1q2 (see Figure 2.8 (b)).

Similarly, the arcs q3q4, q4q5, q5q3 are half circles. Indeed, the angle
between the segment q1q4 and q3q4 is 30◦ and so, by the 120◦ rule, we deduce
that the arc q3q4 is an half circle (see Figure 2.8 (c)).

Thanks to these two statements, we get the following corollary.

Corollary 2.20. The cluster F is symmetric w.r.t. the line q0q3.



76 Chapter 2. Regularity and planar cases
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Figure 2.9

The following lemma together with the last corollary will provide the
symmetry of E w.r.t. the line {z : Rez = 1

2}.

Lemma 2.21. The radii r(θ), R(θ) are uniquely determined by the conditions∣∣E(3)
∣∣ = a,

∣∣E(4)
∣∣ = a.

Proof. The set F(3) is (strictly) increasing (w.r.t. the inclusion) in r. Then,
since E(3) = R(F(3)), we get that

∣∣E(3)
∣∣ is strictly increasing in r. Thus

there exists an unique radius r such that
∣∣E(3)

∣∣ = a. With an analogous
argument we deduce that R is uniquely determined by

∣∣E(4)
∣∣ = a (in this

case F(4) is strictly decreasing in R).

Corollary 2.22. The cluster E is symmetric w.r.t. the line s = {z ∈ C :

Rez = 1
2}.

Proof. We know that the chambers E(3), E(4) are uniquely determined by
r,R and so by θ. Consider the cluster E ′′ defined as the symmetric of E w.r.t.
s. Removing the triangular region of E ′′ and prolonging the remaining edges,
one of them forms an angle θ in 0 and 1. As a consequence the two triangular
regions E(3)′′, E(4)′′ satisfy {E(3), E(4)} = {E(3)′′, E(4)′′}. Hence E(3), E(4)
are symmetric w.r.t. s and so it follows that E is symmetric w.r.t. s.

Thus the first symmetry property is proved. Now we are going to prove
that θ = 0. The idea is the following. If we assume by contradiction that
θ > 0, we would have

∣∣E(1)
∣∣ > ∣∣E(2)

∣∣ because F(1) is closer to 0 rather than
F(2), in a certain sense. The sets F(1),F(2) can be written as

F(1) =

{
1 + ρei(θ+ψ) : ψ ∈

[
0,

2

3
π

]
, ρ ∈ [r1(ψ, θ), r2(ψ, θ)]

}

F(2) =

{
1 + ρei(θ−ψ) : ψ ∈

[
0,

2

3
π

]
, ρ ∈ [r1(ψ, θ), r2(ψ, θ)]

}
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The Jacobian determinant of R is JR(z) = 1
|z|2 . Then by the area formula

we get∣∣E(1)
∣∣− ∣∣E(2)

∣∣ =

∫
F(1)

1

|x+ iy|2
dxdy −

∫
F(2)

1

|x+ iy|2
dxdy

=

∫ 2
3
π

0

∫ r2(ψ,θ)

r1(ψ,θ)

 1∣∣1 + ρei(θ+ψ)
∣∣2 − 1∣∣1 + ρei(θ−ψ)

∣∣2
 ρ dρdψ

(2.18)

Since it holds
∣∣1 + ρeiα

∣∣2 = 1 + ρ2 + 2ρ cosα and by the addition formula
cos(θ + ψ) < cos(θ − ψ) whenever ψ ∈ (0, 2

3π], θ ∈ (0, π3 ), it follows that∣∣∣1 + ρei(θ+ψ)
∣∣∣2 < ∣∣∣1 + ρei(θ−ψ)

∣∣∣2 (2.19)

Then by (2.18) and (2.19), we deduce that
∣∣E(1)

∣∣ > ∣∣E(2)
∣∣ which is a contra-

diction. Thus θ = 0. Then we conclude that the real axis is a symmetry axis
for the cluster E . In fact E ′ is a standard double bubble with equal areas
and it is formed by a straight line and two arcs with the same radius. As a
consequences the points p4, p5 are symmetric because, otherwise, there could
not be a circular arc between p4, p5 that satisfies the 120◦ rule. Indeed a
necessary condition is that the tangent lines to the arc in p4, p5 (the lines
r4, r5 the Figure 2.9) and the axis of p4p5 meet in a single point. Moreover,
by the 120◦ rule, this is equivalent to have the tangent lines to the arcs of
E ′(1), E ′(2) in p4, p5 (the lines t4, t5) and the axis of p4p5 meeting in a single
point. We see that, if p4, p5 are not symmetric, this is not true (see Figure
2.9).
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