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Introduction

The problem considered in this thesis is set in a particolar framework, the subRieman-
nian one. The word ’subRiemannian’ has been introduced by Strichartz in [Str86], and
the choice of the prefix ’sub’ is motivated by the fact that in our manifold M we are
fixing a subbundle of the tangent bundle. Roughly speaking this subbundle can be seen
as a constraint on the velocities of the curves that live in M : we consider Lipschitz curves
whose velocity lies for almost every t in the subbundle. These curves are called hori-
zontal. Since we want to assign a length to horizontal curves we endow our subbundle
with a smooth metric on it (that is a smooth 2-covariant, strictly positive and symmetric
tensor). It is clear that the Riemannian manifold is a special case of a subRiemannian
manifold, the one obtained taking the whole TM as subbundle.
With this notion of length we can define the distance between two points as in the Rie-
mannian case, that is, as the infimum of the lengths of the horizontal curves joining the
two points. We are interested in length minimizing curves, i.e. the curves whose length
realizes the distance, and in particular to their regularity.
It is known, see for instance [ABB15], that in the Riemannian case length minimizers
are smooth (C∞). What makes the subRiemannian problem interesting is that in this
framework we have two kind of horizontal curves that satisfy the first order necessary
conditions for minimality: the normal and the abnormal ones. This is not the case in
Riemannian geometry, where there are not abnormal curves. In [Str86] Strichartz proved
that normal length minimizers are smooth (C∞) and, not taking into account the exis-
tence of abnormal length minimizers, he thought the problem of regularity was solved.
Nevertheless, the situation turned out to be not so simple, indeed Montgomery exhibited
in [Mon94] the first example of a length minimizer which is abnormal, and this curve
turned out to be C∞. Indeed, up to this day all the known examples of abnormal length
minimizers are C∞ but nobody has succeded in proving a general regularity result. We
don’t even know if abnormal length minimizers are C 1.
We present some partial result in the positive. In [LM08] Leonardi and Monti proved that
for a large class of subRiemannian manifolds, length minimizers do not have corner-like
singularities. Their result has been extended to all subRiemannian manifolds in [HLD15],
by Hakavouri and LeDonne. In [MPV18] Monti, Pigati and Vittone proved a necessary
condition satisfied by length minimizers and related to the existence of a tangent line
in the tangent cone. In this last paper is also detailed the cut and correction technique
for Carnot groups, which was already introduced (in a different formulation) in [LM08].
Carnot groups are a special type of subRiemannian manifold.
The purpose of this thesis is to understand to what extent the cut and correction tech-
nique can be used to prove the non minimality of curves satisfying the necessary condition
for minimality. To be more specific, in [LLMV] is presented a kind of spiral with the
following properties:

• the curve is rectifiable;

• the curve satisfies the necessary condition found in [MPV18], that is the tangent
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cone at the origin contains a line. Actually, in this case the tangent cone at the
origin contains all the lines.

Moreover this curve is not C 1 at the origin and in the article arises as an abnormal
extremal satisfying also the Goh conditions for minimality. Of course, due to the spiral-
like behaviour we would like to say that this curve is not a minimizer. The problem
is that to this day there are no tools to deal with curves with this kind of singularity.
At this point we have to admit that in a Carnot group of step 3 it is already known
that length minimizers are smooth, thus a curve like the one in [LLMV] cannot be a
minimizer in this framework.
In the first chapter we set up the framework and the techniques that will be used in the
second chapter to investigate our case study: the double logarithm spiral. We will focus
on the positive branch of this spiral. The second chapter has been devoted to use the
new ideas and methods to prove the following

Theorem. Let G be a Carnot group of step 3 and rank 2 and γ : [0, 1[→ G a horizontal
curve with γ(0) = e,

π(γ(t)) = t cos(φ(t))X1 + t sin(φ(t))X2,

where φ : (0, 1)→ (0,∞)
φ(t) := log(− log(t)).

Then, for T < 1, γ|[0,T ] is not a length minimizer between γ(0) and γ(T ).

We outline briefly the ideas behind the proof. We want to find an admissible com-
petitor joining the two points e and γ(T ). We start by modifying the curve in some
subinterval [a, b] ⊂ [0, T ] in such a way that the new curve is still admissible and has
shorter length. The subinterval is one of the unknowns of the problem. Moreover this
operation creates a shorter curve, but its endpoint is no more γ(T ). In the first two
paragaphs of the second chapter we estimate how much the new curve is shorter and
what is the error on the final point. To ”restore the final point with a gain of length”
we use an iterative procedure (with a finite number of steps), which creates at each step
a new curve:

1) that is obtained modifying the curve of the previous step on a subinterval of [0, T ]
(to be found);

2) that is longer than the one of the previous step;

3) that is strictly shorter than the initial curve;

4) with endpoint ”nearer” to γ(T ) than the endpoint of the previous curve.

Moreover at each step we will find an existence condition for the subintervals used for the
modifications. If all these conditions are compatible, then the final curve is the shorter
competitor joining e and γ(T ) that we were looking for. Unfortunately we had to impose
the assumption on the step, due to problems on the propagation of the error on the final
point. The removal of this assumption will be object of further investigations.
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1 Carnot groups

1.1 Basic facts about subRiemannian manifolds

In this chapter we introduce some basic facts about Carnot groups and the techniques
that will be used in the next chapter to prove that the double logarithm spiral is not
a length minimizer. To give a flavour of the subRiemannian framework we devote this
first paragraph to introduce the Hörmander condition and the notion of subRiemannian
manifold. From the following paragraph we will focus on Carnot groups. We will show
how a Carnot group is naturally endowed with a subRiemannian structure. Actually,
Carnot groups have more structure than a general subRiemannian manifold and due to
this fact enjoys nicer properties. We will describe some of them in this chapter. In the
following the manifolds and the vector fields will always assumed to be smooth. We
denote by Γ(TM) the set of smooth vector fields on M

Definition 1.1.1. Let M be a n−dimensional manifold and D a distribution locally
spanned by the vector fields X1, . . . , Xr. We define recursively the following family of
subbundles of TM .

D1 := D

D i+1 := D i + [D ,D i],

where
[D ,D i] := span{[X,Y ]| X ∈ D , y ∈ D i}

and [X,Y ] = XY − Y X is the commutator.
The Lie algebra generated by X1, . . . , Xr is defined as Lie(X1, . . . , Xr) := ∪i≥1D i.

We observe that due to Jacobi identity Lie(X1, . . . , Xr) is the smallest linear subspace
of Γ(TM) which contains X1, . . . , Xr and is invariant under the commutator.
Let I = (i1, . . . , ik) ∈ Nk be a multindex for some k ≥ 1 we set XI := [Xi1 , X(i2,...,ik)].

If I ∈ Nk we set |I| := k Using Jacobi identity it can be proved that
D i = span{XI , |I| ≤ i}. For p ∈M and i ≥ 1 we define D i(p) := {X(p), X ∈ D i} and
Lie(X1, . . . , Xr)(p) := {X(p), X ∈ Lie(X1, . . . , Xr)}. D i(p) is an increasing sequence of
vector subspaces of TpM whose union is Lie(X1, . . . , Xr)(p).

Definition 1.1.2. We say that a distribution D is bracket generating (or satisfies the
Hörmander condition) if for every p ∈M Lie(X1, . . . , Xr)(p) = TpM .

Since at each p Lie(X1, . . . , Xr)(p) = ∪iD i(p), the bracket condition is equivalent
to the existence of an index i(p) such that D i(p)(p) = TpM . A bracket generating
distribution is not integrable (in the sense of Frobenius theorem), but this property tells
us that we can fill all the tangent space at a point taking a finite number of iterated
commutators (the number of commutators depends on the point). And this fact has
remarkable consequences.
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Definition 1.1.3. A subRiemannian manifold is a triple (M,D , ĝ) where M is a man-
ifold, D is a bracekt generating ditribution and ĝ is a smooth metric on D . For any
p ∈M the dimension of Dp as a vector subspace of M is called rank of the distribution.
The smallest index i such that D i(p) = TpM for every p ∈ M is called step of the
distribution.

Remark 1.1.4. Riemannian manifolds are special cases of subRiemannian manifolds in
which the bracket generating distribution is the whole TM .

Definition 1.1.5. Let γ : [0, T ] → M be a lipschitz curve, we say that γ is horizontal
(or admissible) if γ̇(t) = Dγ(t) for almost every t ∈ [0, T ]

In other words, if D = span{X1, . . . , Xr}, horizontal curves satisfy almost everywhere

γ̇(t) =
r∑
j=1

hj(t)Xj(γ(t)),

where h = (h1, . . . , hr) : [0, T ]→ Rr is a function in L∞([0, T ], Rr). h1, . . . , hr are called
controls of the curve γ. We can define a subRiemannian notion of length of a curve

Definition 1.1.6. Let γ be an horizontal curve, we define the length of γ by

L(γ) :=

ˆ T

0

(
ĝγ(t) (γ̇(t), γ̇(t))

) 1
2 dt

Horizontal curves are the ”right” paths to follow in a subRiemannian manifold, in
the sense that their velocities are constrained to live in the distribution. Due to the
presence of this constraint it is not clear a priori if starting from any point on M we can
reach any other point on the manifold through horizontal paths. As a consequence of
the bracket generating assumption we have the following classical result

Theorem 1.1.7 (Chow-Rashevsky). If (M,D , g) is a subRiemannian manifold and M
is connected then every two points in M can be joined by an horizontal curve.

We introduce the Carnot-Caratheodory distance on our subRiemannian manifold.

Definition 1.1.8. Let x, y ∈M , we set

dCC(p, q) := inf{L(γ) s.t.γ : [0, 1]→M, is horizonal and γ(0) = p, γ(1) = q},

and dCC(p, q) := +∞ if there is no horizontal path joining x and y.

Since the length of a curve is invariant under linear reparametrization, we will get
an equivalent definition of dCC if we take the interval [0, T ] instead of [0, 1].
As a consequence of the above theorem is that dCC takes value on [0,∞). Moreover it
can be proved (with some work) that dCC is a distance. Another consequence of the
bracket generating condition is that the the C-C distance induces the manifold topology
on M . For a proof of all this facts see [Pig16].
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Definition 1.1.9. A horizontal curve γ : [0, T ] → M is called length minimizer if
L(γ) = dCC(γ(0), γ(T ))

The following theorem tells us that length on subRiemannian manifolds length min-
imizers exist locally

Theorem 1.1.10. For any p in M there is an open neighborhood U ⊂M such that for
any q ∈ U there exists a length minimizer connecing p and q.

A proof of this theorem can be found in [Vit13]. In the paper it is assumed M = Rn
but being the nature of the result local, this is not a restriction.

1.2 Carnot groups as subRiemannian manifolds

Definition 1.2.1. Let g be a Lie algebra. We say that g is stratified if there exist
V1, . . . , Vl ⊂ g, vector subspaces such that

g = V1 ⊕ · · · ⊕ Vl,

Vi+1 = [V1, Vi], i = 1, . . . , l − 1,

[V1, Vr] = {0},

where [V1, Vi] is the subspace of g generated by elements of the form [X,Y ], for X ∈ V1,
Y ∈ Vi. l is called step of the stratification.

A Lie group G is called stratified if its Lie algebra is stratified. Similarly a Lie group
is called nilpotent if its Lie algebra is nilpotent. It is easy to see that a stratified Lie
algebra of step l is also a nilpotent Lie algebra of step l.

Definition 1.2.2. A Carnot group G is a connected, simply connected and stratified
Lie group. We say that G is a Carnot group of step l if l is the step of the stratification
of its Lie algebra.

Remark 1.2.3. A Carnot group can be naturally endowed with a subRiemannian
structure as follows. Let h ∈ G and Lh denote the left translation by h, i.e. Lh(g) = hg,
for g ∈ G. We define the distribution Dg := (dLh)e[V1], where (dLh)eV1 denotes (dL)e
applied to the elements of V1. Since Lhg = Lh ◦ Lg, Dg is left invariant, indeed

(dLh)g[Dg] = (dLh)g(dLg)e[V1] = d(Lhg)e[V1] = Dhg.

This distribution is bracket generating, this follows by the naturality of the Lie bracket
and the stratification.
We can define the metric on D taking a positive definite inner product ĝ on V1 and
extending it on the whole distribution by the pullback of L, that is setting

ĝh(v, w) := ((Lh−1)∗ĝ)(v, w) = ĝ((dLh−1)h[v], (dLh−1)h[w]),

for any h ∈ G and v, w ∈ Dh. We introduce the notation | · |h := (ĝh(·, ·))
1
2 or simply | · |

when there is no confusion on the point h.
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Remark 1.2.4. The metric ĝ is left invariant in the following sense if a, h ∈ G,
v, w ∈ Dh, then ĝah((dLa)h[v], (dLa)h[w]) = ĝh(v, w). The proof relies again on
La ◦ Lh = Lah. We have

ĝah((dLa)h[v], (dLa)h[w]) = ĝ ((dLh−1a−1)ah(dLa)h[v], (dLh−1a−1)ah(dLa)h[w])

= ĝ ((dLh−1)h(dLa−1)ah(dLa)h[v], (dLh−1)h(dLa−1)ah(dLa)h[w])

= ĝ(d(Lh ◦ La−1 ◦ La)h[v], d(Lh ◦ La−1 ◦ La)h[w])

= ĝh(v, w).

1.3 Dilations

The presence of a stratification allows us to define dilations on the Lie algebra of the
group. In our setting these dilations can be transported to the group via the exponential
map. We will show how dilations interact with the C-C distance. For the definition of
the exponential map, its properties and the Backer-Hausdorff-Campbell formula (B-H-C
from now) see [Kna02].

Definition 1.3.1. Let g be a stratified Lie algebra and let λ > 0. We define the
inhomogeneous dilation on g of factor λ as the linear map dλ : g→ g such that

dλ(v) = λjv ∀v ∈ Vj

We need the following fact about stratified Lie algebras.

Lemma 1.3.2. Let g = V1 ⊕ · · · ⊕ Vl be a stratified Lie algebra of step l. Then

[Vi, Vj ] ⊂ Vi+j

for all i, j = 1 . . . , l, where Vk = 0 fro k > l.

Proof. The proof is by induction on the index i. If i = 1, we know by definition of
stratification [V1, Vj ] ⊂ Vj+1. We assume that [Vi, Vj ] ⊂ Vi+j for all j and i fixed. Being
g stratified, Vi+1 is generated by elements of the form [v1, vi] with v1 ∈ V1 and vi ∈ vi.
If we take vj ∈ Vj , by the Jacobi identity we get

[[v1, vi], vj ] = −[[vi, vj ]v1]− [[vj , v1], vi].

By the inductive hypothesis [vi, vj ] ∈ Vi+j , thus −[[vi, vj ]v1] = [v1, [vi, vj ]] ∈ [V1, Vi+j ] =
Vi+j+1. Moreover −[[vj , v1], vi] = [vi, [vj , v1]] ∈ [Vi, Vj+1] ⊂ Vi+j+1, again by the induc-
tive hypothesis. By linearity of the Lie brackets we have the claim.

Proposition 1.3.3. For any λ > 0, dλ is an automorphism

Proof. dλ is linear, we have only to prove that it behaves well with respect to the Lie
bracket, i.e. for X,Y ∈ g

dλ([X,Y ]) = [dλ(X), dλ(Y )].
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We can write the elements of g as X = X1 + · · ·+Xl, Y = Y1 + · · ·+Yl, with Xi, Yi ∈ Vi.
Since by lemma 1.3.2 [Xi, Yj ] ∈ [Vi, Vj ] ⊂ Vi+j , we obtain

[dλ(X), dλ(Y )] = [

l∑
i=1

λiXi,

l∑
j=1

λjYj ] =

l∑
i,j=1

λi+j [Xi, Yj ] =

l∑
i,j=1

dλ([Xi, Yj ]) = λ([X,Y ]).

Since our Carnot group G is nilpotent and simply connected we can use the expo-
nential map to define a notion of dilation on the group from the one on the lie algebra,
by the formula

δλ := exp ◦dλ ◦ exp−1 .

Remark 1.3.4. From the definition we obtain, for λ, µ > 0

δλµ(h) = exp(dλµ(exp−1(h))) = exp(dλdµ(exp−1(h)))

= exp(dλ exp−1((exp dµ exp−1)(h)))

= (δλδµ)(h),

(where we suppressed the ◦ to improve readability). Using this formula together with
the B-H-C we get that δλ is a group homomorphism

δλ(gh) = exp dλ exp−1(gh) = exp dλ(P (exp−1(g), exp−1(h)))

= exp(P (dλ(exp−1(g)), dλ(exp−1(h))))

= (exp(dλ(exp−1(g)))(exp(dλ(exp−1(h))) = δλ(g)δλ(h),

where we used the fact that dλ is a Lie algebra homomorphism to bring it inside the
polynomial given by the B-H-C formula. We have also δ1 = idG.

Remark 1.3.5. We show that D is invatiant under δλ, i.e. d(δλ)hD = Dδλ(h). We will
use the simple identity

(δλLa)(h) = δλ(ah) = δλ(a)δλ(h) = (Lδλ(a)δλ)(h)

and the fact d(δλ)e = dλ (this is obtained from the properties of the exponential map,
see [Kna02]. Let v ∈ Dh, by definition of Dh, v can be written as d(Lh)e[w], for some
w ∈ V1, thus

d(δλ)h[v] = d(δλ)hd(Lh)e[w] = d(δλLh)e[w] = d(Lδλ(h)δλ)e[w]

= d(Lδλ(h))δλ(e)d(δλ)e[w] = d(Lδλ(h))δλ(e)[dλw] ∈ Dδλ(h)

On the other hand if we take an element v ∈ Dδλ(h) we can write it as d(Lδλ)e[w], for
some w ∈ V1 and with a similar computation we show that v it is the image through
d(δλ)h of d−1

λ (w), which proves the other inclusion. Moreover, by the invariance of D
under δλ and of the left-invariance of the metric we obtain (for v ∈ Dh, v = d(Lh)e[w])

|d(δλ)h[v]| = |d(Lδλ(h))δλ(e)[dλw]| = |dλ(w)| = |λw| = λ|d(L−1
h )h[v]| = λ|v|
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Proposition 1.3.6. Let γ ∈ Lip([0, T ],G) be an horizontal curve, h ∈ G, λ > 0. Then
the curves La ◦ γ, δλ ◦ γ are horizontal and

L(La ◦ γ) = L(γ), L(δλ ◦ γ) = λL(γ).

Moreover, for g, h ∈ G

dCC(ag, ah) = dCC(g, h), dCC(δλ(g), δλ(h)) = λdCC(g, h)

Proof. γ horizontal means γ̇(t) ∈ Dγ(t) for almost every t. Since
d
dt (La ◦ γ) (t) = d(La)γ(t)[γ̇(t)] and D is left invariant we have d

dt (La ◦ γ) (t) ∈ Daγ(t)

for almost every t. In the same fashion (using the invariance of D under δλ) we have
d
dt (δλ ◦ γ) (t) = d(δλ)γ(t)[γ̇(t)] ∈ Dδλ(γ(t)). By left-invariance of the metric

L(L ◦ γ) =

ˆ T

0
| d
dt

(La ◦ γ) (t)|dt =

ˆ T

0
|γ̇|dt = L(γ).

By the last remark

L(δλ ◦ γ) =

ˆ T

0
| d
dt

(δλ ◦ γ) (t)|dt =

ˆ T

0
|d(δλ)γ(t)[γ̇(t)]|dt = λ

ˆ T

0
|γ̇|dt = λL(γ).

The first equality implies that dCC(g, h) ≤ dCC(ag, ah) because to every curve in Ωg,h

we can associate a curve in Ωag,ah with the same length. For the opposite inequality it is
enough to observe that to any curve in Ωag,ah we can associate a curve in Ωg,h with the
same length, simply taking La−1 ◦γ. The last claim is proved by the same argument.

1.4 Exponential coordinates

In this section we want to define a special system of coordinates on G, called exponential
coordinates of the first kind.

In our assumptions (g nilpotent and simply connected) the the exponential map
exp : g→ G is a diffeomorphism.
Thus if we identify g and Rn throught a previously fixed basis of Rn, say {e1, . . . , en},
we obtain a global chart on G,

F : Rn → G

(x1, . . . , xn) 7−→ exp(x1X1 + · · ·+ xnXn).

The coordinates given by this chart are called exponential coordinates of the first kind,
or simply exponential coordinates. Using these coordinates we can think at our Carnot
group as being just Rn with a noncommutative group law defined by

x · y := z ⇐⇒
∑
j=1

zjXj = P

(
n∑
i=1

xiXi,
n∑
i=1

yiXi

)
.

This group law makes Rn a Lie group and F an isomorphism of Lie groups. P is given
by the B-H-C formula.

We introduce a basis on g, which keeps track of the stratification.
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Definition 1.4.1. We call a basis X1, . . . , Xn of g adapted to the stratification if
X1, . . . , Xr is a basis of V1, Xr+1, . . . , Xr+dimV2

is a basis of V2 and so on.

For the rest of the chapter we will assume to be working with an adapted basis. We
will also take the basis such that X1, . . . , Xr are orthonormal with respect to the metric.

Definition 1.4.2. For i = 1, . . . , n there is an unique 1 ≤ j ≤ l such that Xi ∈ Vj . We
define d(i) := j and we call d(i) the degree of i. Moreover given exponential coordinates
(x1, . . . , xn) we say xi is a coordinate of the j−th layer if d(i) = j.

Definition 1.4.3. Given a monomial xα1
1 , . . . , xαnn we define its weighted degree as∑n

i=1 d(i)αi. A polynomial in the variables x1, . . . , xn is called homogeneous if the
monomials which compose it have the same weighted degree. If the monomial has
two different variables, like, xα1

1 , . . . , xαnn yβ11 , . . . , yβnn , its weighted degree is defined by∑n
i=1 d(i)(αi + βi). Similarly for polynomials in more varaibles.

We observe that in the definition of weighted degree the terms d(i) appear. This
is due to the fact that coordinates belonging to different layers scale differently when
dilated. Indeed, the dilation δλ in exponential coordinates is

(F−1δλF )(x1, . . . , xn) = F−1δλ exp(x1X1 + · · ·+ xnXn)

= F−1 exp(
n∑
i=1

xiλ
d(i)Xi)

= (λx1, . . . , λxr, . . . , λ
lxn−dimVl + · · ·+ λlxn)

Thus, in this coordinates, the right notion of degree to have homogeneity is the one of
weighted degree.
Now we want to rewrite P given by the B-H-C formula in the form P (Y,Z) =

∑n
i=1 Pi(y, z)Xi,

for Y =
∑n

i=1 yiXi, Z =
∑n

i=1 ziXi ∈ g, where y = (y1, . . . , yn), z = (z1, . . . , zn) and
Pi(y, z) a suitable polynomial with properties to be discussed. We recall

P (Y, Z) = Y + Z +
l−1∑
p=1

(−1)p

p+ 1

∑
0≤i1,...,ip<s
0≤j1,...,jp<s
ik+jk≥1

(adY )i1(adZ)k1 · · · (adY )ip(adZ)jp

(i1 + · · ·+ ip + 1)i1! . . . ip!j1! . . . jp!
Y.

We observe that for i = 1, . . . , l, the polynomial Pi(y, z) which gives the cofficient of Xi

is of the form yi + zi because all the commutators coming from the second half of the
formula lie in V2⊕· · ·⊕Vl. We observe also that the weighted degree of these polynomials
is 1. Let’s see what is the idea to get some information on the weighted degree of Pi, for
i of degree 2. Clearly this polynomial will contain a term of the form yi + zi, which is a
polynomial of weighted degree 2. The only bracket which has a component in V is [Z, Y ]
times some constant. By linearity of the bracket, the components in V2 are of the form
zjyk[Xj , Xk] for d(i) + d(k) = 2. This means that each monomial multiplying [Xj , Xk]
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is of weighted degree 2. We conclude that for i of degree 2, Pi(y, z) has weighted degree
2. In general P (Y,Z) is a linear combination of terms of the form

[yi1,1 , Xi1,1 , [yi1,2Xi1,2 , . . . , [zj1,1Xj1,1 , [zj1,2Xj1,2 , . . . , [. . . , yiXi] . . . ],

where the first block contains k1 commutators the second block contains l1 commutators
and so on. Each term equals a constant vector in some Vm multiplied by some monomial
in y1, . . . , yn, z1 . . . , zn with weighted degree m (which comes from [Va, Vb] ⊂ Va+b recall-
ing that Xi ∈ Vd(i)). Thus only terms containing a monomial of weighted degree d(k)
contribute to Pk(Y, Z). Thus we have that for each i = 1, . . . , n Pi(y, z) is a polynomial
of weighted degree d(i).

Remark 1.4.4. Let’s see how left translation behaves in exponential coordinates. If
(x1, . . . , xn), (y1, . . . , yn) ∈ Rn, we have

F (x1, . . . , xn)F (y1, . . . , yn) = exp

P
 n∑
i=1

xiXi,
n∑
j=1

yiXi

 ,

where P is a polynomial given by the Cambpell-Hausdorff-Backer formula. This implies

Lxy = x · y = F−1

P
 n∑
i=1

xiXi,
n∑
j=1

yiXi

 =

F−1

(
n∑
k=1

Pk(x, y)Xk

)
=

n∑
k=1

Pk(x, y)ek,

where Pk(x, y) is an homogeneous polynomial of weighted degree d(k), in the variables
x, y.

We denote with XL
i the left invariant vector field on G associated to Xi. We want

to write XL
1 , . . . , X

L
n in a suitable way in exponential coordinates.

Definition 1.4.5. We set X̃j := (F−1)∗X
L
j , for j = 1, . . . , n.

Proposition 1.4.6. For x ∈ Rn we have

X̃j(x) =
∂

∂xj
|x +

∑
i|d(i)>d(j)

cji(x)
∂

∂xi
|x,

where cji(x) are polynomials of weighted degree d(i)− d(j).

Proof.

X̃j(x) = d(F−1)F (x)X
L
j (F (x)) = d(F−1)F (x)

(
dLF (x)

)
e

(
d

dt
(exp(tXj))|t=0

)
=

d(F−1)F (x)

(
d

dt
(F (x) exp (tXj))|t=0

)
= d(F−1)F (x)

(
d

dt
(F (x)F (tej))|t=0

)
=

12



d(F−1)F (x)

(
d

dt
(F (x · tej))|t=0

)
=

d

dt
(x · tej)|t=0.

On the other hand we can write X̃j(x) =
∑n

i=1 cji(x) ∂
∂xi
|x, where

cji ∈ C∞(Rn), for i = 1, . . . , n. By the above remark we know that

x · tej =
n∑
k=1

Pi(x, y)ei.

Putting these two facts together (identifying Rn and its tangent space at x), we obtain

cji(x) =
d

dt
Pi(x, tej)|t=0.

By the Cambpell-Hausdorff-Backer formula, when d(j) > d(i),
Pi(x, tej) = xi + δijt (because if d(j) ≥ d(i) the commutators of the form [X,Xj ] live
in Vd(j)+1), thus cji(x) = δij . If d(j) ≤ d(i), cji is a polynomial of weighted degree
d(i) − d(j), indeed t is a variable of degree d(j), Pi(x, t) is homogeneous of weighted
degree d(i) and we are differentiating and evaluating it at t = 0. Thus

X̃j(x) =
∂

∂xj
|x +

∑
i|d(i)>d(j)

cji(x)
∂

∂xi
|x.

Remark 1.4.7. We highlight a direct consequence of the above result: since cji(x) is
a polynomial of weighted degree d(i) − d(j), the only components of x = (x1, . . . , xn)
appearing in cji(x) are those with degree smaller than d(i).

1.5 Ball-Box estimate

In this section we prove the so called Ball-Box theorem in the context of Carnot groups.
The theorem will give us an estimate on d(e, g), for g ∈ G, which will be used in the
next chapter. The theorem holds in more general subRiemannian manifolds, for a proof
and a precise statement see [Jea14], [NSW85] . The proof presented here is simpler than
the one for a general subRiemannian manifold and it is taken from [Pig16].

Proposition 1.5.1. There exists a constant C > 1 depending only on G such that for
any g ∈ G, g = exp(x1X1 + . . . xnXn) we have

C−1 max
i=1,...,n

|xi|
1
d(i) ≤ dCC(g, e) ≤ C max

i=1,...,n
|xi|

1
d(i) (1)

Proof. We have already seen how dilation acts in exponential coordinates, that is for
each i = 1, . . . , n the i-th component of δ̃λ(g) is λd(i)xi (where we set δ̃λ := F−1δλF ).
We define

f(g) := max
i=1,...,n

|xi|
1
d(i) .
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We observe that this function is well defined because F is injective and surjective. We
have fδλ(g) = λf(g), indeed the action of f on a point g is defined in terms of the
exponential coordinates of g and we have just recalled the action of δλ in exponential
coordinates. We have seen in proposition 1.3.6 that the distance from e satisifes the
same property, that is dCC(δλ(g), e) = dCC(δλ(g), δλ(e)) = λdCC(g, e). Thus, since the
thesis is trivial when g = e we are left to show that the thesis holds for some C when
f(g) = 1. Indeed the general case is obtained just by a dilation. Let K := f−1(1). This
set, viewed ix exponential coordinates is compact with respect to the standard topology
of Rn. Since the standard topology of Rn coincides with the topology induced by dCC ,
K is compact with respect to the topology induced by dCC . This implies that d(·, e) has
a maximum and a minimum on K, which is the thesis.

Remark 1.5.2. The above estimate is called Ball-Box esitmate because from (1) it
follows that

Box λ
C
⊂ F−1(BCC(0, λ)) ⊂ BoxCλ,

where
Boxµ :=

{
(x1, . . . , xn) ∈ Rn | max

i=1,...,n
|xi|

1
d(i) < µ

}
and BCC(0, λ) is the Carnot-Carathéodory ball centered at the origin.

1.6 The Endpoint map: normal and abnormal extremals

In this section we introduce the Endpoint map (and its extended and modified versions)
and show how first order necessary conditions are deduced for length minimizers. The
property of not being locally open will be crucial to obtain these necessary conditions.
We will also show how this property leaves the door open to the existence of the so
called abnormal length minimizers. Even if we won’t discuss them, we want to observe
that also the Goh conditions (which are second order conditions for strictly abnormal
geodesics) are related to this property. Some well known facts about the Endpoint map
will be presented without proof, which can be found in the literature, see for instance
[ABB15].
Let g0 ∈ G be fixed. We call Ug0 the set of controls h such that the Cauchy problem{

γ̇(t) =
∑r

i=1 hi(t)Xi(γ(t))

γ(0) = g0.
(2)

has a unique solution in Lip([0, 1],G) solving the equation a.e.. The choice of [0, 1]
simplifies the notation but we could have carried out the same discussion in for [0, T ] (in
that case Ug0 depends also on T , and the same is true for the Endpoint map).

Definition 1.6.1. Let g0 ∈ G be fixed. The Endpoint map

End1 : Ug0 ⊂ L∞([0, 1],Rr)→ G

14



is defined by End1(h) = γ(1) where γ is the solution of the above Cauchy problem with
control h. We will use the notation End to denote End1. We define also the extended
Endpoint map extEnd(h) := (E(h),End(h)), where E(h) = 1

2 ||h||
2
2

At this point we can make the key observation. Let γ be a constant speed length
minimizing curve, joining g0 and γ(1) with associated control h. Then extEnd cannot be
locally open at h. Indeed, if we assume extEnd to be locally open at h then we can find a
control v (as near as we want to h, by local openness), such that extEnd(v) = extEnd(h)
and E(v) < E(h), but this contradicts the minimality of γ.
For the rest of the paragraph we fix a length minimizer γ̄ with associated control h̄ ∈ Ug0 .

Definition 1.6.2. We define the flow associate to h̄ at time 0 ≤ t ≤ 1 as the map
Φt : G→ G defined by the following cauchy problem{

Φ̇t(g) =
∑r

i=1 h̄i(t)Xi(Φt(g))

Φ0(g) = g
(3)

We observe that Φ(g0) = γ̄(t), since in this case the two Cauchy problems (2) and
(3) coincide. We define the modified Endpoint map as

Ênd(h) := Φ−1
1 ◦ End(h).

This map takes a control h and gives a point on G. This point is obtained in this way:
first we follow the curve γ associated to the control h and with initial point g0 until we
reach γ(1); then we follow the curve associated with control h̄ and starting point γ(1)

until we reach its final point, which is the output of Ênd(h). We observe also that h̄

is implicit in the definition of Ênd and that Ênd(h̄) = g0. Moreover if we define the

modified extended Endpoint map ̂extEnd :=
(

Ênd, E
)

it is clear that also this map it

is not locally open at length minimizers. This fact together with a consequence of the

open map theorem implies that the differential of ̂extEnd cannot be surjective computed
on controls associated to length minimizers, in particular when computed in h̄.

Lemma 1.6.3. The differential of Ênd at h̄ is given by

d(Ênd)h̄(v) =

ˆ 1

0
(d(Φt)g0)−1

[
r∑
i=1

vi(t)Xi(γ̄(t))

]
dt.

Using this lemma and the fact that

dEh̄[v] =

ˆ 1

0

r∑
i=1

h̄i(t)vi(t)dt

we get an expression for the differential of ̂extEnd at h̄.

15



Theorem 1.6.4. Let γ̄ and h̄ be as above. There is a nonzero covector (ξ̄, ν̄) ∈ Tg0G×
{0, 1} such that

〈ξ̄, ((dΦt)g0)−1
[
XL
i (γ̄(t))

]
〉+ ν̄h̄i(t) = 0,

a.e. and for every i = 1, . . . , r.

Proof. Since ̂extEndh̄ non surjective we can find a nonzero covector (ξ̄, ν̄) ∈ T ∗g0G × R
which is zero on the image of ̂extEndh̄. Explicitly, for every v ∈ L∞([0, 1]) (controllare),

0 = 〈(ξ̄, ν), d ̂extEndh̄[v]〉 =

ˆ 1

0
〈ξ̄, ((dΦt)g0)−1

[
r∑
i=1

vi(t)X
L
i (γ̄(t))

]
〉dt+ν̄

ˆ 1

0

r∑
i=1

h̄i(t)vi(t)dt.

Since v is arbitrary we conclude by the fundamental lemma of calculus of variations that

〈ξ̄, ((dΦt)g0)−1
[
XL
i (γ̄(t))

]
〉+ ν̄h̄i(t) = 0,

a.e. and for every i = 1, . . . , r. Up to rescaling (ξ̄, ν̄) we can assume ν̄ to be 0 or 1.

We can rewrite the first order conditions in another form, by rewriting the term
〈ξ̄, ((dΦt)g0)−1

[
XL
i (γ̄(t))

]
〉. We define a curve associated to the covector ξ̄ pulling it

back with Φ−1
t , that is

ξ(t) :=
(
Φ−1
t

)∗
ξ̄ ∈ T ∗γ̄(t)G.

This curve is called dual curve associated to ξ̄. Now we observe that

〈ξ̄(t), Xi(γ̄(t))〉 = 〈ξ̄, ((dΦt)g0)−1
[
XL
i (γ̄(t))

]
〉,

by definition of pullback of a covector (indeed ((dΦt)g0)−1 is the pushforward through
Φ−1
t ). Thus we can write the necessary conditions as

〈ξ̄(t), XL
i (γ̄(t))〉+ ν̄h̄i(t) = 0.

Now we will declare when an admissible curve (not necessarly a length minimizer) with
control h ∈ Ug0 is a normal or abnormal extremal.

Definition 1.6.5. Let γ be an admissible curve with control h. We say that γ is an

extremal, if γ is a critical point for ̂extEnd. We say that γ is a normal extremal if there

exists a covector ξ̄ ∈ T ∗g0G such that (ξ̄, 1) vanishes on im(d ̂extEndh). We say that it
is an abnormal extremal if there exists a nonzero covector ξ̄ ∈ T ∗g0G, such that (ξ̄, 0)

vanishes on im(d ̂extEndh).

From the definition it clear that a curve is an extremal if and only if it is a normal
or abnormal extremal. Anyway the the two cases are not mutually exclusive, indeed
there are (nontrivial) examples of curves being both normal and abnormal extremals
with respect to different covectors ξ̄. This motivates the following

Definition 1.6.6. An extremal γ is said to be strictly abnormal if it is not normal.
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Remark 1.6.7. In the Riemannian case abnormal extremals do not exist. Indeed if we
assume ν̄ = 0, the necessary condition takes the form 〈ξ(t), XL

i (γ(t))〉 = 0, for every i and
also for every t (being everything at least continuous). Since in this case the distribution
is the whole tangent bundle this implies ξ(t) = 0 for every t, and in particular ξ̄ = 0,
which is a contradiction.

It is known that in the Riemannian case geodesics are smooth. It is natural at this
point to ask what regularity do extremals in this framework have. Just to illustrate the
idea used to prove that normal extremals are C∞ regular we assume that our manifold
is Rn. The proof is based on the fact that if γ is a normal extremal with associated dual
curve ξ, it is possible to prove that the pair (γ, ξ) solves the hamiltonian system{

γ̇ = Hξ(γ, ξ)

ξ̇ = −Hγ(γ, ξ),

where H(y, ξ) = 1
2

∑r
i=1〈Xi(x), ξ〉2 for y, ξ ∈ Rn. Using this reformulation we obtain

regularity by a bootstrap procedure. Since both γ and ξ are continuous, γ̇, ξ̇ are sums of
products of continuous function, thus they are continuous, this means that γ and ξ are
C 1. This means that γ̇, ξ̇ are sums of products of C 1 functions, thus they are C 1, and
so on. This approach does not work for strictly abnormal extremals since the necessary
condition does not allow us to use a bootstrap procedure. Actually, the problem of
regularity for strictly abnormal exremals is still open, and in general we know only that
strictly abnormal extremals are Lipschitz regular (but since we started with Lipschitz
regular curves this is not a great achievement). Only partial results are know in the
framework of Carnot groups.

1.7 Horizontal curves

In this section we want to show that there is a correspondence between horizontal curves
in G starting at e and curves in V1 starting at 0.

Definition 1.7.1. We call π̄j : g → Vj the canonical projection, j = 1, . . . , l. We will
write π̄ instead of π̄1. We set also Wj := Vj ⊕ · · · ⊕ Vl

Lemma 1.7.2. π : G→ (V1,+) given by π := π̄ ◦ exp−1 is a group homomorphism.

Proof. π is smooth and by definition does not depend on the choice of the basis on
g but only on the stratification. To show that it is a group homomorphism we take
g = exp(x1X1 + · · · + xnXn) and h = exp(y1X1 + · · · + ynXn) and compute π(gh). By
the B-H-C formula we have

gh = exp(x1X1 + · · ·+ xnXn) exp(y1X1 + · · ·+ ynXn) = exp

(
n∑
i=1

Pi(x, y)Xi

)

= exp

(
(x1 + y1)X1 + · · ·+ (xr + yr)Xr +

n∑
i=r+i

Pi(x, y)Xi

)
.
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Thus π(gh) = (x1 + y1)X1 + · · · + (xr + yr)Xr = π(g) + π(h) because the other terms
live in W2.

If g = exp(x1X1 + · · · + xnXn) then π(g) = x1X1 + · · · + xrXr. To prove a similar
statement for the other projections, we introduce Gi := exp(Wi).

Lemma 1.7.3. For 1 ≤ i ≤ l, Gi is a closed subgroup of G and πi : Gi → (Vi,+) defined
by π̄ ◦ exp−1 is a group homorphism

Proof. To show that Gi is a subgroup we take g = exp(xniXni + · · ·+ xnXn),
h = exp(yn1Xni + · · ·+ ynXn) ∈ Gi, where ni := dim(V1) + · · ·+ dim(Vi). By the B-H-C
formula we have

gh = exp

P
 n∑
j=ni+1

xjXj ,
n∑

j=ni+1

yjXj

 ,

and since P involves only
∑n

j=ni+1 xjXj ,
∑n

j=ni+1 yjXj and their commutators it lives
in Wi, thus gh ∈ Gi. Gi is closed since it is the image under a diffeomorphism of a closed
subspace. πi does not depend on the choice of the basis and it can be shown that it is
an homeomorphism as in the previous proof.

Lemma 1.7.4. For any g ∈ G, X ∈ V1 we have dπg(X
L(g)) = X, where we have

identified V1 and Tπ(g)V1.

Proof. By definition exp(tX) is the integral curve of XL through e, thus for each g,
Lg exp(tX) is the integral curve of XL through g. This means

XL(g) =
d

dt
(Lg exp(tX)) |t=0.

Since π is a homorphism and X ∈ V1

dπg(X
L(g)) = dπg

[
d

dt
(Lg exp(tX)) |t=0

]
=

d

dt
(π(Lg exp(tX)))|t=0

=
d

dt
(π(g) + π(exp(tX)))|t=0 =

d

dt
(tX)|t=0

= X

To prove our correspondece we need the following result, which is true on Carnot
groups

Proposition 1.7.5. Every control in L∞([0, T ],G) is admissible.

Theorem 1.7.6. Let γ ∈ Lip([0, T ],G) horizontal such that a.e.

γ̇(t) =

r∑
i=1

hi(t)X
L
i (γ(t)),
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then it holds a.e.
d

dt
(π ◦ γ)(t) =

r∑
i=1

hi(t)Xi.

Moreover given γ̂ : [0, T ] → V1 lipschitz, with γ̂(0) = 0, there is a unique horizontal
curve γ ∈ Lip([0, T ],G) such that γ̂ = π ◦ γ and γ(0) = e.

Proof. Using the lemma just proved we can compute

d

dt
(π ◦ γ)(t) = dπγ(t)[γ̇(t)] =

r∑
i=1

hi(t)dπγ(t)[X
L
i (γ(t))] =

r∑
i=1

hi(t)Xi.

For the second part of the statement we write γ̂(t) =
∑r

i=1 ĥ(t)Xi for some control

ĥ ∈ L∞([0, T ],Rr), which exists by the assumption on γ̂. By the above proprositon the
control ĥ is admissible, thus there is an horizontal curve γ such that a.e.

γ̇(t) =
∑
i=1

ĥ(t)XL
i (γ(t)).

By the first part of the statement d
dt(π◦γ)(t) = γ̂(t) a.e.. Since γ̂(0) = 0 = π(e) = π◦γ(0)

we have γ̂ = π◦γ. For uniqueness, it’s enough to observe that if γ1 is such that γ1(0) = e
and has the same control of γ then it satisfies the same Cauchy problem as γ.

Remark 1.7.7. By left translation the same statement can be proved for any initial
point g ∈ G. (In this case γ̂(0) will be π(g)).

1.8 Cut and Cor: how to modify curves in a Carnot
group

Now we describe an inductive technique that will be used in the following chapter to prove
the non minimality of the double logarithm spiral. This technique has been introduced in
[LM08] to prove that for special classes of subRiemannian manifolds minimal curves don’t
have corner-like singularities. The idea in that paper was to show that if a horizontal
curve has a corner like singularity, then we can find a shorter (admissible) competitor
modifying the original curve in an appropriate way. We will follow the description of
[MPV18]. We introduce some notation.
For any Y ∈ g we take an unit speed geodesic δY : [0, `Y ] → G, joining e and exp(Y ).
Being the curve unit speed it holds `Y = d(e, expY ). For our purposes any geodesic
joining the two points will work, since we are interested only in its length.

Definition 1.8.1. Let γ ∈ Lip([a, a+ a′],G) and ν ∈ Lip([b, b+ b′],G) be two curves we
define their join by γ ∗ ν : [a, a+ (a′ + b′)]→ G

γ ∗ ν := (t)

{
γ(t) t ∈ [a, a+ a′]

γ(a+ a′)β(b)−1β(t+ b− (a+ a′)) t ∈ [a+ a′, a+ (a′ + b′)]
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The meaning of the join is clear, we follow first γ and once arrived at the endpoint
of γ we follow the curve ν properly traslated. We observe that the join is horizontal if
and only if the two curves are horizontal.

Definition 1.8.2. Let γ : [a, b] → G be an horizontal curve. Let [s, s′] ⊂ [a, b] be a

subinterval. If γ(s) 6= γ(s′) let w := γ(s′)−γ(s)
|γ(s′)−γ(s)| , we define the cutted curve

Cut(γ, [s, s′]) : [a, b− (s− s′) + |γ(s′)− γ(s)|]→ G

Cut(γ, [s, s′])(t) := γ|[a,s] ∗ exp(·w)|[0,|γ(s′)−γ(s)|] ∗ γ[s′,b].

If γ(s′) = γ(s) the cutted curve is defined as γ.

We observe that the cutted curve is horizontal, being defined as join of horizontals.
Moreover the length of the cutted curve is smaller than the initial curve. To see the
geometric interpretation of the Cut we have to focus on the first layer. We consider
π(Cut(γ, [s, s′])) = γ|[a,s] ∗ (·t)|[0,|γ(s′)−γ(s)|] ∗ γ|[s′,b], which is the curve in V1 obtained

following γ from γ(a) to γ(s), then a line segment from γ(s) to γ(s′) and then γ from
γ(s′) to γ(b).

Remark 1.8.3. π(Cut(γ, [s, s′])) has the same final point of γ. Indeed

Cut(γ, [s, s′])
(
b− (s− s′) + |γ(s′)− γ(s)|

)
= γ(s) exp(|γ(s′)− γ(s)|w)γ(s′)−1γ(b).

Thus, using the fact that π is a homomorphism,

π(Cut(γ, [s, s′])
(
b− (s− s′) + |γ(s′)− γ(s)|

)
) = γ(s) + γ(s′)− γ(s) + γ(s′) + γ(b)

= γ(b).

Nevertheless, in general, the final point of Cut(γ, [s, s′]) in G is different from γ(b).
Thus if we want to construct a shorter competitor joining γ(a) and γ(b) we can start
cutting the curve but we need a way to fix the final point.

Definition 1.8.4. Let γ : [a, b]→ G be a horizontal curve. For any subinterval [s, s′] ⊂
[a, b] and Y ∈ g, we define the corrected curve Cor(γ, [s, s′], Y ) : [a, b+ 2`Y ] by

Cor(γ, [s, s′], Y )(t) := γ|[a,s] ∗ δY ∗ γ|[s,s′] ∗ δY (`Y − ·) ∗ γ|[s′,b].

The process of transforming γ into Cor(γ, [s, s′], Y ) is called application of the correction
device associated with [s, s′] and Y .

The process of correcting the curve makes it longer, indeed L(Cor(γ, [s, s′], Y )) =
L(γ) + 2`Y . It is convenient to define the displacement of the final point

Dis(γ, [s, s′], Y ) := γ−1(b)Cor(γ, [s, s′], Y )(b+ 2`y)

to keep track of the difference between the final point of γ and that of the corrected
curve. The displacement is the error (at the level of the Lie group) that we make
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when we correct a curve. We will show how this error behaves under the projections
πj . We need sime preliminary result, in which the notation and assumptions on γ,
[s, s′] and Y will be the same as above. We denote by Cg(h) = ghg−1 the conjugation
and by [g, h] = ghg−1h−1 the commutator in G. It will be clear from the context if
[·, ·] is used to denote the Lie bracket or the commutator. Let Ad(g) = d(Cg)e. It is
known that Ad is an automorphism of g and that the formulas Ad(exp(X)) = ead(X),
Cg(exp(Y )) = exp(Ad(g)Y ) hold, for g ∈ G, X, Y ∈ g. We introduce also the notation
γ|ba := γ(a)−1γ(b) and call b1 = b+ 2`Y

Lemma 1.8.5. We have the following formula

Dis(γ, [s, s′], Y ) = Cγ|sb

([
exp(Y ), γ|s′s

])
,

Proof. Writing explicitly Cor(γ, [s, s′], Y ) we have

γ(b)−1Cor(γ, [s, s′], Y )(b1) = γ(b)−1γ(s) exp(Y )γ(s)−1γ(s′) exp(−Y )γ(s′)−1γ(b)

= γ|sb exp(Y )γ|s′s exp(−Y )γ|bs′

The right hand side gives

Cγ|sb

([
exp(Y ), γ|s′s

])
= γ|sb

[
exp(Y ), γ|s′s

]
γ|bs = γ|sb exp(Y )γ|s′s exp(−Y )γ|ss′γ|bs

= γ|sb exp(Y )γ|s′s exp(−Y )γ|bs′ .

Lemma 1.8.6. For any g ∈ G, h ∈ Gj Cg(h) ∈ Gj , i.e. Gj is a normal subgroup, and
πj(Cg(h)) = πj(h)

Proof. We write g = exp(X), h = exp(Y ). Using the properties of the exponential map

exp−1(Cg(h)) = exp−1 exp(Adg(h)) = eadXY =
∞∑
k=0

(adX)k

k!
Y = Y +

∞∑
k=1

(adX)k

k!
Y,

which is an element of Wj since Y ∈ Wj and
∑∞

k=1
(adX)k

k! Y ∈ Wj+1. Thus Cg(h) ∈ Gj

and

πj(Cg(h)) = π̄j exp−1(Cg(h)) = π̄j

(
Y +

∞∑
k=1

(adX)k

k!
Y

)
= π̄j(Y ) = πj(h).

Lemma 1.8.7. For any g ∈ G, h ∈ Gj with 1 ≤ j < l we have

[g, h] ∈ Gj+1 and πj+1([g, h]) = [π(g), πj(h)].

Similarly, if g ∈ Gj and h ∈ G, then

[g, h] ∈ Gj+1 and πj+1([g, h]) = [πj(g), π(h)].
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Proof. We prove the statement in the case g ∈ G, h ∈ Gj . [g, h] = ghg−1h−1 =
Cg(h)h−1 ∈ Gj since Cg(h) ∈ Gj by the previous lemma and by lemma 1.7.3 G is
a subgroup. Moreover, by the previous lemma and the fact that πj : Gj → Wj is a
homomorphism

πj([g, h]) = πj(Cg(h)) + πj(h
−1) = πj(h)− πj(h) = 0,

which means that exp−1([g, h]) has no component in Vj , thus it lies in Wj+1. We write
g = exp(X), h = exp(Y ). We want exp−1(Cg(h)h−1). As in the proof of the previous
lemma we have

exp−1(Cg(h)) =
∞∑
k=0

(adX)k

k!
Y = Y + [X,Y ] +R′

where R′ =
∑∞

k=2
(adX)k

k! Y ∈Wj+2. Being h−1 = exp(−Y ) the B-H-C formula gives

exp−1(Cg(h)h−1) = P (Y +[X,Y ]+R′,−Y ) = Y +[X,Y ]+R′−Y +R′′ = [X,Y ]+R′+R′′

where R′′ is the double sum given by the formula. We show that R′′ ∈Wj+2. Expanding
each factor of the double sum we obtain that R′′ is a linear combination of elements of
the form

(adZ1) · · · (adZk)Zk+1,

where k ≥ 1 and Zi ∈ {Y, [X,Y ], R′}. The elements containing only Y vanish, while the
other terms of the sum belong to Wj+2 because k is at least 1 and [X,Y ], R′ ∈ Wj+1.
This means that R′′ ∈Wj+2. Thus we have

πj+1([g, h]) = π̄j+1 exp−1([g, h]) = π̄j+1([X,Y ] +R′ +R′′) = π̄j+1([X,Y ]).

To compute the j+1−component of [X,Y ] we write X = π(X)+RX and Y = π̄j(Y )+RY
where RX ∈W2 and RY ∈Wj+1. By linearity of the bracket

[X,Y ] = [π(X), π̄j(Y )] + [π(X), RY ] + [RX , π̄j ] + [RX , RY ],

and being the last three terms of the equality inWj+2 we have π̄j+1([X,Y ]) = [π(X), π̄j(Y )] =
[π(g), πj(h)].

Finally, we prove

Lemma 1.8.8. If Y ∈ Vj , then Dis(γ, [s, s′], Y ) ∈ Gj+1 and

πj+1(Dis(γ, [s, s′], Y ) = [Y, γ(s′)− γ(s)].

Proof. From lemma 1.8.5 and lemma 1.8.7 we have

Dis(γ, [s, s′], Y ) = Cγ|sb

([
exp(Y ), γ|s′s

])
∈ Gj+1.
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Moreover, again by lemma 1.8.7

πj+1

(
Dis(γ, [s, s′], Y ))

)
= πj+1

(
Cγ|sb

([
exp(Y ), γ|s′s

]))
=
[
πj (exp(Y )) , π

(
γ|s′s
)]

Since Y ∈ Vj , πj(Y ) = Y . Being π and homomorphism we have

π(γ|s′s ) = π(γ(s)−1π(γ(s′)) = γ(s′)− γ(s),

which concludes the proof.

We introduce a compact notation to deal with iterated applications of the correction
devices (for our purposes two consecutive iterations will be enough since in the following
chapter we will work in a Carnot group of rank 2. The definition can be adapted to
more consecutive iterations).

Definition 1.8.9. Given γ : [a, b]→ G a horizontal curve, two subintervals [s, s′], [t, t′]
of [a, b] with s′ ≤ t and Y , Y ′ ∈ g we set

Cor(γ, [s, s′], Y, [t, t′], Y ′) := Cor(Cor(γ, [s, s′], Y ), [t+ 2`Y , t
′ + 2`Y ], Y ′).
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2 Non-minimality of the double logarithm

spiral

In this chapter we want to study the non minimality of a curve in a Carnot group G of
rank 2 and step 3. We consider the horizontal curve γ : [0, 1) −→ G, s.t.

γ(t) := (π ◦ γ)(t) = t cos(φ(t))X1 + t sin(φ(t))X2,

where γ(0) := 0 and φ : (0, 1)→ (0,∞)

φ(t) := log(− log(t)).

We consider a basis adapted to the stratification {X1, . . . , Xn}. As metric on g we will
take g that makes X1, . . . , Xn orthonormal.
Using the technique introduced in the previous chapter, the idea is to look for a, b ∈ (0, 1)
such that we can cut the curve in the interval [a, b] in a way that will allow us to restore
the final point with a gain of length. We will show that for a, b < T < 1 the curve γ
restricted to [0, T ] is not a length minimizer. The correction of the final point γ(T ) will
be carried on manually in two steps. In the first we will fix the component of the error
on the second layer. This will be done applying a correction device to the cutted curve
which will create a new curve, longer than the cutted one. In the second step we will fix
the component of the error on the third layer applying a correction device to the curve
obtained in the second step. This operation will produce a new curve with the same
endpoint of γ. In both steps we have to check that for b small the amount of length
added (aaplying Cor) is smaller than the length obtained cutting the curve.
We set γ(1)(t) :=Cut(γ, [a, b])(t). γ(1) is horizontal and defined on [0, T1], where
T1 = T − (b− a) + |γ(b)− γ(a)|. The aim of the chapter is to prove the following

Theorem 2.0.1. Let G be a Carnot group of step 3 and rank 2 and γ : [0, 1[→ G a
horizontal curve with γ(0) = e,

π(γ(t)) = t cos(φ(t))X1 + t sin(φ(t))X2,

where φ : (0, 1)→ (0,∞)
φ(t) := log(− log(t)).

Then, for T < 1, γ|[0,T ] is not a length minimizer between γ(0) and γ(T ).

The proof will be completed by remark 2.4.5 but the constructions and estimates of
the last two paragraphs are part of the proof as well. For this reason we don’t state
explicitly where the proof begins This chapter will be divided in paragraphs to make
exposition clearer.

25



2.1 Gain of length obtained by the cut

In this section we want to estimate from below the difference

∆L(a, b) = L
(
γ|[a,b]

)
− |γ(a)− γ(b)|

that is the gain of length produced by the cut. The estimates will be made for 0 < a <
b < T , where a = b − b1+τ , for a suitable 0 < τ < 1 which will be fixed at the end of
the argument. We will make two kinds of approximation to get the estimates, the first
will be for some a fixed and b near a, the second will be for a near 0. The validity of
the approximations is justified by b−a

a = b1+τ

b(1−b1+τ )
→ 0 for b going to zero. This means

that the distance between a and b is smaller than the distance between a and 0 when b
is small enough. Thus we will take b sufficiently small such that all the approximations
work. Moreover we will use both a and b in our estimates.

Lemma 2.1.1. We have

L
(
γ|[a,b]

)
> (b−a)

[
1 +

1

2

(
a(φ(b)− φ(a))

b− a
+ φ(b)−

 b

a
φ(t)dt

)2

+

 b

a
o
(
t2φ̇(t)2

)
dt

]
.

Proof.

L
(
γ|[a,b]

)
=

ˆ b

a

√
1 + t2φ̇(t)2dt =

ˆ b

a

(
1 +

1

2
t2φ̇(t)2 + o

(
t2φ̇(t)2

))
dt

= b− a+
1

2

ˆ b

a
t2φ̇(t)2dt+

ˆ b

a
o
(
t2φ̇(t)2

)
dt.

We use Hölder inequality to estimate
ffl b
a t

2φ̇(t)2dt

 b

a
t2φ̇(t)2dt >

( b

a
tφ̇(t)dt

)2

=

( b

a

[
d

dt
(tφ(t))− φ(t)

]
dt

)2

>
1

(b− a)2

(
bφ(b)− aφ(a)−

ˆ b

a
φ(t)dt

)2

=
1

(b− a)2

(
(b− a)φ(b)− a(φ(b)− φ(a))−

ˆ b

a
φ(t)dt

)2

=

(
a(φ(b)− φ(a))

b− a
+ φ(b)−

 b

a
φ(t)dt

)2

.

Thus

L
(
γ|[a,b]

)
> (b−a)

[
1 +

1

2

(
a(φ(b)− φ(a))

b− a
+ φ(b)−

 b

a
φ(t)dt

)2

+

 b

a
o
(
t2φ̇(t)2

)
dt

]
.
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Lemma 2.1.2. We have

|γ(a)− γ(b)| = |a− b|
[
1 +

1

2

(
ab

(a− b)2
(φ(a)− φ(b))2 +R3(a, b)

)]
,

where R3(a, b) = o
(

a2

(a−b)2 (φ(a)− φ(b))2
)
, R4(a, b) is negligible with respect to(

ab
(a−b)2 (φ(a)− φ(b))2 +R3(a, b)

)
for a small enough

Proof.

|γ(a)− γ(b)| =
∣∣∣∣ [a cos(φ(a))− b cos(φ(b))]X1 + [a sin(φ(a))− b sin(φ(b))]X2

∣∣∣∣
=

∣∣∣∣ [a cos(φ(a)− φ(b))− b]X1 + a sin(φ(a)− φ(b))X2

∣∣∣∣
where in the last equality we applied a rotation of angle φ(b). We recall

cos(φ(a)− φ(b)) = 1− (φ(a)− φ(b))2

2
+R1(a, b),

sin(φ(a)− φ(b)) = φ(a)− φ(b) +R2(a, b),

where R1(a, b) = o((φ(a)− φ(b))3) and R2(a, b) = o((φ(a)− φ(b))2) for
b→ a. Substituting in the above expression and remembering that X1, X2 are
orthogonal with respect to the metric∣∣∣∣ (a+ a

(
−(φ(a)− φ(b))2

2
+R1(a, b)

)
− b
)
X1 + a (φ(a)− φ(b) +R2(a, b))X2

∣∣∣∣
= |a− b|

∣∣∣∣ (1 +
a

a− b

(
−(φ(a)− φ(b))2

2
+R1(a, b)

))
X1 +

a

a− b
(φ(a)− φ(b) +R2(a, b))X2

∣∣∣∣
= |a− b|

√(
1 +

a

a− b

(
−(φ(a)− φ(b))2

2
+R1(a, b)

))2

+

(
a

a− b
(φ(a)− φ(b) +R2(a, b))

)2

= |a− b|

√
1− a

(a− b)
(φ(a)− φ(b))2 +

a2

(a− b)2
(φ(a)− φ(b))2 +R3(a, b)

= |a− b|

√
1 +

ab

(a− b)2
(φ(a)− φ(b))2 +R3(a, b).

Where

R3(a, b) :=
a2 (φ(a)− φ(b))4

4(b− a)2
+ a2R1(a, b)2

(b− a)2
+ 2

a

b− a
R1(a, b)

−a
2 (φ(a)− φ(b))2R1(a, b)

(b− a)2
+ 2

a2R2(a, b)2

(b− a)2

27



and clearly R3(a, b) = o
(
(φ(a)− φ(b))2

)
. We use the first order expansion√

1 +
ab

(a− b)2
(φ(a)− φ(b))2 +R3(a, b) = 1+

1

2

(
ab

(a− b)2
(φ(a)− φ(b))2 +R3(a, b)

)
+R4(a, b),

where R4(a, b) is negligible with respect to 1
2

(
ab

(a−b)2 (φ(a)− φ(b))2 +R3(a, b)
)

if a is

small enough.

Putting together these two facts we get

Proposition 2.1.3.

∆L(a, b) >
(b− a)

2

[
a

b− a
(φ(b)− φ(a))(φ̈(a)(b− a)2)

)
+R5(a, b)

]
,

where R5(a, b) ∈ o
(

a
b−a(φ(b)− φ(a))(φ̈(a)(b− a)2)

)
for b→ a.

Proof.

∆L(a, b) >
(b− a)

2

[(
a(φ(b)− φ(a))

b− a
+ φ(b)−

 b

a
φ(t)dt

)2

+

 b

a
o
(
t2φ̇(t)2

)
dt− ab

(b− a)2
(φ(a)− φ(b))2 −R3(a, b)

]
=

(b− a)

2

[
a

(a− b)
(φ(b)− φ(a))2 +

(
φ(b)−

 b

a
φ(t)dt

)2

+2
a

b− a
(φ(b)− φ(a))

(
φ(t)−

 b

a
φ(t)dt

)
+

 b

a
o
(
t2φ̇(t)2

)
dt−R3(a, b)

]
=

(b− a)

2

[
a

b− a
(φ(b)− φ(a))

(
φ(a)− φ(b) + 2φ(b)− 2

 b

a
φ(t)dt

)
+

(
φ(b)−

 b

a
φ(t)dt

)2

+

 b

a
o
(
t2φ̇(t)2

)
dt−R3(a, b)

]
We substitute the expansion

ˆ b

a
φ(t)dt = φ(a)(b− a) +

1

2
φ̇(a)(b− a)2 +

1

6
φ̈(a)(b− a)3 + o((b− a)3)

inside (
φ(a)− φ(b) + 2φ(b)− 2

 b

a
φ(t)dt

)
,

which yields

φ(b)− φ(a)− φ̇(a)(b− a)− 1

3
φ̈(a)(b− a)2 − o((b− a)2).
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We expand also

φ(b)− φ(a) = φ̇(a)(b− a) +
1

2
φ̈(a)(b− a)2 + o((b− a)2).

Thus (
φ(a)− φ(b) + 2φ(b)− 2

 b

a
φ(t)dt

)
=

1

6
φ̈(a)(b− a)2 + o((b− a)2).

To conclude, we prove that R3(a, b) and
ffl b
a o(t

2φ(t)2)dt are o

(
aφ(a)−φ(b)

b−a φ̈(a)(b − a)2

)
,

for b→ 0, while

(
φ(b)−

ffl b
a φ(t)dt

)2

goes to 0 like aφ(a)−φ(b)
b−a φ̈(a)(b−a)2 (times a positive

constant) and for our purposes it can be ignored, being positive. For R3(a, b) we have

(φ(b)− φ(a))2

aφ(a)−φ(b)
b−a φ̈(a)(b− a)2

=
φ(b)− φ(a)

a(b− a)φ̈(a)
=
φ̇(a) + o(b−a)

b−a

aφ̈(a)
=

a2 log(a)2

a2 log(a)(−1− log(a))
,

which is bounded for a small.
 b

a
o(t2φ(t)2)dt = a2φ(a)2 +

o(b− a)

b− a
,

and
a2φ(a)2

aφ(a)−φ(b)
b−a φ̈(a)(b− a)2

→ 0

for b→ 0. We write(
φ(b)−

 b

a
φ(t)dt

)2

=

(
φ(b)− φ(b)− 1

2
φ̇(b)(b− a) +

o(b− a)

b− a

)2

=
1

4
φ̇(b)2(b− a)2 +

o(b− a)

b− a
.

Thus
φ̇(b)2(b− a)2

aφ(a)−φ(b)
b−a φ̈(a)(b− a)2

=
−b3 log(b)3

b3 log(b)2(−1− log(b))

b→0−−→ 1,

where we used φ(a)−φ(b)
b−a = −φ̇(b) + o(b−a)

b−a) and the fact that a behaves like b in the
limit.

2.2 Estimate of the error produced by the cut

The aim of this second section is to study the error γ(T )−1γ(1)(T1). We observe that by
the definition of Cut it follows π

(
γ−1(T )γ(1)(T1)

)
= 0, thus the projection of the error

on the first layer is zero. For the second layer we need to rewrite it in a more convenient
form.
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Lemma 2.2.1. It holds
γ(T )−1γ(1)(T1) = Cγ|Tb

(g1),

where g1 = γ(b)−1γ(1)(a+ |γ(b)− γ(a)|).

Proof. We use the fact that γ and γ(1) have the same final projection on V1, formally

γ(1)|[a+|γ(b)−γ(a)|,T1] (t) = γ|[a+|γ(b)−γ(a)|,T1]

(
t+ (b− a)− |γ(b)− γ(a)|

)
and the uniqueness of the horizontal lift to get

γ(1)|T1a+|γ(b)−γ(a)| = γ|Tb .

From which

γ(1)(T1) = γ(1)(a+ |γ(b)− γ(a)|)γ|Tb
= γ(b)g1γ|Tb
= γ(b)γ|Tb Cγ|Tb (g1)

= γ(T )Cγ|Tb
(g1).

Recalling how the projection π2 interacts with the conjugation we get

π2(γ(T )−1γ(1)(T1)) = π2(g1).

Moreover, we define the curve

α(t) :=

{
γ(b)−1γ(b− t) t ∈ [0, b− a]

γ(b)−1γ(a) exp(t− (b− a))w) t ∈ [b− a, b− a+ |γ(b)− γ(a)|].

Where w is as in definition 1.8.2

Remark 2.2.2. This curve joins e to g1. The idea behind it is to first follow the curve γ
from γ(b) to γ(a) and then the curve γ(1) from γ(1)(b−a) = γ(a) to γ(1)(a+|γ(b)−γ(a)|).
The translation γ(b)−1 is there just to make the curve start from e.
In addition, π(α(t)) is a closed curve on V1. We call A the region inside this curve

With these facts in mind we are ready to estimate the error.

Proposition 2.2.3. It holds π2(γ(T )−1γ(1)(T1)) = c1L 2(A)X3 for some constant c1

which does not depend on the parameters of the Cut.

30



Proof. As observed above it is enough to prove π2(g1) = c1L 2(A)X3.
Since α is horizontal (because it is defined joining horizontal curves) we have

α̇(t) = h1(t)XL
1 (α(t)) + h2(t)XL

2 (α(t)).

We want to find an expression for α̇(t) in exponential coordinates. In
coordinates we have α̃(t) :=

(
F−1 ◦ α

)
(t) = (α̃1(t), . . . , α̃n(t)) as a curve on Rn. We

denote ˙̃α(t) =
(

˙̃α1(t), . . . , ˙̃αn(t)
)

= d
dt(F

−1 ◦ α)(t).

We have

˙̃α(t) = d(F−1)α(t)α̇(t) = d(F−1)α(t)

(
h1(t)XL

1 (α(t)) + h2(t)XL
2 (α(t))

)
=

h1(t)X̃1(F (α(t))) + h2(t)X̃2(F (α(t))).

Plugging in the expression in exponential coordinates for X̃1, X̃2 found in the previous
chapter we obtain

˙̃α1(t) = h1(t),

˙̃α2(t) = h2(t), (4)

˙̃αk(t) = h1(t)c1k (α̃(t)) + h2(t)c2k (α̃(t)) , k = 3, . . . , n,

where the components of α̃(t) appearing in cik (α̃(t)), i = 1, 2, are those with degree
strictly smaller than d(k). In particular if we integrate α̃3

ˆ b−a+|γ(b)−γ(a)|

0

˙̃α3(t)dt =

ˆ b−a+|γ(b)−γ(a)|

0
h1(t)c13 (α̃1(t), α̃2(t)) + h2(t)c23 (α̃1(t), α̃2(t)) dt =

ˆ b−a+|γ(b)−γ(a)|

0

˙̃α1(t)c13 (α̃1(t), α̃2(t)) + ˙̃α2(t)c23 (α̃1(t), α̃2(t)) dt =

ˆ
Γ
c13(x1, x2)dx1 +

ˆ
Γ
c23(x1, x2)dx2,

where Γ :=
{

(α̃1(t), α̃2(t)) , t ∈
[
0, b− a+ |γ(b)− γ(a)|

]}
.

The first integral gives

α̃3

(
b− a+ |γ(b)− γ(a)

)
− α̃3 (0) =[

F−1
(
γ(b)−1γ(1)(b− a+ |γ(b)− γ(a)|)

)
− F−1

(
γ(b)−1γ(b)

)]
3

=[
F−1 (g1)

]
3
,

where
[
F−1 (g1)

]
3

is the third component of g1 in coordinates. This component lives in
the second layer V2 and it is equal to π2(g1). ([ ]3 has been used to denote that we are
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considering the third component of the vector).
By Stokes, the last integral gives

ˆ
Γ
c13(x1, x2)dx1 +

ˆ
Γ
c23(x1, x2)dx2

ˆ
A

(
∂

∂x1
c23(x1, x2)− ∂

∂x2
c13(x1, x2)

)
dx1dx2 =

c

ˆ
A
dx1dx2 = c1L 2(A).

The second equality is true because ci3(x1, x2) is a polynomial of weighted degree 1 in
x1, x2.

Now we approximate L 2(A). Identifying V1 and R2 observe that A can be written
as Sec− Tri, where Sec is

Sec :=
{

(r, θ) ∈ (0,∞)× (0, 2π), s.t. r < |γ(t)|, t ∈ [a, b], φ(a) < θ < φ(b)
}
,

and Tri is the triangle with vertices 0, γ(a) and γ(b).

Proposition 2.2.4. We have

L 2(A) = −1

2
(b− a)2

[
b
φ(b)− φ(a)

b− a
− σ̄φ̇(σ̄) + φ(a)− φ(σ̄) +

abR6(b)

(b− a)2

]
,

for some σ̄ ∈ [a, b], where R6(b) ∈ o(φ(b)− φ(a)2) for b→ a.

Proof. We compute L 2(Tri) and L 2(Sec). The area of the triangle is simply

L 2(Tri) =
1

2
ab sin(φ(a)− φ(b)).

Using the first order expansion of sin, we have

L 2(Tri) =
1

2
ab [φ(a)− φ(b) +R6(a, b)] ,

where R6(a,b)
(φ(b)−φ(a))2

→ 0 for b→ a.

For Sec we have

L 2(Sec) =

ˆ φ(b)

φ(a)

ˆ φ−1(θ)

0
rdrdθ =

1

2

ˆ b

a
t2|φ̇(t)|dt = −1

2

ˆ b

a
t2φ̇(t)dt

= −1

2

[
b2φ(b)− a2φ(a)− 2

ˆ b

a
tφ(t)dt

]
= −1

2
(b− a)

[
b2φ(b)− b2φ(a)

b− a
+
b2φ(a)− a2φ(a)

b− a
− 2

´ b
a tφ(t)dt

b− a

]
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= −1

2
(b− a)

[
b2
φ(b)− φ(a)

b− a
+ (b+ a)φ(a)− 2

´ b
a tφ(t)dt

b− a

]
(∗)
= −1

2
(b− a)

[
b2
φ(b)− φ(a)

b− a
+ (b− a)φ(a)− (b− a)2(φ(σ̄) + σ̄φ̇(σ̄))

b− a

]

= −1

2
(b− a)

[
b2
φ(b)− φ(a)

b− a
− (b− a)σ̄φ̇(σ̄) + (b− a)φ(a)− (b− a)φ(σ̄)

]
.

In (∗) we used

ˆ b

a
tφ(t)dt = aφ(a)(b− a) +

φ(σ̄) + σ̄φ̇(σ̄)

2
(b− a)2,

where σ̄ ∈ (a, b) is given by the Lagrange formula for the remainder.
Thus

L 2(A) = −1

2
(b− a)2

[
b
φ(b)− φ(a)

b− a
− σ̄φ̇(σ̄) + φ(a)− φ(σ̄) + ab

R6(b)

(b− a)2

]
.

Remark 2.2.5. We observe that in the expression for L 2(A) given by the above propo-

sition the term −1
2(b − a)2bφ(b)−φ(a)

b−a is positive, while the term −1
2(b − a)2(−σ̄φ̇(σ̄) +

φ(a)− φ(σ̄)) is negative, for b small.

2.3 Correction of the error in the second layer

In this section we will show in detail how to correct the error produced by the cut in
the second layer. To this aim we want to use Cor to define a curve γ(2) such that
π(γ−1(T )γ(2)(T2)) = π̄2(E2), where E2 ∈ W2 satisfies γ(T )−1γ(1)(T1) = exp(E2) (such
an element exists since γ(T )−1γ(1)(T1) ∈ G2). We observe that since dim(V2) = 1 to
correct the error in the second layer it is enough to consider only one Y ∈ V1. More
precisely, we set

γ(2) := Cor
(
γ(1), [bβ, 2bβ],−Y

)
where 0 < β < 1 and Y have to be fixed in order to get

π2

(
Dis

(
γ(1), [bβ, 2bβ],−Y

))
= π̄2(E2) (5)

(we will omit the dependence of γ(2) on β and Y ). Actually, Y will depend on two
parameters ε, β. Indeed we will look for Y orthogonal to |γ(2bβ) − γ(bβ)| and with
length ε. We will highlight this dependece writing Yε(β) (or simply Yε to avoid heavy
notation). Moreover we use the estimates of the first section for a = b− b1+τ , for τ > 0.
τ will be fixed at the very end (actually any sufficiently small choice of τ will work), and
in this section we will show that for some τ we can find ε, β that allows us to correct
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the error on the second layer. We will find an explicit formula for ε in terms of β and
an interval of existence for β.
We start making some observation

Remark 2.3.1. We recall that γ(2) is defined as a join of curves from which it follows

π
(
γ(2)(t)|[2bβ+2`Yε ,2`Yε+T1]

)
= π

(
γ(1)(t)|[2bβ ,T1]

)
= π

(
γ(t+ b− a− |γ(b)− γ(a)|)

)
,

which means that γ(2) has the same final projection of γ on V1.
Moreover T2 := 2`Yε + T1 > T1.

Remark 2.3.2. Let us focus a little bit more on the nature of equation (5). As we have
already seen, the error created cutting the curve γ lies in G2. The idea in this first step
is to fix the error in the second layer producing another error which lies is G3. Formally
this means

γ(T )−1γ(2)(T2) ∈ G3.

By lemma 1.8.8 we already know that

γ(T )−1γ(2)(T2) =
(
γ(T )−1γ(1)(T1)

)(
γ(1)(T1)−1γ(2)(T2)

)
∈ G2,

thus it is enough to show

0 = π2

(
γ(T )−1γ(2)(T2)

)
= π2(exp(E2) + π2

(
γ(1)(T1)−1γ(2)(T2)

)
= π̄2(E2) + π2

(
Dis

(
γ(1), [bβ, 2bβ],−Yε

))
,

which is equation (5).

Using the same idea used to prove Proposition 2.2.3, we can estimate
π2

(
Dis

(
γ(1), [bβ, 2bβ],−Yε

))
. By remark 2.3.1 we have that also γ(1) and γ(2) have the

same final projection on V1, thus by lemma 2.2.1 we get

γ(1)(T1)−1γ(2)(T2) = C
γ(1)|T1

2bβ

(g2),

where g2 = γ(1)(2bβ)−1γ(2)(2bβ + 2`Yε). As in the previous section, we consider the
horizontal curve joining e and g2, given by

α1(t) :=

{
γ(1)(bβ)−1γ(1)(2bβ − t) t ∈ [0, bβ]

γ(1)(bβ)−1γ(2)(t) t ∈ [bβ, 2bβ + 2`Yε ].

Remark 2.3.3. We observe that when projected on V1 this is a closed curve. Let B be
the region inside the curve (in V1). Moreover, by construction the two line segments

(π ◦ α1|[bβ ,bβ+`Yε ])(t)
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and
(π ◦ α1|[2bβ+`Yε ,2b

β+2`Yε ])(t)

are parallel and the support of

(π ◦ α1|[bβ+`Yε ,2b
β+`Yε ])(t)

is just the support of
(π ◦ α1|[0,bβ ])(t)

translated of ε along Y1.

We now adapt the proof of proposition 2.2.3 to this case and refer to that proof for
the missing details.

Proposition 2.3.4. It holds π2

(
Dis

(
γ(1), [bβ, 2bβ], Yε

))
= c1L 2(B)X3, where c1 is in-

dependent of the parameters of the cut and the correction device (and it is the same
constant of the previous paragraph).

Proof. We just need to prove π2(g2) = c1L 2(B)X3. We can write

α̇1(t) = h1
1(t)XL

1 (α1(t)) + h1
2(t)XL

2 (α1(t)).

Reasoning as in 2.2.3, in exponential coordinates

˙̃α
1

1(t) = h1
1(t),

˙̃α
1

2(t) = h1
2(t),

˙̃α
1

k(t) = h1
1(t)c1k(α̃

1(t)) + h1
2(t)c2k(α̃

1(t)), for k = 3, . . . , n,

where the components of α̃1 appearing in cik(α̃
1(t)), i = 1, 2 are those with weighted

degree strictly smaller than d(k). Thus if we set

Γ := {(α̃1
1(t), α̃1

2(t)), t ∈ [0, 2bβ + 2`Yε ]},

we can write

ˆ 2bβ+2`Yε

0

˙̃α
1

3(t)dt =

ˆ
Γ
c13(x1, x2)dx1 +

ˆ
Γ
c23(x1, x2)dx2.

The right hand side gives
[F−1(g2)]3,

where [F−1(g2)]3 lives on V2 and is equal to π2(g2). While the left hand side gives

ˆ
Γ
c13(x1, x2)dx1 +

ˆ
Γ
c23(x1, x2)dx2 = c1

ˆ
B
dx1dx2 = c1L

2(B).
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The next step is to compute L 2(B). By remark 2.3.3 we can compute it putting an
orthonormal frame centered in γ(2bβ) with the x−axes pointing in direction of

γ(bβ)− γ(2bβ) and the y−axes pointing in the direction of Y . In this frame

[bβ, 2bβ] 3 t→ γ(1)(t) is the graph of a function, say f , and B is the region

{(x, y), s.t. x ∈ [0, |γ(1)(2bβ)− γ(1)(bβ)|], f(x) 6 y 6 f(x) + ε}

Thus we can compute L 2(B) using Fubini

ˆ
B
dL 2 =

ˆ |γ(1)(2bβ)−γ(1)(bβ)|

0

ˆ f(x)+ε

0
dxdy −

ˆ |γ(1)(2bβ)−γ(1)(bβ)|

0

ˆ f(x)

0
dxdy

=

ˆ |γ(1)(2bβ)−γ(1)(bβ)|

0
εdx = ε|γ(1)(2bβ)− γ(1)(bβ)|.

Remark 2.3.5. Requiring equation (5) to hold we get

ε =
c1

c1

L 2(A)

|γ(1)(2bβ)− γ(1)(bβ)|
,

which is one of the parameters we wanted. Even if it was clear from the beginning, we
can now see explicitly that ε depends on β.

To conclude our argument we want to find a small β such that L
(
γ|[0,T ]

)
> L

(
γ(2)|[0,T2]

)
.

We rewrite the second term as

L
(
γ(2)|[0,T2]

)
= L

(
γ(1)|[0,bβ ]

)
+ ε+ L

(
γ(1)|[bβ ,2bβ ]

)
+ ε+ L

(
γ(1)|[2bβ ,T1]

)
= L

(
γ(1)|[0,a]

)
+ |γ(b)− γ(a)|+ L

(
γ(1)|[a,bβ ]

)
+2ε+ L

(
γ(1)|[bβ ,2bβ ]

)
+ L

(
γ(1)|[2bβ ,T1]

)
.

Thus the inequality reduces to

∆L(a, b) > 2ε = 2
L 2(A)

|γ(1)(2bβ)− γ(1)(bβ)|
.

We introduced the notation ∆φ = φ(a)−φ(b)
b−a > 0, and η = b− a. We know that

|γ(1)(2bβ)− γ(1)(bβ)| = |γ(2bβ + b− a− |γ(b)− γ(a)|)− γ(bβ + b− a− |γ(b)− γ(a)|)|

from the definition of Cut. We will actually prove an inequality that implies the wanted
one, namely

η

2

[
a

η
(φ(b)− φ(a))φ̈(a)η2 +R5(a, b)

]
>

1
2η

2b∆φ− abR6(b)

bβ
.
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This inequality is stronger than the one we need to prove that we can correct the error
with a gain of length. Indeed 1

2η
2b∆φ− abR6(b) > L 2(A) for b small due to the remark

2.2.5. ∆L(a, b) ≥ η
2

[
a
η (φ(b) − φ(a))φ̈(a)η2 + R5(a, b)

]
by proposition 2.1.3. Moreover

bβ < |γ(2bβ + b− a− |γ(b)− γ(a)|)− γ(bβ + b− a− |γ(b)− γ(a)|)| for b small, by 2.1.2.

Dividing by ∆φ and η and multiplying by b1−β we can rewrite

bβ−1b(1− bτ )φ̈(a)η2 > η − b(1− bτ )R6(a, b)

η∆φ
− R5(a, b)

∆φ
bβ−1.

To conclude we look for which τ and β the term of the right goes to zero faster than the
term of the left. To avoid heavy notation we will also use the fact that a behaves like b
for b small, indeed for our purposes we can forget about 1− β1+τ in the expression of a,
being this term approximately 1 for b small. For the term containing R6(a, b)

b(φ(b)−φ(a))2

η∆φ

bβ−1bη2φ̈(a)
=
b(φ(a)− φ(b))

bβb2τ −1−log(b)
log(b)2

=
b2∆φ

bβbτ −1−log(b)
log(b)2

.

In the last equality we multiplied and divided by b and wrote φ(a)−φ(b)
b1+τ

= ∆φ. Now using

∆φ = φ̇(b) + o(1) for b→ 0, the dominant term in the last expression is given by

b log(b)

bβbτ −1−log(b)
log(b)2

,

which goes to 0 for b→ 0 if β + τ < 1. For the term containing R5(a, b)

R5(a, b)bβ−1

b∆φφ̈η2bβ−1

b→0−−→ 0.

For the term containing η

η

bφ̈η2bβ−1
=

b1+τ

b−1−log(b)
b2 log(b)2

b2+2τ bβ−1

This goes to 0 if the exponent of b (at the numerator) is strictly larger that 0, that is

1 + τ − 1− 2τ − β + 1 > 0.

Which means β + τ < 1. This implies that it is possible to correct the error on the first
layer.

Remark 2.3.6. We have checked explicitly that the terms containing the remainders
were small o of the term on the left hand side, but we could have forgotten them. This
is clear for R5(a, b), being a small o of the other term inside the bracket independently
of β. It is true also for R6(a, b) because b2R6(a, b) ∈ o(η2b∆φ) and, for β+ τ < 1, η2b∆φ
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goes to zero faster than bβ−1b(φ(b)− φ(a))φ̈(a)η2. Thanks to this remark we will forget
about the terms containing the remainders in the following, because we will always have
a situation of this type: a term which is negligible independently of the parameters and
a term which will be negligible as long as the parameters satisfy the right relations.
Moreover, we can also forget about the costants in the final inequality, since we will
always end up proving that there exists a choice for the parameters that makes the on
the left side of > unbounded.

2.4 Correction of the error in the third layer

The application of the correction device on γ(1) fixes the error on the second layer but
it produces an error on the third layer. We will apply two correction devices on γ(2)

to fix this error. Formally, γ(T )−1γ(2)(T2) ∈ G3, thus it exists E3 ∈ V3 such that
exp(E3) = γ(T )−1γ(2)(T2). We want to estimate the size of the error. We prove that it
holds π̄3(E3) =

∑
j|d(j)=3(yj − xj)Xj , where

γ(T ) = exp(x1X1 + · · ·+ xnXn),

γ(2)(T2) = exp(y1X1 + · · ·+ ynXn).

We compute

π3

(
γ(T )−1γ(2)(T2)

)
= π̄3 exp−1(exp(−x1X1 − · · · − xnXn) exp(y1X1 + · · ·+ ynXn))

= π̄3(P (−x1X1 − · · · − xnXn, y1X1 + · · ·+ ynXn))

The B-H-C formula in our framework reduces to

P (X,Y ) = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]]− [Y, [X,Y ]])

for generic X, Y ∈ g. Before computing the commutators we observe that since the
projection on the first layer of the final piece of γ coincides with the projection on the
first layer of the final piece of γ(2), this implies x1 = y1, x2 = y2. Moreover, since we
chose Y to fix the component on the third layer of E2 we have x3 = y3. For the first
commutator

[−x1X1 − · · · − xnXn, y1X1 + · · ·+ ynXn]

we observe that the only contribution to the third layer comes from

[−x1X1 − x2X2, y3X3]− [y1X1 + y2X2,−x3X3] = (y1x3 − x1y3)[X1, X3] + (y2x3 − x2y3)[X2, X3]

= x1(x3 − y3)[X1, X3] + x2(x3 − y3)[X2, X3],

and this is zero because x3 = y3. We turn to the first iterated commutator. In this case
the only contribution to the third layer is given by

[−x1X1 − x2X2, [−x1X1 − x2X2, y1X1 + y2X2]] = 0,
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since [−x1X1 − x2X2, y1X1 + y2X2] = −x1y2[X1, X2] + y1x2[X1, X2] = 0. Similarly the
second iterated commutator gives zero. Thus

π3(γ(T )−1γ(2)(T2)) =
∑

j|d(j)=3

(yj − xj)Xj .

which is what we wanted. We estimate |π3(γ(T )−1γ(2)(T2))|. To do this we estimate
the components in exponential coordinates of the third layer. Let γ̃ = (γ̃1, . . . , γ̃n) and

γ̃(2) = (γ̃
(2)
1 , . . . , γ̃

(2)
n ) be the curves in exponential coordinates. We want to know how

the quantities |γ̃(2)
j (T2)− γ̃j(T )| go to zero for b→ 0, for j such that d(j) = 3.

Proposition 2.4.1. For b→ 0 we have

|γ̃(2)
j (T2)− γ̃j(T )| = O(bβL 2(A)),

for any j such that d(j) = 3.

Proof. We use the equations (4) to reconstruct the error for the coordianates of the third
layer. We have

γ̃j(T )− γ̃j(a) =

ˆ T

a

˙̃γ1c1j(γ̃1, γ̃2, γ̃3) + ˙̃γ2c2j(γ̃1, γ̃2, γ̃3)dt,

γ̃
(2)
j (T2)− γ̃(2)

j (a) =

ˆ T2

a

˙̃γ
(2)

1 c1j(γ̃
(2)
1 , γ̃

(2)
2 , γ̃

(2)
3 ) + ˙̃γ

(2)

2 c2j(γ̃
(2)
1 , γ̃

(2)
2 , γ̃

(2)
3 )dt.

We have γ(a) = γ(1)(a) = γ(2)(a) because the cutted curve coincides with γ until a and
the corrected curve coincides with the cutted one until bβ. Thus

γ̃
(2)
j (T2)− γ̃j(T ) =ˆ T2

a

˙̃γ
(2)

1 c1j(γ̃
(2)
1 , γ̃

(2)
2 , γ̃

(2)
3 ) + ˙̃γ

(2)

2 c2j(γ̃
(2)
1 , γ̃

(2)
2 , γ̃

(2)
3 )dt−

ˆ T

a

˙̃γ1c1j(γ̃1, γ̃2, γ̃3) + ˙̃γ2c2j(γ̃1, γ̃2, γ̃3)dt.

In the above difference some terms cancels out, while some terms reduce to integration
along closed curves. To see this we need to split the polynomials c1j , c2j . Due to the
structure of these polynomials we can write

c1j(z1, z2, z3) = p1j(z1, z2) + ρ1jz3,

c2j(z1, z2, z3) = p2j(z1, z2) + ρ2jz3

where p1j , p2j are polynomials of homogeneous degree 2 in the variables of the first layer
and ρ1j , ρ2j are constants. Using this splitting we can rearrange the difference between
the two intgrals as

ˆ T2

a

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 )dt+

ˆ T2

a

˙̃γ
(2)

2 p2j(γ̃
(2)
1 , γ̃

(2)
2 )dt−

ˆ T

a

˙̃γ1p1j(γ̃1, γ̃2)dt−
ˆ T

a

˙̃γ2p2j(γ̃1, γ̃2)dt
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+

ˆ T2

a

˙̃γ
(2)

1 ρ1j γ̃
(2)
3 dt+

ˆ T2

a

˙̃γ
(2)

2 ρ2j γ̃
(2)
3 dt−

ˆ T

a

˙̃γ1ρ1j γ̃3dt−
ˆ T

a

˙̃γ2ρ2j γ̃3dt. (6)

Now in the first row we have only integrals involving only coordinates of the first layer
We show that this row gives a sum of integrals integral of 1−forms along a closed curves
(and we will use Stokes). By definition of cut and cor we deduce that

γ(2)|[a+|γ(b)−γ(a)|,bβ ](t) = γ(1)|[a+|γ(b)−γ(a)|,bβ ](t)

= γ|[a+|γ(b)−γ(a)|,bβ ](t+ b− a− |γ(b)− γ(a)|), (7)

γ(2)|[2bβ+2`Y ,T2](t) = γ(1)|[2bβ+2`Y ,T2](t− 2`Y )

= γ|[2bβ+2`Y ,T2](t− 2`Y + b− a− |γ(b)− γ(a)|). (8)

We recall that T2 = T1 + 2`Y = T − b + a + |γ(b)− γ(a)|+ 2`Y . We can write the first
integral in (6) as

ˆ T2

a

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 )dt =

ˆ a+|γ(b)−γ(a)|

a

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 )dt+

ˆ bβ

a+|γ(b)−γ(a)|
˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 )dt

+

ˆ 2bβ+2`Y

bβ

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 )dt+

ˆ T2

2bβ+2`Y

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 )dt.

In the integral

ˆ bβ

a+|γ(b)−γ(a)|
˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 )dt

we substitute (7) and use the change of variable s = t+ b− a− |γ(b)− γ(a)| to obtain

ˆ bβ+b−a−|γ(b)−γ(a)|

b

˙̃γ1(s)p1j(γ̃1(s), γ̃2(s))ds. (9)

In the integral

ˆ T2

2bβ+2`Y

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 )dt

we substitute (8) and use the change of variable s = t − 2`Y + b − a − |γ(b) − γ(a) to
obtain ˆ T2

2bβ+b−a−|γ(b)−γ(a)|
˙̃γ1(s)p1j(γ̃1(s), γ̃2(s))ds (10)

(9) and (10) cancels out with the corresponding terms in the third integral in (6). We
can split in the same way the second integral in (6) and perform the same change of
variables that led to (9) and (10). In this case the two terms that we obtain cancels out

40



with the corresponding terms in the fourth integral in (6). After these cancelations the
first row in (6) becomes

ˆ a+|γ(b)−γ(a)|

a

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 ) + ˙̃γ

(2)

2 p2j(γ̃
(2)
1 , γ̃

(2)
2 )dt

−
ˆ b

a

˙̃γ1p1j(γ̃1, γ̃2) + ˙̃γ2p2j(γ̃1, γ̃2)dt (11)

+

ˆ 2bβ+2`Y

bβ

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 ) + ˙̃γ

(2)

2 p2j(γ̃
(2)
1 , γ̃

(2)
2 )dt

−
ˆ 2bβ+b−a−|γ(b)−γ(a)|

bβ+b−a−|γ(b)−γ(a)|
˙̃γ1p1j(γ̃1, γ̃2) + ˙̃γ2p2j(γ̃1, γ̃2)dt.

Now each of the rows in the above expression can be seen as a curvilinear integal along
a closed curve (in the plane). We focus on the first two rows. We make the change of
variable s = t+ b− a in

ˆ a+|γ(b)−γ(a)|

a

˙̃γ
(2)

1 (t)p1j(γ̃
(2)
1 (t), γ̃

(2)
2 (t)) + ˙̃γ

(2)

2 (t)p2j(γ̃
(2)
1 (t), γ̃

(2)
2 (t))dt

=

ˆ b−a+|γ(b)−γ(a)|

b−a
˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 ) + ˙̃γ

(2)

2 p2j(γ̃
(2)
1 , γ̃

(2)
2 )ds

(we did not display the argument (s+ 2a− b) of the functions due to lack of space). If
we write explicitly for s ∈ [b− a, b− a+ |γ(b)− γ(a)|]

γ(2)((s+ 2a− b) = γ(1)(s+ 2a− b) = γ(a) exp((s+ a− b)w)

which look suspiciously similar to the final piece of the curve α defined in section 2.2 to

estimate the error produced by the cut (γ̃
(2)
1 (s+2a− b), γ̃(2)

2 (s+2a− b) are the first two
components of that curve in exponential coordinates, for s ∈ [b−a, b−a+ |γ(b)−γ(a)|].
We make the change of variable s = b− t in

−
ˆ b

a

˙̃γ1p1j(γ̃1, γ̃2) + ˙̃γ2p2j(γ̃1, γ̃2)dt = −
ˆ 0

b−a
˙̃γ1p1j(γ̃1, γ̃2) + ˙̃γ2p2j(γ̃1, γ̃2)ds

=

ˆ b−a

0
(− ˙̃γ1)p1j(γ̃1, γ̃2) + (− ˙̃γ2)p2j(γ̃1, γ̃2)ds

(again we did not display the argument (b − s) due to lack of space). Now if we define
the planar curve κ̃(s) = (κ̃1(s), κ̃2(s))

κ̃(s) :=

{
(γ̃1(b− s), γ̃2(b− s)) s ∈ [0, b− a]

(γ̃
(2)
1 (s+ 2a− b), γ̃(2)

2 (s+ 2a− b)) s ∈ [b− a, b− a+ |γ(b)− γ(a)|]

we haveˆ b−a+|γ(b)−γ(a)|

0

˙̃κ1(s)p1j(κ̃1(s), κ̃1(s)) + ˙̃κ2(s)p2j(κ̃1(s), κ̃1(s))ds =
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ˆ b−a

0
(− ˙̃γ1)p1j(γ̃1, γ̃2) + (− ˙̃γ2)p2j(γ̃1, γ̃2)ds+

ˆ b−a+|γ(b)−γ(a)|

b−a
˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 ) + ˙̃γ

(2)

2 p2j(γ̃
(2)
1 , γ̃

(2)
2 )ds.

Thus ˆ a+|γ(b)−γ(a)|

a

˙̃γ
(2)

1 p1j(γ̃
(2)
1 , γ̃

(2)
2 ) + ˙̃γ

(2)

2 p2j(γ̃
(2)
1 , γ̃

(2)
2 )dt

is the curvilinear integral of the one form p1j(x1, x2)dx1 +p2j(x1, x2)dx2 along the closed

curve κ. The region inside the curve κ is exactly Ã := A + γ(b), where A is defined in
remark 2.2.2. Using Stokes we can write

ˆ b−a+|γ(b)−γ(a)|

0

˙̃κ1(s)p1j(κ̃1(s), κ̃1(s)) + ˙̃κ2(s)p2j(κ̃1(s), κ̃1(s))ds

=

ˆ
∂Ã
p1j(x1, x2)dx1 +

ˆ
∂Ã
p2j(x1, x2)dx2

=

ˆ
Ã

(
∂

∂x1
p2j(x1, x2)− ∂

∂x2
p1j(x1, x2)

)
dx1dx2.

For the last two rows in (11) we can do a similar thing (we will find a curviliear integral
along the boundary of B̃ := B + γ(1)(bβ) defined in remark 2.3.3). We define the curve

ζ̃(t) = (ζ̃1(t), ζ̃2(t)) by

ζ̃(t) =

{
(γ̃1, γ̃2)(2bβ − t+ b− a− |γ(b)− γ(a)|) t ∈ [0, bβ]

(γ̃
(2)
1 , γ̃

(2)
2 )(t) t ∈ [bβ, 2bβ + 2`Y ]

and we observe that up to a traslation these are the first two coordinates of the curve
α1 defined in paragraph 2.3. The second row in (11) is equal to

ˆ 2bβ+2`Y

0

˙̃
ζ(t)1p1j(ζ̃(t)1, ζ̃(t)2) +

˙̃
ζ(t)2p2j(ζ̃(t)1, ζ̃(t)2)dt.

To see this it is enough to make the change of variable s = 2bβ + b− a− |γ(b)− γ(a)| − t
in ˆ 2bβ+b−a−|γ(b)−γ(a)|

bβ+b−a−|γ(b)−γ(a)|
˙̃γ1p1j(γ̃1, γ̃2) + ˙̃γ2p2j(γ̃1, γ̃2)dt.

Again by Stokes

ˆ 2bβ+2`Y

0

˙̃
ζ(t)1p1j(ζ̃(t)1, ζ̃(t)2) +

˙̃
ζ(t)2p2j(ζ̃(t)1, ζ̃(t)2)dt

=

ˆ
∂B̃
p1j(x1, x2)dx1 +

ˆ
∂B̃
p2j(x1, x2)dx2

=

ˆ
B̃

(
∂

∂x1
p2j(x1, x2)− ∂

∂x2
p1j(x1, x2)

)
dx1dx2.
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Thus we have written the first row of (6) as sum of integrals of 2−forms on a region
of the plane. We focus on the second row on (6). We integrate by parts once and use

γ̃i(T ) = γ̃
(2)
i (T2), i = 1, 2, 3, γ(a) = γ(2)(a), to obtain

ˆ T2

a

˙̃γ
(2)

1 ρ1j γ̃
(2)
3 dt+

ˆ T2

a

˙̃γ
(2)

2 ρ2j γ̃
(2)
3 dt−

ˆ T

a

˙̃γ1ρ1j γ̃3dt−
ˆ T

a

˙̃γ2ρ2j γ̃3dt =

ˆ T2

a
γ̃

(2)
1 ρ1j

˙̃γ
(2)

3 dt+

ˆ T2

a
γ̃

(2)
2 ρ2j

˙̃γ
(2)

3 dt−
ˆ T

a
γ̃1ρ1j

˙̃γ3dt−
ˆ T

a
γ̃2ρ2j

˙̃γ3dt.

We can use (4) to write ˙̃γ3 and ˙̃γ
(2)

3 in terms of the coordinates of the first layer.
Thus we reduced to the case in which we have only integrals involving the coordinates

of the first layer. Reasoning as we did to evaluate the first row of (6) we find

ˆ T2

a
γ̃

(2)
1 ρ1j

˙̃γ
(2)

3 dt+

ˆ T2

a
γ̃

(2)
2 ρ2j

˙̃γ
(2)

3 dt−
ˆ T

a
γ̃1ρ1j

˙̃γ3dt−
ˆ T

a
γ̃2ρ2j

˙̃γ3dt

=

ˆ
∂ã

˙̃κ1ω1(κ̃1, κ̃2)dt+

ˆ
∂Ã

˙̃κ2ω2(κ̃1, κ̃2)dt+

ˆ
∂B̃

˙̃
ζ1ω1(ζ̃1, ζ̃2)dt+

ˆ
∂B̃

˙̃
ζ2ω2(ζ̃1, ζ̃2)dt,

where
ω1(y1, y2) := ρ1jy1c13(y1, y2) + ρ2jy2c13(y1, y2),

ω2(y1, y2) := ρ1jy1c23(y1, y2) + ρ2jy2c23(y1, y2).

Using Stokes in the last equality we obtain

ˆ T2

a
γ̃

(2)
1 ρ1j

˙̃γ
(2)

3 dt+

ˆ T2

a
γ̃

(2)
2 ρ2j

˙̃γ
(2)

3 dt−
ˆ T

a
γ̃1ρ1j

˙̃γ3dt−
ˆ T

a
γ̃2ρ2j

˙̃γ3dt

=

ˆ
Ã

(
∂

∂x1
ω2(x1, x2)− ∂

∂x2
ω1(x1, x2)

)
dx1dx2 +

ˆ
B̃

(
∂

∂x1
ω2(x1, x2)− ∂

∂x2
ω1(x1, x2)

)
dx1dx2.

After all these computations we can write (6) as

ˆ
Ã

(
∂

∂x1
p2j(x1, x2)− ∂

∂x2
p1j(x1, x2)

)
dx1dx2 +

ˆ
B̃

(
∂

∂x1
p2j(x1, x2)− ∂

∂x2
p1j(x1, x2)

)
dx1dx2

ˆ
Ã

(
∂

∂x1
ω2(x1, x2)− ∂

∂x2
ω1(x1, x2)

)
dx1dx2 +

ˆ
B̃

(
∂

∂x1
ω2(x1, x2)− ∂

∂x2
ω1(x1, x2)

)
dx1dx2.

Now we can make the estimates. To do this we will think to V1 as R2. Indeed we have
identified g and Rn when we introduced the exponential coordinates, we just restrict
this identification to V1 and R2. Moreover we take on Rn the inner product that makes
the images of X1, . . . , Xn, under this identification, orthonormal. Since p1j , p2j are
polynomials in x1, x2 of weighted degree 2, ∂

∂x2
p1j and ∂

∂x1
p2j are polynomials in x1, x2

of weighted degree 1. Moreover ω1 and ω2 are polynomials of degree 2 in x1, x2, thus
∂
∂x2

ω1 and ∂
∂x1

ω2 are polynomials of degree 1 in x1, x2 (in this case, since we have only
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variables if the first layer the notions of degree and weighted degree conincide, being the
weights 1). We observe that the region Ã is contained in a ball in the plane of radius
b centered at the origin. This comes from the fact that |γ(t)| = t for t ∈ [0, T ] and the

fact that γ(b)) is the most distant point of Ã from the origin. Among the points of B̃

the most distant from the origin is γ(2)(2bβ + `Y ), which is at distance at most `Y from

γ(2)(2bβ). Thus B̃ is contained in the two dimensional ball centered at the origin and of

radius 2bβ + `Y . From these geometrical facts we have∣∣∣∣∣
ˆ
Ã

(
∂

∂x1
p2j(x1, x2)− ∂

∂x2
p1j(x1, x2)

)
dx1dx2

∣∣∣∣∣ ≤
ˆ
Ã

∣∣∣∣∣ ∂∂x1
p2j(x1, x2)− ∂

∂x2
p1j(x1, x2)

∣∣∣∣∣dx1dx2

=

ˆ
Ã
|c2x1 + c3x2|dx1dx2 ≤ c4b

ˆ
Ã
dx1dx2

= c4bL
2(Ã) = c4bL

2(A),

where c2, c3 and c4 are structural constants that depend only on the Lie group G.
Similarly∣∣∣∣∣

ˆ
B̃

(
∂

∂x1
p2j(x1, x2)− ∂

∂x2
p1j(x1, x2)

)
dx1dx2

∣∣∣∣∣ ≤ c4(2bβ + `Y )L 2(B),∣∣∣∣∣
ˆ
Ã

(
∂

∂x1
ω2(x1, x2)− ∂

∂x2
ω1(x1, x2)

)
dx1dx2

∣∣∣∣∣ ≤ c5bL
2(A),∣∣∣∣∣

ˆ
B̃

(
∂

∂x1
ω2(x1, x2)− ∂

∂x2
ω1(x1, x2)

)
dx1dx2

∣∣∣∣∣ ≤ c5(2bβ + `Y )L 2(B),

where c5 is a constant that depends only on the Lie group G. We show that `Y goes to
zero faster than bβ for b→ 0. From the Ball-Box estimate

`Y ≤ |Y | = ε =
L 2(A)

|γ(1)(2bβ)− γ(1)(bβ)|
≤ L 2(A)

bβ
≤
η2b
(

∆φ+ aR6(a,b)
(b−a)2

)
bβ

.

The quantity

`Y
bβ
≤
η2b
(

∆φ+ aR6(a,b)
(b−a)2

)
b2β

goes to zero as soon as 2 + 2τ − 2β > 0, which is always satisfied since β < 1 and τ > 0.
Being interested in the leading order term we will neglect `Y . We show that bL 2(A)
goes to zero faster than bβL 2(B) for b→ 0.

bL 2(A)

bβL 2(B)
=

bL 2(A)

bβL 2(A)
= b1−β

which goes to 0 since β < 1.
In conclusion we have seen that for each j such that d(j) = 3 and b→ 0, we have

|γ̃(2)
j (T2)− γ̃j(T )| = O(bβL 2(B)).
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Remark 2.4.2. Using the trivial inequality

|π3(γ(T )−1γ(2)(T2))| ≤
∑

j|d(j)=3

|γ̃(2)
j (T2)− γ̃(T )|

and the last proposition we obtain

|π̄3(E3)| = |π3(γ(T )−1γ(2)(T2))| = O(bβL 2(B)). (12)

We fix a parameter 0 < β21 < β. β21 will be choosen at the end of the argument in
order to fix the error on the third layer. For now, the only condition imposed on β21

implies bβ < bβ21 =: b21. We fix also a second parameter β22, which is the solution of
the equation

φ(b21)− φ(bβ22) =
π

2
.

For b small for instance b < 1
e this equation has a unique solution since φ is invertible

(actually b will be taken small enough to have b22 > 2b21).
We call b22 := bβ22 . We choose

Ṽ1 =
γ(2b21)− γ(b21)

|γ(2b21)− γ(b21)|
, Ṽ2 =

γ(2b22)− γ(b22)

|γ(2b22)− γ(b22)|
.

Remark 2.4.3. We explain briefly the geometric idea behind the chioce of b22, Ṽ1 and
Ṽ2. We will implicitly assume b really small. In V1, the angle between γ(2t) and γ(t) is
φ(t)−φ(2t), which is going to zero for t→ 0 since tφ̇(t)→ 0 for t going to 0. Ṽ1 is a unit
vector in the direction γ(2b21) − γ(b21). As we have observed the angle between these
two vector is going to zero, which means that for b small they are pointing almost in the
same direction. On the other hand |γ(2b21)| = 2b21 and |γ(b21)| = b21 and this means
that γ(2b21) is twice as distant from the origin as γ(2b22). These two facts combined say
that the paralellogram spanned by γ(2b21) and γ(2b22) is almost flat with one side twice

the other, thus the shorter diagonal (which is Ṽ1) points almost in the same direction as
the two sides. Thus we can think that the angle of Ṽ1 with X1 is roughly φ(b21) (which
is actually the angle between X1 and γ(b21)). Similarly the angle between Ṽ2 and X1 is
approximately φ(b22). Now we recall that b22 has been choosen such that the difference
between these two angles is π

2 , thus we can think Ṽ1, Ṽ2 as being almost orthogonal.

We take Z21, Z22 ∈ V2 (to be found) and define

γ(3)(t) := Cor(γ(2), [bβ21 , 2bβ21 ],−Z21; [bβ22 , 2bβ22 ],−Z22)(t).

Actually, as for Yε, we won’t find Z21 and Z22 but only a condition on their norms (which
of course will be in terms of β21, and β22) to have a gain of length.
We know from lemma 1.8.8 that exp−1

(
γ(2)(T2)−1γ(3)(T3)

)
∈ V3 ⊕ · · · ⊕ Vs and

π3

(
γ(2)(T2)−1γ(3)(T3)

)
= −[Z21, γ(2b21)− γ(b21)]− [Z22, γ(2b22)− γ(b22)].
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We want the new corrected curve to fix the error in the third layer, thus we ask

0 = π3(γ(T )−1γ(3)(T3))) = π3(γ(T )−1γ(2)(T2))) + π3(γ(2)(T2)−1γ(3)(T3)))

= π̄3(E3)− [Z21, γ(2b21)− γ(b21)]− [Z22, γ(2b22)− γ(b22)] (13)

(which is a condition on β21 and β22).
Since V3 = [V1, V2] there are Y21, Y22 ∈ V2 such that

π̄3(E3) = [X1, Y21] + [X2, Y22] (14)

with |Y21|, |Y22| = O(bβL 2(A)). The estimates on the order of |Y21| and |Y22| come
from equation (12).
To put together equation (13) and equation (14) we write

Xi = wi1Ṽ1 + wi2Ṽ2

for constants wi1, wi2 and i = 1, 2. Substituting these expressions in (14) and using
(13) we find the equations

Z21|γ(2b21)− γ(b21)| = w11Y21 + w21Y22,

Z22|γ(2b22)− γ(b22)| = w12Y21 + w22Y22.

We prove the following simple lemma that will be used to obtain estimates for the
constants wij .

Lemma 2.4.4. Let u1, u2 ∈ R2 be linearly independent vectors. Let

e1 = k11u1 + k12u2 e2 = k21u1 + k22u2

for some constants kij , i, j = 1, 2. Then, for i, j = 1, 2 we have

|kij | ≤
max{|u1|, |u2|}
|det(u1, u2)|

.

Proof. Denoting by uij the j-th component of ui it is immediate to check that

e1 =
u22u1 − u12u2

det(w1, w2)
e2 =

−u21u1 + u11u2

det(w1, w2)
.

With this lemma we can estimate the |wi1|, |wi2|. Indeed for i = 1, 2, we can apply
the lemma to Xi = wi1Ṽ1 + wi2Ṽ2, obtaining

|wij | ≤
max{|Ṽ1|, |Ṽ2|}
| det(Ṽ1, Ṽ2)|

=
1

sin(π2 )

(where the determinant is computed idenfying g and R2 as we have done above).
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Using this estimate and the estimates on the order of |Y21| and |Y22| we obtain

|Z21| = O

(
bβL 2(A)

bβ21

)
,

|Z22| = O

(
bβL 2(A)

bβ22

)
.

Now we require that the length of the corrected curve is smaller than the length of γ.
We can write

L(γ(3)) = L(γ(2)) + 2d(e, exp(Z21)) + 2d(e, exp(Z22)),

from which the correction is fine if for b small

∆L(a, b) > 2ε+ 2d(e, exp(Z21)) + 2d(e, exp(Z22)).

We recall

∆L(a, b) >
η

2

[
a(∆φ)φ̈(a)η2 +R5(a, b)

]
.

By remark 2.3.6 we will forget about R5(a, b) being negligible with respect to the other
term inside the bracket.
Using the Ball-Box estimate we can estimate from above d(e, exp(Z21)) and d(e, exp(Z22)).

d(e, exp(Z21)) 6 C|Z21|
1
2 = O

(
b
β
2 L 2(A)

1
2

b
β21
2

)
,

d(e, exp(Z22)) 6 C|Z22|
1
2 = O

(
b
β
2 L 2(A)

1
2

b
β22
2

)
.

Since β21 > β22 we actually have d(e, exp(Z22)) = O

(
b
β
2 L 2(A)

1
2

b
β21
2

)
. Thus the length

needed to use the correction devices is O

(
b
β
2 L 2(A)

1
2

b
β21
2

)
. Moreover using the inequality

given by proposition 2.2.4 and the remark 2.2.5, we obtain that the elongation produced
by the correction is

O

bβ2 ηb 1
2

(
∆φ+ aR6(a,b)

η2

) 1
2

b
β21
2

 .

By remark 2.3.6 we will forget about aR6(a,b)
η2

being this term negligible as long as the

parameters satisfy the right conditions (see below). To fix the error with a gain of length
we want to find β21 such that for b going to zero

b
β
2 η(b∆φ)

1
2

b
β21
2

= o
(η

2
a(∆φ)φ̈(a)η2

)
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(we already know from the previous paragraph that ε goes to zero faster than the right
hand side for our choice of β. Thus it is enough to control this term). As we did
for the correction of the second layer we will use the fact that a behaves like b in the
limit. We will also use the fact that also ∆φ behaves like φ̇(b) in the limit (formally
∆φ = φ̇(b) + o(1) for b → 0). Using these approximations and writing η, φ̇(b) and φ̈(b)
explicitly, we are interested in the limiting behaviour of the following expression

b
β
2 b1+τ

b
β21
2

1

log(b)
1
2

b1+τ 1
log(b)

−1−log(b)
b2 log(b)2

b2+2τ
=
b
β
2
−2τ−β21

2 log(b)
5
2

−1− log(b)
.

This expression goes to 0 as long as β
2 − 2τ − β21

2 > 0, that is 4τ < β − β21. This
inequality is compatible with β + τ < 1 found in the previous paragraph.

Remark 2.4.5. This concludes the proof of theorem . Indeed, if we take b small and
τ , β, β21 satisfying the above inequality, then γ(3) defined above has smaller length
than γ, the same initial point and the same final point. This last fact is true because
γ(T )−1γ(3)(T ) is exp(V4) = exp(0) = e.
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