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Introduction

In this thesis we prove that, under suitable assumptions, the time-indipendent
Schrödinger equation

−∆ψ(x) + V (x)ψ(x) = Eψ(x)

admits a unique solution.
In particular, we prove that, under suitable assumptions, if the energy E is
in its ground state E0, then there exists a unique solution to the equation.

To begin, we notice that finding a solution to this equation means finding
an eigenfunction ψ and an eigenvalue E that satisfy it. To tackle this prob-
lem, we consider its variational form: we try to minimize the total energy of
the system

E(ψ) =

∫
Rn
|∇ψ(x)|2dx+

∫
Rn
V (x)|ψ(x)|2dx

subject to the normalization condition

‖ψ‖2 = 1.

In the first chapter we prove that there exists a minimum (the ground state
energy) and, by using the lower semicontinuity of the potential and Sobolev’s
inequalities, we prove that any minimizer ψ0 satisfies the Schrödinger equa-
tion with E = E0.

In the second chapter, we prove that this minimizer is unique (up to a
constant phase), and that this implies the uniqueness of the solutions of the
Schrödinger equation in the ground state energy configuration.

These results have an important physical interpretation, especially in
quantum mechanics. During our analysis we observe that the ground state
energy is the lowest possible eigenvalue for the Schrödinger equation: this
agrees with the physical fact that an observed particle will settle eventu-
ally into its ground state. The higher eigenvalues are studied in the second
chapter, and they also bring an important physical meaning: their difference
determine the possible frequencies of light emitted by a quantum-mechanical
system. In the last section there is a direct application on the hydrogen atom
of the results discussed previously.
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Symbols

A∗ Dual of A
< Real part
= Imaginary part
R Set of real numbers
C Set of complex numbers

C∞c (Ω) Infinitely differentiable functions of compact support Ω ⊂ Rn

D′(Ω) Distributions
H1(Ω) Sobolev’s space
Sn−1 Unit sphere in Rn

∇ Gradient
∆ Laplacian
χA Characteristic function of a set A
⇀ Weak convergence

Lp(Ω) Set of measurable function with finite p norm
Lp+ε(Ω) Set of measurable function with finite q norm for q > p

7



8 Symbols



Chapter 1

Existence of ground state
energy in Schrödinger’s
equation

1.1 Schrödinger’s equation

The time indipendent Schrödinger equation for a particle in Rn, interacting
with a force field F (x) = −∇V (x), is

−∆ψ(x) + V (x)ψ(x) = Eψ(x), (1.1)

x ∈ Rn, where ψ is a complex-valued function in L2(Rn) under the normal-
ization condition

‖ψ‖2 = 1, (1.2)

V : Rn → R is the potential’s function and E ∈ R is the minimum state
energy. We will often use the notation ρψ(x) = |ψ(x)|2, which is interpreted
as the probability density for finding the particle at x.

Next we define the kinetic Tψ and the potential energy Vψ as the following:

Tψ =

∫
Rn
|∇ψ(x)|2dx,

Vψ =

∫
Rn
V (x)|ψ(x)|2dx.

Our job consists in proving that (1.1), under suitable conditions, admits
solutions. To achieve this, we try to minimize the total energy E(ψ) which
we define as

E(ψ) = Tψ + Vψ, (1.3)

9
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under the constrain (1.2).
We first prove that the ground state energy

E0 := inf{E(ψ) : ‖ψ‖2 = 1}

exists, in the sense that it is finite and is a minimum; then that it is an
eigenvalue for (1.1) associated with an eigenfunction ψ0, which is called the
ground state. To do this, we use the weak lower semicontinuity of E(ψ) and a
minimizing sequence ψj to find the ψ0 that provides the minimum. Next we
prove that the minimizer is unique, and hence the uniqueness of the solution
of (1.1) with E = E0.

The natural space to consider will be H1. We remind that Lp(Rn) is
the set of Borel-measurable functions with finite p-norm,1 ≤ p < ∞, i.e.(∫

Rn
|f |p
) 1

p

<∞ and LpLoc(Rn) is the set of Borel-measurable functions with

finite p-norm on every compact set K ⊆ Rn.

Definition 1 (Sobolev’s SpacesH1(Rn) andD1(Rn)). We define the Sobolev’s
Spaces H1(Rn) and D1(Rn) as:

H1(Rn) ={f : Rn → C, f ∈ L2(Rn) and ∇f ∈ L2(Rn)}
D1(Rn) ={f : Rn → C, f ∈ L1

Loc(Rn),∇f ∈ L2(Rn),

and f vanishes at infinity}
(1.4)

where ∇ refers to the distributional gradient, and f ”vanishes at infinity”
means that {x ∈ Rn : |f(x)| > a} has finite measure for all a > 0.

1.2 The ground state energy is finite

As we said earlier, the first step is to make sure that E0 is bounded under
suitable conditions. In this regard, our main tool will be Sobolev’s inequali-
ties.

Theorem 1 (Domination of the potential energy by the kinetic energy). If
ψ ∈ H1(Rn) and

V ∈


Ln/2(Rn) + L∞(Rn) n ≥ 3

L1+ε(R2) + L∞(R2) n = 2

L1(R) + L∞(R) n = 1,

(1.5)

then E0 is finite, and there exist some constants C and D such that

Tψ ≤ CE(ψ) +D‖ψ‖22. (1.6)
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Proof. To start, we need to verify that E(ψ) is well defined:

E(ψ) =

∫
Rn
|∇ψ(x)|2dx+

∫
Rn
V (x)|ψ(x)|2dx.

The kinetic energy is defined for every function ψ in H1(Rn) and, assuming
that V ∈ L1

loc(Rn), the second term is defined for every ψ ∈ C∞c (Rn). We’ll
need to divide our inspection into three cases, based on the dimension of
the space, for each of them we will utilize a different version of Sobolev’s
inequalities.

Case n ≥ 3

Theorem 2 (Sobolev’s inequality). For n ≥ 3 let f ∈ D1(Rn). Then f
∈ Lq(Rn) with q = 2n/(n− 2) and the following inequality holds:

‖∇f‖22 ≥ Sn‖f‖2q, (1.7)

where

Sn =
n(n− 2)

4
|Sn|

2
n .

For the proof see [LL].
Since we assume that ψ ∈ H1(Rn), certainly ψ ∈ D1(Rn) so we can use (1.7):

Tψ = ‖∇ψ‖22 ≥ Sn‖ψ‖22n/(n−2)

= Sn

(∫
Rn
|ψ(x)|2n(n−2)

)n−2
n

= Sn‖ρψ‖ n
n−2

.

(1.8)

Using Hölder’s inequality:

|Vψ| = |(ψ, V ψ)| ≤
∫
Rn
|V (x)|ψ(x)|2|dx ≤ ‖ρψ‖ n

n−2
‖V (x)‖n

2

and combining this result with (1.8)

Tψ ≥
Sn|(ψ, V ψ)|
‖V ‖n

2

=
Sn|Vψ|
‖V ‖n

2

. (1.9)

If ‖V ‖n
2
≤ Sn then

Tψ ≥ |Vψ|,
which implies that

Tψ + Vψ ≥ 0. (1.10)

Now we need the following proposition:
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Proposition 1. For every v ∈ Ln
2 (Rn) there is some constant λ such that

h(x) := min(v(x)− λ, 0) satisfies:

‖h‖n
2
≤ 1

2
Sn.

Proof. Let v(x) =
∞∑
i=1

ciχAi , without loss of generality we can assume that ci

are a monotone sequence and ci ≥ 0. Then by assumption we have

∞∑
i=1

c
n
2
i χAi <∞.

Since lim
k→∞

∞∑
i=k

c
n
2
i χAi = 0 then for all ε exists K ∈ N such that

∞∑
i=K

c
n
2
i χAi < ε.

Now if λ = cK we have

v(x)− λ =
∞∑
i=1

ciχAi − cK

and so

min(v(x)− λ, 0) =
∞∑
i=K

(ci − cK)χAi .

We conclude that

‖h‖n
2

=

(
∞∑
i=K

(ci − cK)
n
2 µ(Ai)

) 2
n

≤

(
∞∑
i=K

c
n
2
i µ(Ai)

) 2
n

≤ ε
2
n .

We can finally trace a lower bound on the ground state energy for V if it
satisfies

V (x) = v(x) + w(x)

for some v ∈ Ln
2 (Rn) and w ∈ L∞(Rn).

Recalling (1.10) with V = h

Tψ ≥
Sn|(ψ, hψ)|
‖h‖n

2

≥ 2|(ψ, hψ)| = 2|hψ|

as before we obtain
Tψ + 2hψ ≥ 0. (1.11)
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Concluding, an application of (1.3) and (1.11) provides

E(ψ) = Tψ + Vψ = Tψ + (ψ, (v + w + λ− λ)ψ)

= Tψ + (ψ, (v − λ)ψ) + λ‖ψ‖2 + (ψ,wψ)

= Tψ + (v − λ)ψ + λ+ wψ

≥ Tψ + hψ + λ+ wψ ≥
1

2
Tψ + λ− ‖w‖∞.

So we see that E(ψ) is bounded from below by λ− ‖w‖∞; we can also draw
another conclusion: the total energy bounds the kinetic energy

Tψ ≤ 2(E(ψ)− λ+ ‖w‖∞). (1.12)

Case n = 2

Theorem 3 (Sobolev’s inequality). For f ∈ H1(R2) the inequality

‖∇f‖22 + ‖f‖22 ≥ S2,q‖f‖2q (1.13)

holds for all 2 ≤ q <∞ with a constant that satisfies

S2,q >

(
q1−

2
q (q − 1)−1+

1
q

(
q − 2

8π

) 1
2
− 1
q

)−2
.

As we did in the previous case, f ∈ H1(R2) and so we can use (1.13)

Tψ + ‖ψ‖22 ≥ S2,p‖ρψ‖p
and by Hölder’s inequality

Tψ + ‖ψ‖22 ≥
S2,p(ψ, V ψ)

‖V ‖ p
p−1

.

Repeating the same process we consider V = v + w with v ∈ L
p
p−1 and

w ∈ L∞. For ‖V ‖ p
p−1
≤ S2,p we have

Tψ + ‖ψ‖22 ≥ Vψ.

As before we define h = min(v(x)−λ, 0) and we choose λ such that ‖h‖ p
p−1

<

S2,p, which implies:

hψ ≥ −
1

2
Tψ − ‖ψ‖22

E(ψ) = Tψ + Vλ ≥
1

2
Tψ + λ− ‖w‖∞ − ‖ψ‖22.

Since this is true for every p ≥ 2 we’ll say that it’s true for every V ∈
L1+ε(Rn) + L∞(Rn).
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Case n = 1

Theorem 4 (Sobolev’s inequality). Any f ∈ H1(R) is bounded and satisfies
the estimate ∥∥∥∥ dfdx

∥∥∥∥2
2

+ ‖f‖22 ≥ 2‖f‖2∞ (1.14)

with equality if and only if is a multiple of e−|x−a| for some a ∈ R. Moreover,
f is equivalent to a continous function that satisfies the estimate

|f(x)− f(y)| ≤
∥∥∥∥ dfdx

∥∥∥∥
2

|x− y|
1
2 .

Similarly, f ∈ H1(R) so we can use the (1.14)

Tψ + ‖ψ‖22 ≥ S1‖ρψ‖∞,

by using Hölder’s inequality and defining h as before with ‖h‖1 ≤ S1 we can
conclude that

E(ψ) = Tψ + Vλ ≥
1

2
Tψ + λ− ‖w‖∞ − ‖ψ‖22

which holds for every V ∈ L1(R) + L∞(R).

1.3 Existence of a minimizer for E0

In this section, we prove that the minimizer for E(ψ) exists and satisfies
(1.1). To achieve this we first need to prove that V is weakly continous and
that E is weakly lower semicontinous.

Theorem 5. Let V (x) be a function that satisfies (1.5) and assume that it
vanishes at infinity. Assume also that

E0 = inf{E(ψ) : ψ ∈ H1(Rn), ‖ψ‖2 = 1} < 0. (1.15)

Then there is a function ψ0 ∈ H1(Rn) such that ‖ψ0‖2 = 1,

E(ψ0) = E0

and it satisfies
−∆ψ0 + V ψ0 = E0ψ0. (1.16)

Furthermore, every minimizer ψ0 satisfies (1.16) in the sense of distribution.
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Remark 1. The total energy we defined in (1.3) can also be obtained from
the Schrödinger equation (1.1) by testing it with a sequence ψj ∈ C∞0 (Rn)
that converges to ψ:

lim
j→∞

(ψj,−∆ψ + V ψ) = lim
j→∞

(∫
Rn

(−∆ψ)ψj +

∫
Rn
V ψjψ

)
= lim

j→∞

(∫
Rn

(∇ψj)∇ψ +

∫
Rn
V ψjψ

)
= Tψ + Vψ

= lim
j→∞

E(ψ, ψj) = E‖ψ‖22,

hence

E(ψ) = E‖ψ‖22. (1.17)

In general, if f ψ satisfies (1.1) with E as the eigenvalue associated with the
Schrödinger equation, we have that E ≥ E0, with equality if and only if ψ is
a minimizer, hence, for a generic function ψ̃:

E(ψ̃) ≥ E0‖ψ̃‖2 (1.18)

1.3.1 Weak continuity of the potential

In this section, we prove that the potential is weakly continuous, to do that
we need the following theorem; for the proof see [LL].

Theorem 6 (Weak convergence implies strong convergence on small sets).
Let f j be a sequence in D1(Rn) such that ∇f j converges weakly in L2(Rn)
to some vector-valued function v ∈ L2(Rn). If n=1,2 we also assume that
f j converges weakly in L2(Rn). Then v = ∇f for some unique function
f ∈ D1(Rn).
Now let A ⊂ Rn be any set of finite measure and let χA be its characteristic
function. Then

χAf
j → χAf in Lr(Rn) (1.19)

for every r < 2n
n−2 when n ≥ 3, every p < ∞ when n=2 and every p ≤ ∞

when n=1.

Theorem 7 (Weak continuity of the potential). Let V (x) be a function on
Rn that satisfies (1.5). Assume, in addition, that V(x) vanishes at infinity.
Then Vψ is weakly continuous in H1(Rn) i.e if ψj ⇀ ψ as j →∞, weakly in
H1(Rn), then Vψj → Vψ as j →∞.
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Proof. Assuming that ψj ⇀ ψ in H1(Rn) we have that L(ψj) converges for
every L ∈ H1∗(Rn), and hence it is bounded; a direct application of Banach-
Steinhaus leads to:

‖ψj‖H1 ≤ C (1.20)

for some constant 0 ≤ C ≥ 0 that does not depend of j.
Next we define V δ by:

V δ =

{
V (x) if |V (x)| ≤ 1

δ

0 if |V (x)| ≥ 1
δ
.

(1.21)

We notice that V − V δ tends to zero pointwise as δ → 0, and, because of
(1.5), V ∈ Lp(Rn) for a suitable p ≥ 1. So by dominated convergence V −V δ

tends to zero in that same Lp(Rn) norm.
Also, because of (1.20) we have that ψj ∈ D1(Rn) and so we can apply the
Sobolev’s inequality (1.7)(or, if n = 2, 1 respectively (1.13) or (1.14)) and
find again:

C ≥ Sn(ψj, (V − V δ)ψj)

‖V − V δ‖p
,

which implies ∫
Rn

(V − V δ)|ψj|2 < C‖V − V δ‖p
Sn

→ 0.

Thus, to prove that Vψj → Vψ as j →∞ we only need to prove that V δ
ψj → V δ

ψ

as j →∞ for each δ > 0.
To achieve this we prove that for every subsequence of V δ

ψj there is a sub-

subsequence that converges to V δ
ψ . We begin by defining

Aε = {x : |V δ(x)| > ε}

for ε > 0, and by splitting the integral into two parts:

V δ
ψj =

∫
Aε

V δ|ψj|2 +

∫
Acε

V δ|ψj|2. (1.22)

We notice that ∫
Acε

V δ|ψj|2 ≤
∫
Rn
ε|ψj|2 = ε,

and that Aε has finite measure for all ε, since V vanishes at infinity by as-
sumption.

To prove that the first term in (1.22) converges to

∫
Acε

V |ψ2| we can use Theo-

rem 6. In this case we have that ‖ψj‖H1(Rn) is bounded, so every subsequence
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ψj
k

is certainly bounded in norm in H1(Rn), in particular ‖∇ψjk‖L2(Rn) is

bounded; since L2(Rn) is a reflexive space we know that ∇ψjk admits a

weakly convergent subsequence ∇ψjk
w

⇀ v. By using (1.21) we have that

ψj
kw → ψ strongly for w →∞ in Lr(Aε).

We then notice that ψj
kw → ψ strongly for w → ∞ in Lr(Aε) implies

that |ψjk
w

|2 → |ψ|2 strongly for w → ∞ in L
r
2 (Aε). This can be proven by

noticing that ψj
kw

converges to ψ in L
r
2 (Aε) and that:∫

Aε

||ψjk
w

|2 − |ψ|2|
r
2 ≤

∫
Aε

|ψjk
w

− ψ|
r
2 |ψjk

w

+ ψ|
r
2 → 0.

Since V δ ∈ L∞(Rn) and Aε has finite measure, then V δ ∈ Ls(Aε) for every
s ≥ 1. So we take s such that 1

s
+ 2

r
= 1 and we can conclude using Hölder’s

inequality:∫
Aε

V δ(
∣∣∣ψjkw ∣∣∣2 − |ψ|2) ≤ ‖V δ‖Ls(Aε)‖

∣∣∣ψjkw ∣∣∣2 − |ψ|2 ‖L r2 (Aε) → 0 (1.23)

As we stated before, to prove theorem 5 we need to take a minimizing
sequence, and, thanks to the weak lower semicontinuity of the energy, prove
that its weak limit is a suitable minimizer. We then enounce and prove this
last technical result.

Theorem 8 (Weak lower semicontinuity of the energy). Let V(x) be a func-
tion on Rn satisfying (1.5). Assume, in addition, that V(x) vanishes at in-
finity, then E(ψ) is weakly lower semicontinous.

Proof. We start by observing that Tψ is weakly lower semicontinous, we can
prove it by taking a function φ ∈ H1(Rn) such that ‖∇φ‖2 = 1 and by
noticing that:

(∇ψ,∇φ) = lim inf
j→∞

(∇ψj,∇φ) = lim inf
j→∞

∫
Rn
∇ψj∇φdx

≤ lim inf
j→∞

‖∇ψj‖2‖∇φ‖2 ≤ lim inf
j→∞

‖∇ψj‖2.

Since the last term does not depend on φ and because ‖∇ψ‖2 = sup
‖∇φ‖=1

(∇ψ,∇φ)

we can conclude that(∫
Rn
|∇ψ|2dx

) 1
2

= sup
‖∇φ‖=1

(∇ψ,∇φ) ≤ lim inf
j→∞

(∫
Rn
|∇ψj|2dx

) 1
2

.
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We proved in Theorem 7 that Vψ is weakly continous, so E(ψ) = Tψ + Vψ is
weakly lower semicontinous in H1(Rn).

We finally have all the elements to prove Theorem 5.

Proof of Theorem 5. We begin by taking a minimizing sequence ψj such that
E(ψj)→ E0 as j →∞ and ‖ψj‖2 = 1. Then we note that for (1.6) ‖∇ψj‖2 is
bounded by a constant independent of j, and ‖ψj‖2 = 1, and so ψj ∈ H1(Rn).

We also know that H1(Rn) is weakly sequentially compact, i.e. every
bounded sequence admits a weakly converging subsequence. In our case ψj

is bounded in H1(Rn) so there is a subsequence ψj
k

such that ψj
k
⇀ ψ0 in

H1(Rn), this also implies that

‖ψ0‖2 ≤ ‖ψj
k‖2 = 1.

Notice that because of Theorem 8 we have

E0 = lim
k→∞
E(ψj

k

) ≥ E(ψ0).

Because of (1.18) we have:

0 > E0 ≥ E(ψ0) ≥ E0‖ψ0‖22.

By (1.15) it follows that ‖ψ0‖2 = 1 and that E0 = E(ψ0), proving the exis-
tence of a minimizer for E(ψ).

We now have to prove that every minimizer ψ0 satisfies (1.16) in the
sense of distribution. To start we take a function f ∈ C∞c (Rn) and we set

ψε := ψ0+εf for ε ∈ R. Then we define R(ε) =
E(ψε)

(ψε, ψε)
and note that it is the

ratio of two polynomials of degree two, and hence differentiable for small ε.
We also note that, because E(ψ) contains the restraint ‖ψ‖2 = 1, by defining
R(ε) in this way we are basically avoiding the restraint on the norm. On the
other hand, R(ε) still maintains the fundamental properties of E(ψ), which
are to have E0 as a minimum, and to reach it in ε = 0. This manipulation is
well defined because both E(ψ) and (ψ, ψ) are quadratic forms. This implies

that
dR(ε)

dε

∣∣∣∣
ε=0

= 0 and so

dR(ε)

dε
=
dE(ψε)

dε

1

(ψε, ψε)
+ E(ψε)

d

dε(ψε, ψε)

=
dE(ψε)

dε
− E(ψε)

(ψε, ψε)

d(ψε, ψε)

dε
,
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which leads, when ε = 0 to

dE(ψε)

dε

∣∣∣∣
ε=0

= E0
d(ψε, ψε)

dε

∣∣∣∣
ε=0

.

In conclusion we have that

d

dε
(ψε, (−∆ + V )ψε)|ε=0 =

(
dψε

dε
, (−∆ + V )ψε

)
|ε=0 = (f, (−∆ + V )ψ0)

= E0
d(ψε, ψε)

dε

∣∣∣∣
ε=0

= E0(f, ψ0),

for every f ∈ C∞c (Rn), proving that ψ0 satisfies (1.16).
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Chapter 2

Uniqueness of the ground state

In the first section of this chapter, we provide an extension to Theorem 5,
proving that there exist many more eigenvalues Ek and corresponding eigen-
functions ψk that satisfy the Schrödinger equation. In the second section, we
prove that ψ0 can be chosen to be a strictly positive function, and that is the
unique minimizer up to a constant phase. In the third and last section, we
apply our previous results on the potential of an hydrogen atom.

2.1 Higher eigenvalues

We now extend Theorem 5 in the following manner. In the last chapter
we found that if the ground state energy is negative, then there exists an
eigenfunction ψ0 that provides the minimum and satisfy the Schrödinger
equation. We now prove that, if the first excited state E1, defined as

E1 := inf{E(ψ) : ψ ∈ H1(Rn), ‖ψ‖2 = 1 and (ψ, ψ0) = 0},

is negative, then there exists a second eigenfunction ψ1 that satisfies (1.1)
and provides the minimum. In the same fashion we define by recursion the
succession

Ek := inf{E(ψ) : ψ ∈ H1(Rn), ‖ψ‖2 = 1 and (ψ, ψi) = 0, i = 0, ..., k − 1}.

and prove that, as long as the first n eigenvalues exist and the (n+1)th is nega-
tive, then its corresponding eigenfunction exists and satisfies the Schrödinger
equation in the sense of distribution.

To prove that ψk satisfies (1.1) we need an additional result about distri-
bution.

21
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Theorem 9 (Linear dependence of distributions). Let S1, ..SN ∈ D′(Ω) be
distribution. Suppose that T ∈ D′(Ω) has the property that T (φ) = 0 for all
φ ∈

⋂N
i=1NSi.

Then there exist complex numbers c1, ..cN such that

T =
N∑
i=1

ciSi.

For the proof see [LL]. Now we can enounce and prove the last theorem
about the existence of solutions for the Schrödinger equation.

Theorem 10 (Higher eigenvalues). Let V as in Theorem 5, assume the first
k eigenvalues defined above exist and that Ek is negative. Then Ek exists
in the sense that is a minimum, and also his eigenfunction ψk satisfies the
Schrödinger equation

(−∆ + V )ψk = Ekψk (2.1)

in the sense of distribution. Furthermore, every eigenvalue Ek has finite
algebraic multiplicity.

Proof. We first prove that Ek exists, i.e., there exists a minimizer ψk ∈
H1(Rn) such that ‖ψk‖2 = 1 and E(ψk) = Ek. To achieve this, we take a
minimizing sequence ψjk such that (ψjk, ψi) = 0 for all i < k and E(ψjk)→ Ek.
As we did in the first chapter, we extract a weakly converging subsequence,
and we call its weak limit ψk; repeating the same argument we prove that
‖ψjk‖2 = 1 and E(ψk) = Ek. Moreover, we have that

0 = lim
j→∞

(ψjk, ψi) = (ψk, ψi) for all i < k,

proving the existence of Ek.
To prove that ψk satisfies (2.1), we first notice that, as in Theorem 5, for

every f ∈ C∞c (Rn) with the property that (f, ψi) = 0, i < k, we have that

(f, (−∆ + V )ψk) = Ek(f, ψk);

hence the distribution D := (−∆ + V − Ek)ψk satisfies D(f)=0 for every
f ∈ C∞c (Rn). We can now use Theorem 9 to find that

D =
k−1∑
i=0

ciψi (2.2)
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for suitable numbers c0, ....ck−1. To prove that ψk satisfies (2.1), we need to
prove that D ≡ 0. To achieve this we test (2.2) with a function fn ∈ C∞c (Rn)
that converges weakly to some ψj with j < k:

lim
n→∞

D(fn) =

∫
Rn

k−1∑
i=0

ciψjψi =
k−1∑
i=0

ciδ
j
i = cj

= (ψj, (−∆ + V − Ek)ψk) =

∫
Rn

(−∆ψk + V ψk − Ekψk)ψj

=

∫
Rn
∇ψj · ∇ψk + V ψjψk − Ekψjψk

=

∫
Rn
∇ψj · ∇ψk + V ψjψk.

(2.3)

On the other hand, if we take the complex conjugate of (2.1) for ψj and again
test it with a function fn ∈ C∞c (Rn) that converges weakly to ψk, we obtain:

0 = lim
n→∞

((−∆ + V + Ek)ψj)(fn) = (ψk, (−∆ + V − Ek)ψj)

=

∫
Rn

(−∆ψj + V ψj − Ekψj)ψk =

∫
Rn
∇ψj · ∇ψk + V ψjψk − Ekψjψk

=

∫
Rn
∇ψj · ∇ψk + V ψjψk.

(2.4)

In conclusion, we have that cj = 0 for all j, proving the first part of Theorem
10.

We now need to prove that Ek has finite multiplicity. We start by as-
suming that Ek has infinite multiplicity, this would imply that Ek = Ek+1 =
Ek+2 = ... < 0: we want to prove that Ek ≥ 0.
By Theorem 10 there is an orthonormal sequence ψj satisfying (2.1), and,
since the succession is orthogonal, it converges weakly to zero in L2(Rn). For
(1.12) we have that ‖∇ψj‖2 is bounded, and so by Theorem 6 ψj ⇀ 0 in
H1(Rn). In Theorem 7 we proved that the potential is weakly continuous,
and so Vψj → 0. In conclusion we have that

Ek = lim
j→∞

Tψj + Vψj ≥ 0,

which is a contradiction.
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2.2 Uniqueness of minimizers

In this section we prove that ψ0 can be chosen to be a strictly positive function
and that ψ0 is the unique minimizer up to a constant phase. To achieve this,
we first prove, using the convexity inequality for gradients, that the real and
the imaginary part of the eigenfunction are proportional. Next, we use the
Theorem ”Lower bounds on Schrödinger’s ”wave” functions” to prove that
they can be chosen as strictly positive. We then state these two theorems,
for the proofs see [LL].

Theorem 11 (Convexity inequality for gradients). Let f be a complex-valued
function in H1(Rn). Then∫

Rn
|∇|f |(x)|2 dx ≤

∫
Rn
|∇f(x)|2 dx.

If, moreover, <(f)(x) > 0 or =(f)(x) > 0 , then equality holds if and only if
there exists a constant c such that <(f) = c=(f) almost everywhere.

Theorem 12 (Lower bounds on Schrödinger’s ”wave” functions). Let W :
Rn → R be a measurable function, bounded from above. Suppose that f :
Rn → [0,∞[ is in L1

Loc(R), Wf is in L1
Loc(R) too and that

−∆f +Wf ≥ 0 in D′(R) (2.5)

is satisfied. Then there is a unique lower semicontinous f̃ that satisfies (2.5)

and agrees with f almost everywhere. f̃ has the following property: for each
compact set K ⊂ Ω there is a constant C = C(K,Ω, µ) such that

f̃(x) ≥ C

∫
K

f(y)dy

for each x ∈ K.

We can finally state the main result of this thesis: proving the uniqueness
of the minimizer, we will be able to prove the uniqueness of the solution.

Theorem 13 (Uniqueness of minimizers). Assume that E0 exists, in the
sense that is finite and there exists a function ψ0 such that E(ψ0) = E0 and
‖ψ0‖2 = 1. Assume also that V ∈ L1

Loc(Rn), V is locally bounded from
above and that V |ψ0|2 is summable. Then ψ0 satisfies (1.1) with E = E0.
Furthermore ψ0 can be chosen to be a strictly positive function and is the
unique minimizer up to a constant phase.



2.2. UNIQUENESS OF MINIMIZERS 25

Proof. By assumption we have that V |ψ0|2 is summable, i.e,∫
Rn
|V (x)||ψ0(x)|2dx

is finite. Since V ψ0 is both a function and a distribution, we also have that
(φ, V ψ0) is finite for all φ ∈ C∞c (Rn). Then, by (1.18), we have that

E(ψ0 + εφ) ≥ E0‖ψ0 + εφ‖22,

hence

E(ψ0 + εφ) = (ψ0 + εφ, (−∆ + V )(ψ0 + εφ))

= E(ψ0) + ε

∫
Rn

[∇ψ0∇φ+ V ψ0φ]

+ ε

∫
Rn

[∇ψ0∇φ+ V ψ0φ] + ε2
∫
Rn

[|∇φ|2 + V |φ|2]

= E(ψ0) + 2ε<
{∫

Rn
[∇ψ0∇φ+ V ψ0φ]

}
+ ε2

∫
Rn

[|∇φ|2 + V |φ|2]

≥ −(E0 + 2ε<
{∫

Rn
E0ψ0φ

}
+ ε2

∫
Rn
E0|ψ|2).

Every term is finite and so, since ψ0 is a minimizer by assumption, we have
that:

2ε<
{∫

Rn
[∇ψ0∇φ+ (V − E0)ψ0φ]

}
+ ε2

∫
Rn

[|∇φ|2 + (V − E0)|φ|2] ≥ 0.

Since ε can be chosen arbitrarily, in particular it can have any sign, we
conclude that the first term must be zero; this implies that:

((−∆ + V − E0)ψ0)(φ) = 0 (2.6)

for all φ ∈ C∞c (Rn), hence

(−∆ + V − E0)ψ0 = 0 in D′(Rn). (2.7)

Next, we want to prove that ψ0 can be chosen to be a strictly positive func-
tion. To achieve this we start by noticing that if ψ0 = f + ig, then both f
and g are separately minimizers. This can be proven by taking

E(ψ0) =

∫
Rn
|∇f + i∇g|2 + V (f + ig)2 =

∫
Rn

(|∇f |2 + |∇g|2) + V (|f |2 + |g|2),
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which is equal, up to a normalizing constant, to E(f) + E(g).
Then we remind that, if f ∈ H1(Rn) then |f | ∈ H1(Rn) and

(∇|f |) =

{
<(x)∇<(x)+=(x)∇=(x)

|f |(x) if f(x) 6= 0

0 if f(x) = 0;
(2.8)

furthermore, if f is real-valued, then |∇|f || = |∇f |. For this reason, since
f and g are both real-valued, we obtain Tf = T|f | and Tg = T|g| and conse-
quently E(f) = E(|f |) and E(g) = E(|g|), hence φ0 := |f |+i|g| is a minimizer.
Thanks to Theorem 11 we have that

E0 ≤ E(|φ0|) ≤ E(φ0) = E0,

and so |φ0| is a minimizer too.
We proved in Theorem 5 that every minimizer satisfies the distributional

Schrödinger equation, so both |f | and |g| satisfies (2.7); moreover we have
that V is locally bounded by assumption, and consequently so isW := V−E0.
We can then apply Theorem 12 and find two strictly positive semicontinous
functions f̃ and g̃, which agree almost always respectively with |f | and |g|.

Now we define φ̃0 := f̃ + ig̃ and apply again Theorem 11 to find

E0 ≤ E(φ̃0) ≤ E(φ0) = E0.

Since there is equality and both f̃ and g̃ are strictly positive, Theorem 11
states that there must be some constant c > 0 such that f̃ = cg̃, and hence
there exists a constant d ∈ R that satisfies f = dg, i.e, ψ0 = (1 + id)f .

2.3 Uniqueness of positive solutions

In the last section we proved that, under suitable assumptions, the minimizer
for E(ψ) is unique and satisfies the Schrödinger equation with E = E0. Now
we prove that the positive solution of the Schrödinger equation satisfies it
with E = E0, and that it is the unique minimizer of E . We remind the
following result about partial integration of functions in H1(Rn), the proof
can be found in [LL].

Theorem 14 (Partial integration for functions in H1(Rn)). Let u and v be
in H1(Rn). Then ∫

Rn
u
∂v

∂xi
dx = −

∫
Rn

∂u

∂xi
vdx

for i = 1, ...n.
Suppose in addition, that ∆v can be written as ∆v = f + g with f ≥ 0 in
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L1
Loc(Rn) and with g in L2(Rn), then u∆v ∈ L1(Rn) for all u in H1(Rn),

furthermore we have that

−
∫
Rn
u∆v =

∫
Rn
∇v · ∇u. (2.9)

The fact that the uniqueness of the minimizer imply the uniqueness of
the solution is not obvious, and is proved in the following theorem.

Theorem 15 (Uniqueness of positive solutions). Suppose that V is in L1
Loc(Rn),

V is bounded above (uniformly and not just locally) and that E0 > −∞. Let
ψ 6= 0 be any non negative function with ‖ψ‖2 = 1 that is in H1(Rn) and
satisfies the Schrödinger equation (1.16) in D′(Rn). Then E = E0 and ψ is
the unique minimizer ψ0.

Proof. We first need to prove that E = E0. To achieve this we first prove
that, if E 6= E0, then (ψ, ψ0) = 0, which would be impossible since ψ0 is
strictly positive and ψ is nonnegative. Next we note that, since ψ satisfies
the Schrödinger equation by assumption, we have that ∆ψ is a function, and
hence in L1

Loc(Rn). Furthermore, since ψ is nonnegative and V is bounded
from above, we can conclude that ∆ψ is the sum of a nonnegative L1

Loc(Rn)
function with a L2(Rn) function.
Now, we take the Schrödinger equation for ψ0, multiply it by ψ and integrate
over Rn obtaining ∫

Rn
−∆ψ0ψ +

∫
Rn

(V − E0)ψψ0 = 0,

hence, thanks to Theorem 14, we can conclude that∫
Rn
∇ψ0 · ∇ψ +

∫
Rn

(V − E0)ψψ0 = 0. (2.10)

We can repeat the same process interchanging ψ and ψ0, obtaining (2.10)
with E0 replaced by E. Since E 6= E0 by assumption, we must have that ψ
is orthogonal to ψ0, which is impossible.

2.3.1 The hydrogen atom

We can finally exhibit a practical application of these last results. However,
to say something about the regularity of the solutions, we need a last result,
its proof can be found in [LL].
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Theorem 16 (Regularity of Solutions). Let B ⊂ Rn be an open ball and let
u and V be functions in L1(B1) that satisfy

−∆u+ V u = 0 in D′(B1)

Then the following hold for any ball B concentric with B1 and with strictly
small radius:

1. n = 1: Without any further assumption on V, u is continuosly differ-
entiable.

2. n = 2: Without further assumptions on V, u ∈ Lq(B) for all q <∞

3. n ≥ 3: Without any further assumptions on V, u ∈ Lq(B) with q < n
n−2

4. n ≥ 2: If V ∈ Lp(B) for n ≥ p ≥ n
2
, then for all α 6= 2− n

p
,

|u(x)− u(y)| ≤ C|x− y|α

To conclude we consider a real world example. The potential V for the
hydrogen atom located at the origin in R3 is

V (x) = −|x|−1.

A solution to the Schrödinger equation is found by inspection to be

ψ0(x) = e
1
2
|x|, E0 = −1

4

Since is ψ0 is positive, it is the ground state, i.e., the unique minimizer of

E(ψ) =

∫
R3

|∇ψ|2 −
∫
R3

1

|x|
|ψ(x)|2dx.

The fact that ψ0 is unique follows from Theorem 15.
Theorem 16 gives additional insight on ψ0: since V ∈ C∞(Rn \{0}), then

ψ0 ∈ C∞(Rn \ {0}). We also have that V ∈ Lploc(Rn) for 3 > p > 3
2
, and so

ψ0 must also be Holder continuous in the origin.
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