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Introduction

The aim of this work is to introduce two re�ection techniques, the second being a nonstandard,
boosted version of the �rst one, and then to analyze the role played by these techniques in the
study of symmetry properties for some elliptic equations, in particular for the singular Yamabe
Equation. The �rst chapter is devoted to list some preliminary instruments needed to prove
the results stated in the following parts: in particular, we prove some di�erent versions of the
Maximum Principle and the Hopf Lemma, and we furnish the statement (and a sketch of the
proof) of a Maximum Principle for weakly subharmonic maps, that in its most general formulation
requires just the upper semicontinuity of the function. The second chapter is devoted to the
description of a �rst, standard re�ection technique holding for smooth, bounded, connected open
subsets. This technique is developed by Gidas, Ni and Niremberg in [2] and is inspired by another
re�ection technique theorized by Alexandrov in Di�erential Geometry. We now try to give a
description of this re�ection technique. Given a unit vector γ ∈ Sn−1 and an open, bounded,
connected subset Ω ⊂ Rn of class C2, choosing λ small enough, the hyperplane Tλ ∶ x ⋅ γ = λ
intersects Ω and so we may consider the open set Σ(λ) ∶= Ω ∩ {x ⋅ γ > λ} and its re�ection Σ′(λ)
in the hyperplane Tλ. Denoted by λ0 the supremum of the values λ for which Σ(λ) ≠ ∅, we
have Σ′(λ) ⊂ Ω for λ0 − ε < λ < λ0 (ε small). Then the necessary (but not su�cient) condition in
order that the re�ection of Σ(λ) is no longer contained in Ω turns out to be that Σ′(λ) becomes
internally tangent to the boundary of Ω at some point not belonging to Tλ, or that Tλ reaches a
position orthogonal to ∂Ω at some point. Let Σγ ∶= Σ(λ1), where λ1 is the smallest critical value
λ such that one of the two just described conditions holds. This re�ection technique allows to
prove the following symmetry property

Theorem. Let Ω ⊂ Rn be an open, bounded, connected subset of class C2, γ ∈ Sn−1 be a unit

vector and u be a smooth solution to

∆u + b(x)∂γu + f(u) = 0, in Ω

where b ∈ C0(Ω), b ≥ 0 in Σγ ∪Σ′
γ and f ∈ C1(R). Assume that u > 0, u ∈ C2(Ω ∩ {x ⋅ γ > λ}), and

u = 0 on ∂Ω ∩ {x ⋅ γ > λ}. Then, for any λ1 < λ < λ0, one has

∂γu(x) < 0 and u(x) < u(xλ), ∀x ∈ Σ(λ).

Therefore ∂γu < 0 in Σγ and in addition, if ∂γu vanishes at some point contained in Tλ1 ∩ Ω,
then u is necessarily symmetric with respect to Tλ1, Ω = Σγ ∪Σ′

γ ∪ (Tλ1 ∩Ω) and b ≡ 0.

This so technical result becomes more intuitive if one considers a ball centered at the origin:
as a matter of fact, in this case, the Theorem above guarantees the radiality of the solutions to

−∆u = f(u) in B(0,R[
u = 0 su ∂B(0,R[.

To verify it, it's enough to apply the Theorem just stated �rst to a generic unit vector γ and
subsequently to its opposite, deducing then that ∂γu needs to vanish on the hyperplane x ⋅γ = 0.
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The third chapter is then dedicated to the study of work [1] by Ca�arelli, Gidas and Spruck:
in that paper, the authors introduce a second, more sophisticated, re�ection technique and its
application to the classi�cation of the singular solutions to the Yamabe Equation

−∆u = u
n+2
n−2

in the punctured, unit ball. The classi�cation result proved is the following.

Theorem. Let u > 0 be a C2 solution to

−∆u = u
n+2
n−2 , in B(0,1[∖{0},

with a nonremovable, isolated singularity at the origin. Then there is a radial, singular solution

φ ≡ φ(∣x∣) to the same equation such that

u(x) = (1 + o(1))φ(∣x∣),

as x→ 0.

We now aim to try to understand how the authors argue in order to show the validity of
the classi�cation Theorem above. To do so, we �nd convenient to divide the description into
some steps, the most delicate of which consists precisely of �nding a suitable, smart re�ection
technique. So let's consider the Yamabe Equation

−∆u = u
n+2
n−2 ,

and let u be a solution to this equation in the punctured ball B(0,1[∖{0}.
(1) First we need to apply to u the Kelvin Transform in order to get a function v de�ned in a

neighbourhood of ∞: this map v turns out to solve the Yamabe Equation again. The really
smart idea here is to perform such a Kelvin Transform with respect to a point close to the
origin, but di�erent from it: in such a way, the singularity of u at the origin is transformed
into a singularity for v at a point z distant from the origin. The assets brought by such a
choice will be clear in step (3).

(2) The second passage consists in proving that, since u solves the Yamabe Equation in the
punctured ball (possibly with an isolated singularity at the origin), it follows that u is a
weak solution to the Yamabe Equation in the entire ball, and that v is a weak solution to
the same equation in a neighbourhood of ∞ containing the singularity z. This step is very
important becuse justi�es the idea of the authors of developing a re�ection technique valid
for weak solutions: in other words, we bypass the problem represented by the presence of
the singularity for u and v exploiting a weak notion of solution.

(3) The third step is to prove some decay estimates valid for the Kelvin Transform v of the
solution u. In particular we prove that

v(x) = 1

∣x∣n−2
(a0 +

n

∑
k=1

ak
xk
∣x∣2 ) +O(∣x∣−n)

∂v

∂xi
(x) = −(n − 2)a0

xi
∣x∣n +O(∣x∣−n)

∂2v

∂xi∂xj
(x) = O(∣x∣−n),

for ∣x∣ → ∞. We observe that the validity of these asymptotic expansions is a consequence
of the fact that, at the �rst step, the Kelvin Transform is performed with respect to a point
that is di�erent from the origin: in fact, such a choice produces a singularity of v at a point
distant from the origin, but doesn't in�uence the behaviour of v at ∞.
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(4) We now get to the most important, delicate passage: to prove a re�ection technique for v
from which a symmetry property for v and u will follow. We show that, for a "big measure"
set of unit vectors τ , for M big enough, one has

v(x) ≤ v(x′ + 2(λ − x ⋅ τ)), for x ⋅ τ > λ ≥M .

A part of the di�culty of this step is represented by the estimate of the measure of the
collection of unit vectors for which the re�ection property above holds true, whose proof
requires advanced notions of measure theory and some elements of Harmonic Analysis.

(5) Then, we give the �rst, general application of the theory developed in the previous parts:
the solution u is asymptotically radial around the origin, namely

u(x) = (1 +O(∣x∣))⨏
∂B(0,r[

u(w)dσ(w), for x→ 0.

This property is weaker than the condition stated in the classi�cation Theorem met before:
in fact, roughly speaking, it states just a "radiality as x → 0", and not a "proximity to a
radial solution as x→ 0".

(6) Indeed, the �nal step is precisely devoted to understand how the asymptotic symmetry
may be boosted in order to get the classi�cation result stated above. Such a strengthening
requires an exhaustive, classi�catory survey of the radial solutions to the Yamabe Equation:
in fact, analyzing the radial solutions to the Yamabe Equation, one �nds a very natural
notion of energy that can be generalized to the case of a generic solution and that furnishes a
way to measure the "asymptotic distance" between two solutions. Recalling the expression
of the Laplace Operator in spherical coordinates, one �nds that the radial solutions u(x) =
φ(∣x∣) are precisely the functions φ(r) = r 2−n

2 ψ(− ln r), where ψ is a solution to the ordinary
di�erential equation

ψ′′ − (n − 2

2
)

2

ψ + ψ
n+2
n−2 = 0. (1)

For the ODE above, we can easily formulate a de�nition of energy

E(ψ,ψ′) ≡ 1

2
(ψ′)2 − 1

2
(n − 2

2
)

2

ψ2 + n − 2

2n
ψ

2n
n−2 :

this energy E is constant along the solutions to the ODE above, and then, up to a choice
of suitable value of D = 2E, one discovers that any solution to the equation above solves

(ψ′)2 = (n − 2

2
)

2

ψ2 − n − 2

n
ψ

2n
n−2 +D.
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Now, the idea is to generalize the de�nition of E to the case of a generic solution u replacing
ψ with

β(t) ≡ r
n−2

2 ⨏
∂B(0,r[

u(w)dσ(w),

where t = − ln r, that is the spherical average of u (up to a change of variable). In this more
general case, E is not constant along β, but one can prove the validity of the following
energy estimate (as t→∞)

(β′)2 = (n − 2

2
)

2

β2 − n − 2

n
β

2n
n−2 +D∞ + (β2 + (β′)2)O(e−t),

where D∞ is a suitable asymptotic constant. It's then clear that u is close to the radial

solution φ ≡ φ(∣x∣) where φ(r) = r 2−n
2 ψ(− ln r) and ψ has energy E = D∞/2. Combining

this observation and the asymptotic symmetry of step (5), arguing in a suitable way, one
deduces the statement of the classi�cation Theorem given at the beginning.





Chapter 1

Some preliminary results

In this chapter we present some useful tools that will be used along the work. We start furnishing
some classical Maximum Principles and Hopf Lemmas freely following [4]. Next we will expose
some properties of the weak solutions, in particular we will prove a Maximum Principle for weakly
subharmonic functions, following [5]. Then we will prove an estimate for the (weak) solution to
a homogeneous Dirichlet boundary value problem associated to the Poisson Equation.

1.1 Elliptic Di�erential Operators

Given an open subset Ω ⊂ Rn, we consider second order linear di�erential operators in Ω, namely
operators like

L ≡
n

∑
i,j=1

ai,j
∂2

∂xi∂xj
, (1.1)

where Ω ∋ x → A(x) ≡ (ai,j(x))i,j is a symmetric matrix valued map. We also consider a more
general notion of second order di�erential operator, in which we admit the presence of �rst order
terms

L ≡ L +
n

∑
i=1

bi
∂

∂xi
,

or of �rst and zero order terms

L + h ≡ L +
n

∑
i=1

bi
∂

∂xi
+ h, (1.2)

where L is a second order linear di�erential operator like (1.1), Ω ∋ x → bi(x), 1 ≤ i ≤ n, and
h are real valued maps. We say that L is the principal part of the (generalized) second order
di�erential operator. We assume that operators like (1.1) or (1.2) act on C2(Ω) functions, and
so the hypothesis about the symmetry of A(x) does not represent a loss of generality.

De�nition 1.1.1. A second order linear di�erential operator like (1.1) is said to be:

(i) elliptic at a point x ∈ Ω provided that there exists a positive number µ ≡ µ(x) > 0 such
that

∑
i,j

ai,j(x) ξiξj ≥ µ(x)∑
i

ξ2
i ,

namely if A(x) is positive de�nite;

(ii) elliptic in Ω provided that it's elliptic at any point of Ω;

(iii) uniformly elliptic in Ω provided that it's elliptic in Ω and there exists a scalar µ0 > 0 such
that µ(x) ≥ µ0, for every x ∈ Ω.

9



CHAPTER 1. SOME PRELIMINARY RESULTS 10

A second order di�erential operator like (1.2) is said to be elliptic at a point x (elliptic, uniformly
elliptic in Ω) if its principal part is so.

The prototypical example of (uniformly) elliptic operator is the well known Laplace operator

∆ = ∑
i

∂2

∂x2
i

.

Let's consider a generic orthogonal change of coordinates

y = Cx, (1.3)

for some orthogonal n × n matrix C.

Lemma 1.1.1. Let L ≡ ∑i,j ai,j
∂2

∂xi∂xj
be a second order linear di�erential operator like (1.1)

in a open Ω. Then, under the orthogonal transformation (1.3), the operator L assumes the form

L̃ ≡ ∑
k,l

bk,l
∂2

∂yk∂yl
,

where bk,l = ∑i,j ai,j ck,i cl,j = (C ACT )k,l, namely, for any u ∈ C2(Ω), one has L̃u = Lu in Ω.

Moreover, if L is elliptic at a point x, then L̃ is elliptic at x with the same ellipticity constant
µ(x).

The proof is a trivial computation. Exploiting the Spectral Theorem for orthogonal matrices,
one can also infer the validity of the following

Lemma 1.1.2. If L is a second order linear di�erential operator like (1.1) elliptic at a point
x ∈ Ω, then there exists an orthogonal change of coordinates like (1.3) such that

L̃ = ∑
i

di
∂2

∂y2
i

,

where di ≥ µ(x), for every i. In particular, applying another change of coordinates zk = 1√
dk
yk,

L̃ coincides with the Laplace Operator (at x).

1.1.1 Maximum Principles

Let Ω be an open subset of Rn and consider a second order di�erential operator

L ≡ ∑
i,j

ai,j
∂2

∂xi∂xj
+∑

i

bi
∂

∂xi

elliptic in Ω. Let u ∈ C2(Ω) be such that Lu > 0 and assume that u has a local maximum at a
point x0 ∈ Ω. Then we know that

∇u(x0) = 0

Hess[u](x0) is negative semide�nite.

Let z = Cx be the change of coordinates which transforms L into the Laplace Operator at x0.
Observing that

Hessz[u](x0) = CTHessx[u](x0)C,
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we obtain that
∂2u

∂z2
k

(x0) ≤ 0, for any k. Therefore one has

Lu(x0) = Lu(x0) +∑
i

bi(x0)
∂u

∂xi
(x0)

= Lu(x0) = ∆zu(x0) ≤ 0,

a contradiction. Thus we infer that u cannot attain a local maximum at a point of Ω.
Requiring uniform ellipticity, this property may be extended to the case of large di�erential

inequalities. From now on we suppose that the dimension n ≥ 2.

Theorem 1.1.1 (Maximum Principle, �rst version). Let Ω be an open connected subset of

Rn and u ∈ C2(Ω) satisfy the di�erential inequality

Lu = ∑
i,j

ai,j
∂2u

∂xi∂xj
+∑

i

bi
∂u

∂xi
≥ 0 (1.4)

in Ω, where L is a uniformly elliptic di�erential operator in Ω with uniformly bounded coe�cients

ai,j, bi. Then, if there exist M ∈ R, P ∈ Ω such that u ≤M in Ω and u(P ) =M , one has

u ≡M in Ω.

Proof. By contradiction, suppose that P,Q ∈ Ω satisfy the property u(P ) =M > u(Q). Then we
can �nd a continuous path γ ∶ [0,1] → Ω such that

γ(0) = Q γ(1) = P .

Denoted by R = γ(tR) the �rst point in which u(R) =M , it's clear that

u(γ(t)) <M , for any 0 ≤ t < tR.

Let d ∶= dist(γ, ∂Ω) and pick P1 = γ(t), for some 0 < t < tR, such that ∣P1 − R∣ < d/2: we can
consider the biggest open ball B centered at P1 in which u < M . Such a ball needs to have a
radius strictly smaller than d/2, and then to be contained in Ω. Let S ∈ ∂B be a point such that
u(S) = M , and denote by B1 the only ball tangent to ∂B at S (it's the only ball B1 with the
properties S ∈ ∂B1, B1 ∖ {S} ⊂ B): we note that

u <M in B1 ∖ {S}.

Denoted by r1 the radius of B1, let B2 be the ball of center S and radius r2 = r1/2.
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Consider

C ′
2 ∶= ∂B2 ∩B1 C ′′

2 ∶= ∂B2 ∖C ′
2.

Being u <M on C ′
2, by compactness of C ′

2, it needs to exist a value ζ > 0 such that

u ≤M − ζ, on C ′
2.

Moreover, u ≤ M on C ′′
2 . Let ξ = (ξ1, ..., ξn) be the center of B1 and consider the following

function
z(x) ≡ e−α∑ni=1(xi−ξi)2 − e−αr2

1 (1.5)

where α > 0 has to be suitably de�ned. We note that

z > 0 in B1

z = 0 on ∂B1

z < 0 elsewhere.

Now

Lz = e−α∑nk=1(xk−ξk)2[4α2
n

∑
i,j=1

ai,j(xi − ξi)(xj − ξj)+

− 2α(ai,i + bi(xi − ξi))] ≥ (by uniform ellipticity and
n

∑
k=1

(xk − ξk)2 ≥ r2
1/4)

≥ αe−α∑nk=1(xk−ξk)2[αµ0r
2
1 − 2

n

∑
i=1

(ai,i + bi(xi − ξi))]

> 0 in B2,

up to a choice of a enough big α. De�ne w ≡ u + εz, 0 < ε < ζ

1−e−αr
2
1
. We have:

(1) w <M on C ′
2 (because 0 ≤ z ≤ 1 − e−αr2

1 and so εz < ζ, w = u + εz < u + ζ ≤M);

(2) w <M on C ′′
2 (because z < 0 on C ′′

2 , and u ≤ 0 everywhere);

(3) w =M at S (being z(S) = 0).

These three observations imply that w has a maximum in B2, and we also know that

Lw = Lu + εLz > 0 in B2.

This is a contradiction, thanks to the computation performed before. QED

The result just shown can be extended as follows

Theorem 1.1.2 (Maximum Principle, second version). Let Ω be an open connected subset

of Rn and u ∈ C2(Ω) satisfy the di�erential inequality

(L + h)u = ∑
i,j

ai,j
∂2u

∂xi∂xj
+∑

i

bi
∂u

∂xi
+ hu ≥ 0 (1.6)

in Ω, where L + h is a uniformly elliptic di�erential operator in Ω with uniformly bounded co-

e�cients ai,j, bi, h and h ≤ 0. Then, if there exist M ≥ 0, P ∈ Ω such that u ≤ M in Ω and

u(P ) =M , one has

u ≡M in Ω.

The proof is the same, up to the following straightforward remark: if (L + h)u > 0, u cannot
attain a nonnegative local maximum in Ω.

Attention! The thesis turns out to be false if h ≰ 0: for example u(x) ≡ e−∣x∣2 solves

∆u + (2 − 4∣x∣2)u = 0 in Rn

but has a maximum at the origin.
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1.1.2 Hopf Lemmas

Let Ω be an open subset of Rn and assume that u ∶ D → R, D ⊃ Ω, satis�es the di�erential
inequality (1.4). Let P ∈ ∂Ω ∩ D and suppose that u is continuous at P , u(P ) = supΩ u =
maxΩ∪{P} u. It's intuitively clear that any directional derivative of u with respect to a direction
pointing to the outside of Ω has to be nonnegative. Actually something stronger holds.

De�nition 1.1.2. Let Ω ⊂ Rn be an open subset and u ∶ Ω → R be a function which admits
�rst partial derivatives in Ω. Given P ∈ ∂Ω and a vector ν ∈ Rn, we say that u is derivable in the

direction ν at P provided that the limit

lim
x→P
x∈Ω

ν ⋅ ∇u(x) ∶= ∂u
∂ν

(P )

exists in R.

If ν points to the outside of Ω and u is derivable in the direction ν at P ,
∂u

∂ν
(P ) is also called

outer derivative of u in the direction ν at P . The following result aims to formalize the heuristic
observation done at the beginning of the subsection.

Lemma 1.1.3. Let Ω be an open subset in Rn and, given P ∈ ∂Ω, suppose that there exists a
coordinate cylinder 1 C ≡ C(P,R, r, δ) for Ω around P such that the map

γ ∶ BRn−1(0, r] →] − δ, δ[

representing ∂Ω in C is di�erentiable at 0. Let ν ∈ Rn satisfy ν ⋅ n > 0 where

n ≡ RT (−∇γ(0),1)T 1√
1 + ∣∇γ(0)∣2

is the outer normal to ∂Ω at P . Then ν points to the outside of Ω and, if u ∶ D → R, D ⊃ Ω,
admits �rst order partial derivatives in Ω, P ∈ ∂Ω ∩D, u is continuous at P and

u(P ) = sup
Ω
u = max

Ω∪{P}
u,

then
∂u

∂ν
(P ) ≥ 0.

Proof. For ε > 0 enough small, we have that P − tν ∈ Ω, for any 0 < t < ε, because −ν ⋅ n < 0 and
thus −ν points to the interior of Ω. Consider the function

]0, ε[∋ t→ v(t) ≡ u(P − tν).

By contradiction, let
∂u

∂ν
(P ) < 0. We have v(0) ≥ v(t), for any 0 < t < ε, v is derivable and

v′(t) = −∇(P − tν) ⋅ ν

and limt→0+ −∇(P − tν) ⋅ ν = −∂u
∂ν

(P ) > 0. So, up to a restriction of ε, we can assume that v′ > 0

on 0 < t < ε. Therefore

u(P ) = v(0) = lim
t→0+

v(t) ≤ v(ε/4) < v(ε/2) = u(P − ε
2
ν),

and this is a contradiction. QED

1Given an orthogonal matrix R and r, δ > 0, we say that C(P,R, r, δ) ∶= P + RT (BRn−1(0, r[×] − δ, δ[) is a
coordinate cylinder for an open Ω around a point P ∈ ∂Ω provided that there exists a map γ ∶ BRn−1(0, r[→]−δ, δ[
such that γ(0) = 0, γ < δ/2 and

R(Ω − P ) ∩ (BRn−1(0, r[×] − δ, δ[) = {(η, y) ∈ BRn−1(0, r[×] − δ, δ[ s.t y < γ(η)}.

We say that γ represents ∂Ω in the coordinate cylinder.
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We now want to state and prove a boosted version of this result, valid for solutions to (1.4).
To do so, we need to impose a well known regularity condition.

De�nition 1.1.3. Let Ω be an open subset of Rn. We say that Ω satis�es the interior sphere

condition at a point x0 ∈ ∂Ω if there exist a point x ∈ Ω and a radius r > 0 such that

x0 ∈ ∂B(x, r[, B(x, r] ∖ {x0} ⊂ Ω.

Theorem 1.1.3 (Hopf Lemma, �rst version). Let Ω ⊂ Rn be an open subset of Rn and

u ∶ D → R, D ⊃ Ω, be a solution to (1.4), where the coe�cients ai,j, bi of the operator L are

assumed uniformly bounded. Suppose that there exist M ∈ R and P ∈ ∂Ω ∩D such that u ≤M in

Ω, u is continuous at P and u(P ) = M . Then, if Ω respects the interior sphere condition at P
and u admits outer partial derivative at P with respect to a direction ν ∈ Rn, one has

∂u

∂ν
(P ) > 0,

unless u is constant on the connected component whose boundary contains P .

Proof. Let B1 be an open ball such that P ∈ ∂B1, B1 ∖{P} ⊂ Ω. Set r1 > 0 the radius of B1, and
consider the ball centered at P and of radius r2 = r1/2. Consider the map z de�ned at (1.5) and
pick again an α > 0 in order that Lz > 0. We can consider

w ≡ u + εz:

thanks to Maximum Principle 1.1.1, if u is nonidentically M in the connected component, then
u <M in B1 and on ∂B1∖{P}. Let's choose ε > 0 small enough in order that w ≤M on ∂B2∩B1:
then w ≤M on the boundary of the grey region in the �gure below.

Being Lw > 0 in this region, the maximum needs to be attained on the boundary, and so
necessarily at P (because w(P ) =M). Therefore

∂w

∂ν
(P ) = ∂u

∂ν
(P ) + ε∂z

∂ν
(P ) ≥ 0,

where, observed that ν points to the outside of B1, the last inequality is a direct consequence

of Lemma 1.1.3. In order to conclude, it su�cies to show that
∂z

∂ν
(P ) < 0: this fact follows

immediately using the de�nition of z and the fact that n ⋅ν > 0, where n is the outer, unit normal
to ∂B1 at P . QED

Like the Maximum Principle, also the Hopf Lemma can be generalized.
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Theorem 1.1.4 (Hopf Lemma, second version). Let Ω ⊂ Rn be an open subset of Rn and

u ∶D → R, D ⊃ Ω, be a solution to (1.6), where the coe�cients ai,j, bi, h of the operator L+h are

uniformly bounded and h ≤ 0. Suppose that there exist M ≥ 0 and P ∈ ∂Ω∩D such that u ≤M in

Ω, u is continuous at P and u(P ) = M . Then, if Ω respects the interior sphere condition at P
and u admits outer partial derivative at P with respect to a direction ν ∈ Rn, one has

∂u

∂ν
(P ) > 0,

unless u is constant on the connected component whose boundary contains P .

Again, omitting the assumption about the nonpositivity of h, Hopf Lemma fails to hold: to
see this, it su�cies to consider the same counterexample exploited in the past section, set P = 0
and vary suitably the domain of de�nition of the function (picking for example Ω ≡ {xn > 0}).

1.1.3 A slight generalization of the Hopf Lemma and the Maximum Principle

In the second chapter we will need a Maximum Principle and a Hopf Lemma holding for uniformly
elliptic operators with arbitrary zero order term: in this sense, a slight generalization to this case
can be done, as we show in this section. It's anyway clear that the generality of the previous
versions of the Maximum Principle and the Hopf Lemma will be necessarily lost (recall the
counterexample used in the second section). Let the hypotheses of Theorem 1.1.2 be in force, up
to the assumption h ≤ 0, and suppose additionally that M = 0. Up to translations, let P = 0, and
set

L̃ ≡ L + h
v ≡ e−αx1u, α > 0 constant to be decided. (1.7)

We note that, setting

L0 ≡ ∑
i,j

ai,j
∂2

∂xi∂xj
+∑

i

(bi + 2αai,1)
∂

∂xi
,

one has

0 ≤ L̃u = eαx1L0v + L̃(eαx1)v =
= eαx1L0v + eαx1v(a1,1α

2 + b1α + h),

and so 0 ≤ L0v + v(a1,1α
2 + b1α + h). Set gα ≡ a1,1α

2 + b1α + h: choosing α big enough, gα is
nonnegative, and thus L0v ≥ 0, because v ≤ 0. If u(P ) = 0, then v(P ) = 0 and thus the �rst
version of the Maximum Principle allows us to deduce that v ≡ 0, namely u ≡ 0.

Similarly, skipping the assumption about the nonpositivity of h in Theorem 1.1.4, let M = 0,
P = 0 (without loss of generality) and de�ne v like we did in (1.7). The computations just made

ensure that
∂v

∂ν
(P ) > 0, for any outer direction ν. Therefore, being

∂u

∂ν
(P ) = ∂v

∂ν
(P ),

we conclude that
∂u

∂ν
(P ) > 0, unless u (or equivalently v) is identically zero. Thus we have proved

the following third version of the Maximum Principle.

Theorem 1.1.5 (Maximum Principle, third version). Let Ω be an open connected subset

of Rn and u ∈ C2(Ω) satisfy the di�erential inequality (1.6) in Ω, where the coe�cients ai,j, bi,
h of the operator L + h are assumed uniformly bounded. Then, if u ≤ 0 in Ω and u(P ) = 0, for
some P ∈ Ω, one has

u ≡ 0 in Ω.
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We have also a third version of the Hopf Lemma.

Theorem 1.1.6 (Hopf Lemma, third version). Let Ω ⊂ Rn be an open subset and u ∶D → R,
D ⊃ Ω, be a solution to (1.6), where the coe�cients ai,j, bi, h of the operator L + h are assumed

uniformly bounded. Suppose that u ≤ 0 in Ω, and there exists P ∈ ∂Ω∩D such that u is continuous

at P and u(P ) = 0. Then, if Ω respects the interior sphere condition at P and u admits outer

partial derivative at P with respect to a direction ν ∈ Rn, one has
∂u

∂ν
(P ) > 0,

unless u is constant on the connected component whose boundary contains P .

1.2 Remarks about the notions of solution and weak solution

De�nition 1.2.1. Let Ω ⊂ Rn, n ≥ 2, be an open subset and f ∶ Ω × R → R be a function.
Consider the equation

−∆u = f(x,u) in Ω. (1.8)

We say that a map u ∈ C2(Ω) is a:
(i) subsolution to equation (1.8) in Ω provided that

−∆u ≤ f(x,u) in Ω;

(ii) supersolution to equation (1.8) in Ω provided that

−∆u ≥ f(x,u) in Ω;

(iii) solution to equation (1.8) in Ω if it's both a subsolution and a supersolution, namely if

−∆u = f(x,u) in Ω.

We now aim to weaken the notions given above. From now on, we denote by Ckc (Ω)≥0, k ≥ 0,
the class of those maps of class Ck compactly supported in Ω and nonnegative there.

With respect to the setting of De�nition 1.2.1, let u be a subsolution (resp. supersolution,
solution) to (1.8). Then, for any ζ ∈ C∞c (Ω)≥0, one has:

∫
Ω
(∆u + f(x,u))ζ dx ≥ 0 (≤ 0,= 0). (1.9)

A straightforward computation guarantees that, for any φ ∈ C1(Ω), ψ ∈ C2(Ω), the following
identity holds

div(φ∇ψ) = ∇φ ⋅ ∇ψ + φ∆ψ. (1.10)

Thus ζ∆u = u∆ζ + div(ζ∇u) − div(u∇ζ) (use the relation (1.10) �rst with φ = ζ, ψ = u, then
with φ = u, ψ = ζ and �nally subtract the second identity to the �rst one). Applying the Diver-
gence Theorem to ζ∇u and u∇ζ and observing that these two vector �elds are both compactly
supported in Ω, we infer

∫
Ω
ζ∆udx = ∫

Ω
u∆ζ dx.

Then, by (1.9), we deduce that

∫
Ω
(u∆ζ + f(x,u)ζ)dx ≥ 0 (≤ 0,= 0). (1.11)

In particular, (1.9) holds true if and only if (1.11) holds true: the asset given by the second
formulation is that does not require any regularity condition on u, and then can be exploited to
generalize the notion of subsolution (resp. supersolution, solution). We have then justi�ed the
following
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De�nition 1.2.2. A map u ∈ L1
loc(Ω) such that f(⋅, u(⋅)) ∈ L1

loc(Ω) is said to be a:

(i) weak subsolution to equation (1.8) in Ω if, for every ζ ∈ C∞c (Ω)≥0,

∫
Ω
(u∆ζ + f(x,u)ζ)dx ≥ 0;

(ii) weak supersolution to equation (1.8) in Ω if, for every ζ ∈ C∞c (Ω)≥0,

∫
Ω
(u∆ζ + f(x,u)ζ)dx ≤ 0;

(iii) solution to equation (1.8) in Ω if, for every ζ ∈ C∞c (Ω)≥0,

∫
Ω
(u∆ζ + f(x,u)ζ)dx = 0.

Note that nothing changes substituting C∞c (Ω)≥0 with Ckc (Ω)≥0, k ≥ 0, or even with Ckc (Ω) in
(iii). In addition, the Fundamental Lemma of the Calculus of Variations ensures that, if f(⋅, u(⋅))
is continuous in Ω, a function u of C2 class is a subsolution (resp. supersolution, solution) in Ω
if and only if it's a weak subsolution (resp. supersolution, solution) in Ω.

If f ≡ 0 we adopt a more speci�c terminology.

De�nition 1.2.3. Let Ω ⊂ Rn, n ≥ 2, be an open subset. A map u ∈ C2(Ω) is said to be subhar-
monic (resp. superharmonic, harmonic) in Ω provided that it is a subsolution (resp. supersolution,
solution) to the Laplace Equation

−∆u = 0 in Ω. (1.12)

De�nition 1.2.4. Let Ω in Rn, n ≥ 2, be an open subset. A map u ∈ L1
loc(Ω) is said to be

weakly subharmonic (resp. weakly superharmonic, weakly harmonic) in Ω provided that it is a
weak subsolution (resp. weak supersolution, weak solution) to equation (1.12).

Even if we will not use these facts, it's anyway better to recall that:

(a) harmonic functions are of class C∞;

(b) any weakly harmonic map coincides a.e. with a harmonic map (Weyl's Lemma).

Let's start giving two properties which will turn out to be useful.

Lemma 1.2.1. The following statements hold:

(i) if u is a (weak) subsolution to equation (1.8) in Ω with f ≤ 0, then u is (weakly) subhar-
monic;

(ii) if u is a (weak) supersolution to equation (1.8) in Ω with f ≥ 0, then u is (weakly) super-
harmonic.

The following Lemma will be often used along the third chapter in the particular case in
which φ is the re�ection in a hyperplane like γ ⋅ x = λ, for some unit vector γ.

Lemma 1.2.2. Let Ω, Ω̃ ⊂ Rn, n ≥ 2, be two open subsets and f ∶ (Ω∪ Ω̃)×R→ R be a function.
Suppose that u ∈ L1

loc(Ω ∪ Ω̃) is a weak subsolution to

−∆u = f(x,u), in Ω

and a weak supersolution to
−∆u = f(x,u), in Ω̃.
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Let φ ∈ C2(Ω, Ω̃) be a di�eomorphism such that Jac(φ)2 coicides with the identical matrix,
div(ei ⋅ Jac(φ)) ≡ 0, for any i, and assume that

f(φ(x), u(φ(x))) ≥ f(x,u(x)), for a.e. x ∈ Ω.

Then u ○ φ − u is a weakly superharmonic map in Ω.

Proof. For any ζ ∈ C∞c (Ω)≥0, we have

∫
Ω
(u∆ζ + f(x,u)ζ)dx ≥ 0.

Furthermore

∫
Ω
(u(φ(x))∆ζ(x)+f(φ(x), u(φ(x)))ζ(x))dx = ∫

Ω̃
(u(y)∆ζ(φ−1(y))+f(y, u(y))ζ(φ−1(y)))dy ≤ 0,

because the conditions on φ ensure that ∆ζ(φ−1(y)) = ∆ζ̃(y), where we set ζ̃(y) ≡ ζ(φ−1(y)),
ζ̃ ∈ C∞c (Ω̃)≥0. Therefore

∫
Ω
((u(φ(x))−u(x))∆ζ(x))dx ≤ ∫

Ω
((u(φ(x))−u(x))∆ζ(x)+(f(φ(x), u(φ(x)))−f(x,u(x))))dx ≤ 0,

and we conclude. QED

The following result and the further Corollary stated below are very important: in fact,
developing the re�ection technique, they permit to overcome the problem of the presence of the
singularity at the origin using a weak notion of solution.

Lemma 1.2.3. Let u ∈ C2(B(0,2[∖{0}), u ≥ 0, solve the following equation

−∆u = g(u) in B(0,2[∖{0} (1.13)

in dimension n ≥ 3. Assume that:

(i) g(t) ≥ 0, as t ≥ 0;

(ii) lim inf
t→∞

g(t)
tp

> 0, for some p ≥ n

n − 2
.

Then u ∈ Lp(B(0,1[), g(u) ∈ L1(B(0,1[) and u is a weak solution to equation (1.13) in B(0,1[.

Proof. Let k > max∂B(0,1[ u, and pick a nonincreasing map φ ∈ C∞(R) such that

φ(t) =
⎧⎪⎪⎨⎪⎪⎩

1 if t < k
0 if t ≥ 2k

and set Φ(t) ∶= ∫ t0 φ(τ)dτ . Moreover, �xed 0 < ε < 1/2 arbitrarily, let η ≡ η(∣x∣) be a radial
function such that

η(r) =
⎧⎪⎪⎨⎪⎪⎩

0 if 0 ≤ r < ε
1 if r ≥ 2ε.

(1.14)

We may consider ψ(x) ≡ φ(u(x))η(∣x∣), as x ∈ B(0,2[, because η is identically zero in B(0, ε[,
and then we have

∫
B(0,1[

∇u ⋅ ∇ψ dx = ∫
B(0,1[

div(ψ∇u)dx − ∫
B(0,1[

ψ∆udx = ∫
B(0,1[

ψg(u)dx + ∫
∂B(0,1[

∂u

∂ν
dσ.



CHAPTER 1. SOME PRELIMINARY RESULTS 19

Now, observing that φ′ ≤ 0 and ∇η ≡ 0 out of B(0,1[, one has:

∫
B(0,1[

∇u ⋅ ∇ψ dx = ∫
B(0,1[

ηφ′(u)∣∇u∣2 dx + ∫
B(0,1[

∇Φ(u) ⋅ ∇η dx ≤

≤ ∫
∂B(0,1[

Φ(u)∇η ⋅ ∧ndσ − ∫
B(0,1[

Φ(u)∆η dx = −∫
B(0,1[

Φ(u)∆η dx = O(εn−2) as ε→ 0+,

up to a good choice of the map η. Then

∫
B(0,1[

ηφ(u)g(u)dx + ∫
∂B(0,1[

∂u

∂ν
dσ = O(εn−2)

and letting ε→ 0+ we get

∫
B(0,1[

φ(u)g(u)dx ≤ −∫
∂B(0,1[

∂u

∂ν
dσ;

in particular being φ(u) ≥ 0, g(u) ≥ 0, we have

∫
B(0,1[∩{u<k}

g(u)dx ≤ −∫
∂B(0,1[

∂u

∂ν
dσ

Letting k →∞ we infer that g(u) is L1(B(0,1[). For u, we consider two cases:

(a) u is bounded in B(0,1[: in this case u ∈ Lp(B(0,1[) needs to hold;

(b) u is not bounded in B(0,1[: we note that assumption (ii) guarantees that, as M > 0 is big
enough, one has

inf
s≥M

g(s)
sp

∈] l
2
,
3

2
l[,

where l ∶= lim inf
t→∞

g(t)
tp

> 0. Then, as u(x) ≥M ,

g(u(x))
u(x)p ≥ inf

{u≥M}

g(u)
up

≥ inf
s≥M

g(s)
sp

≥ l

2
,

and then u(x)p ≤ 2

l
g(u(x)). Thus

∫
B(0,1[

u(x)p dx = ∫
{u<M}∩B(0,1[

u(x)p dx+∫
{u≥M}∩B(0,1[

u(x)p dx ≤Mpωn+
2

l
∫
B(0,1[

g(u)dx < ∞.

In order to conclude, it su�cies to demonstrate that

∫
B(0,1[

u∆ζ + g(u)ζ dx = 0, for any ζ ∈ C∞c (B(0,1[).

By hypoteses, u is a classical solution on B(0,2[∖{0} and then is a classical (hence weak) solution
on B(0,1[∖{0}. We immediately note that ηζ ∈ C∞c (B(0,1[∖{0}), hence

0 = ∫
B(0,1[

u∆(ηζ) + g(u)ηζ dx = ∫
B(0,1[

η(u∆ζ + g(u)ζ)dx + ∫
B(0,1[

u(ζ∆η + 2∇η ⋅ ∇ζ)dx.

Thus we infer:

∣ ∫
B(0,1[

η(u∆ζ + g(u)ζ)dx∣ ≤ ∫
B(0,1[

u∣ζ∆η + 2∇η ⋅ ∇ζ ∣dx ≤ C
ε2
∫
B(0,2ε[∖B(0,ε[

udx ≤

≤ C̃
ε2
ε
n(1− 1

p
) ∣∣u∣∣Lp(B(0,2ε[) = O(εn−2−n

p )∣∣u∣∣Lp(B(0,2ε[) as ε→ 0+,

and we conclude the proof. QED
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Observe that actually u is a weak solution in B(0,2[ whole. To prove so, we can argue in
the following way: �rst we observe that u is of class C2 in the open B(0,2[∖B(0,1], and g(u)
is necessarily continuous there (being ∆u continuous), so surely u and g(u) are both locally
integrable in the open annulus B(0,2[∖B(0,1], and then are locally integrable in B(0,2[ whole.
Then let ζ ∈ C∞c (B(0,2[), and suppose that, as ε > 0, ρε ∈ C∞(B(0,2[) is a radial function such
that 0 ≤ ρε ≤ 1 and

ρε ≡ 1 in B(0,1 − ε] ∪ (B(0,2[∖B(0,1 + ε[)
ρε ≡ 0 in B(0,1 + ε/2] ∖B(0,1 − ε/2[
∣∇ρε∣ ≤ C/ε, ∣∆ρε∣ ≤ C/ε2.

Then, for any ε > 0, by the fact that u is a (classical) solution in B(0,2[∖B(0,1[ and a weak
solution in B(0,1[,

0 = ∫
B(0,2[

(u∆(ρεζ) + g(u)(ρεζ))dx =

= ∫
B(0,2[

ρε(u∆ζ + g(u)ζ)dx + ∫
B(0,1+ε]∖B(0,1−ε[

(2u∇ζ ⋅ ∇ρε + uζ∆ρε)dx.

We note that the �rst term converges to ∫B(0,2[(u∆ζ + g(u)ζ)dx as ε → 0+ and the second one

is bounded by C(u, ζ)(εn−1 + εn−2) in modulus, and so shrinks to 0 as ε→ 0+. This is enough to
conclude that u weakly solves the equation in the open ball of radius 2 too. So we've proved the
following, stronger result.

Corollary 1.2.1. Let u ∈ C2(B(0,1[∖{0}), u ≥ 0 solve the following equation

−∆u = g(u) in B(0,1[∖{0} (1.15)

in dimension n ≥ 3. Assume that:

(i) g(t) ≥ 0, as t ≥ 0;

(ii) lim inf
t→∞

g(t)
tp

> 0, for some p ≥ n

n − 2
.

Then u ∈ L1
loc(B(0,1[), g(u) ∈ L1

loc(B(0,1[), and u weakly solves equation (1.15) (in B(0,1[).

1.3 A Maximum Principle for weakly subharmonic functions

In this section we demonstrate a Maximum Principle for weakly subharmonic functions. This
result will be used in the proof of the Re�ection Theorem: we will exploit the whole power of this
Maximum Principle, in particular the fact that it doesn't require the continuity of the weakly
subharmonic function. We start with the following sort of Comparison Principle for weakly
subharmonic maps.

Lemma 1.3.1. Let u be a weakly subharmonic and upper semicontinuous function in a open
Ω, x0 ∈ Ω and r > 0 be such that B(x0, r] ⊂ Ω. Then

u(x0) ≤ ⨏
∂B(x0,r[

udσ

Proof. We give the proof only in a easier setting, i.e. assuming u continuous. Let φ be a molli�er
and, for any ε > 0, consider

uε(x) ∶= (uχΩ) ∗ φε(x) = ∫
Ω
u(y)φε(x − y)dy.
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We have ∣∣uε − u∣∣L∞(B(x0,r]) → 0 as ε→ 0+. The weak subharmonicity of u ensures that

−∆uε(⋅) = −∫
Ω
(u(y)∆φε(⋅ − y))dy ≤ 0,

and then that uε is subharmonic. For 0 < ρ ≤ r, let

Φ(ρ) ≡ ⨏
∂B(x0,ρ[

uε(x)dσ(x) = ⨏
∂B(0,1[

uε(x0 + ρy)dσ(y):

Φ is continuous and, as 0 < ρ < r, by the Divergence Theorem,

Φ′(ρ) = ⨏
∂B(0,1[

∇uε(x0 + ρy) ⋅ y dσ(y)

= ⨏
∂B(x0,ρ[

∇uε(x) ⋅
x − x0

ρ
dσ(x)

= ⨏
B(x0,ρ[

∆uε(x)dx ≥ 0

Then uε(x0) = limρ→0+ Φ(ρ) ≤ limρ→r− Φ(ρ) = ⨏∂B(x0,r[ uε dσ and thus, given δ > 0, picking ε > 0
small enough,

u(x0) ≤ uε(x0) + δ ≤ ⨏
∂B(x0,r[

uε dσ + δ ≤ ⨏
∂B(x0,r[

udσ + 2δ,

and the arbitrariness of δ allows us to conclude. QED

Clearly a dual version of the result above can be stated for u weakly superharmonic, observing
that −u is weakly subharmonic.

The proof of the general statement is less easy, and requires a precise study of the Lebesgue
set of a weakly subharmonic function: in other words, one �rst proves that Lemma 1.3.1 holds
true under the further assumption that the Lebesgue set of u is Ω whole, and then shows that the
Lebesgue set of a weakly subharmonic function coincides exactly with Ω. All this machinery is
exhaustively exposed in [9]: in particular Lemma 1.3.1 turns out to be an immediate consequence
of Theorem 4.3 and Theorem 1.2 of that work used in tandem.

We are �nally ready to demonstrate the following

Theorem 1.3.1. Let Ω ⊂ Rn, n ≥ 2, be an open, connected subset and u be a weakly subharmonic,

upper semicontinuous map in Ω. IfM ∈ R is such that u ≤M in Ω, and there exists a point x0 ∈ Ω
in which u(x0) =M , then u is identically M in Ω.

Proof. Let r > 0 be such that B(x0, r] ⊂ Ω. Then

M = u(x0) ≤ ⨏
∂B(x0,r[

udσ,

and thus u has to be identically M on ∂B(x0, r[: as a matter of fact, by upper semicontinuity of
u, if there exists x∗ ∈ ∂B(x0, r[ such that u(x∗) <M , then there is a neighbourhood U of x∗ in
∂B(x0, r[ such that as x ∈ U one has u(x) < (u(x∗) +M)/2. Thus

M = u(x0) ≤ ⨏
∂B(x0,r[

udσ

= ∣∂B(x0, r[∣−1 (∫
∂B(x0,r[∖U

udσ + ∫
U
udσ)

≤ ∣∂B(x0, r[∣−1 (∣∂B(x0, r[∖U ∣M + ∣U ∣ u(x
∗) +M
2

)

< ∣∂B(x0, r[∣−1 (∣∂B(x0, r[∖U ∣M + ∣U ∣M)
=M ,
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and this is a contradiction. Applying this argument to all the radii 0 < ρ < r and using the
equality u(x0) =M , we infer that u is identically M in the ball B(x0, r]. A chaining argument
and the connectedness of Ω permit to conclude. QED

1.4 An estimate for the solution to a Dirichlet Problem

The aim of this part is very technical: we want to estimate the Schauder norm ∣∣ ⋅ ∣∣C1,β(Ω) of the
solution to a homogeneous Dirichlet Problem associated to the Poisson Equation −∆u = f by
the L2(Ω) norm of f . Such an estimate will be used in the third chapter in order to prove an
Extension Lemma (Lemma 3.3.3).

We begin recalling some facts, �rst of all the theory about the homogeneous Dirichlet Problem
for the Poisson Equation, and second a regularity result. Let Ω ⊂ Rn, n ≥ 2, be an open, bounded
subset. We denote by H1(Ω) the Sobolev space W 1,2(Ω), and we set H1

0(Ω) the enclosure of
the space of the test functions C∞c (Ω) in H1(Ω). Given f ∈ L2(Ω), consider the homogeneous
Dirichlet Problem

−∆u = f in Ω

u = 0 on ∂Ω.
(1.16)

For such a problem one can formulate a very natural notion of weak solution (such that, in
particular, this new de�ntion in an "average" of the notions of classical solution and weak solution
to −∆u = f).

De�nition 1.4.1. A function u ∈H1(Ω) is said to be a H1
0(Ω)-weak solution to problem (1.16)

provided that u ∈H1
0(Ω) and

∫
Ω
Du ⋅Dv dx = ∫

Ω
fv dx,

for every v ∈H1
0(Ω).

We immediately observe that if u is a H1
0(Ω)-weak solution to (1.16) then u is a weak solution

to −∆u = f . As a matter of fact, for any ζ ∈ C∞c (Ω), taken a smooth open subset Ω′ ⊂⊂ Ω 2 such
that supp ζ ⊂ Ω′, one has

∫
Ω
(u∆ζ + fζ)dx = ∫

Ω′
(u∆ζ + fζ)dx = (Trace Theorem)

= −∫
Ω′
Du ⋅Dζ dx + ∫

∂Ω′
(Tu)(Dζ ⋅ ν)dHn−1 + ∫

Ω′
fz dx

= −∫
Ω′
Du ⋅Dζ dx + ∫

Ω′
fζ dx = 0.

One can prove the following, exhaustive

Theorem 1.4.1. For f ∈ L2(Ω), the Dirichlet boundary value problem (1.16) has exactly one

H1
0(Ω)-weak solution.

We recall that the scalar product

⟨f, g⟩ ∶= ∫
Ω
(fg +Df ⋅Dg)dx

gives H1(Ω) a Hilbert Space structure, and consequently, by closedness, also

(H1
0(Ω), ⟨⋅, ⋅⟩)

2With this notation we mean that Ω′ is a bounded open subset such that Ω′ ⊂ Ω.
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is a Hilbert Space. The Poincaré's Inequality ensures also that the form in H1
0(Ω)

⟨f, g⟩∗ ∶= ∫
Ω
Df ⋅Dg dx

is a scalar product that induces a norm ∣∣⋅∣∣∗ equivalent (just in H1
0(Ω)) to the norm ∣∣⋅∣∣ = ∣∣⋅∣∣H1(Ω)

associated to ⟨⋅, ⋅⟩. Therefore (H1
0(Ω), ⟨⋅, ⋅⟩∗) is an Hilbert Space, and the Hilbert structures

(H1
0(Ω), ⟨⋅, ⋅⟩) (H1

0(Ω), ⟨⋅, ⋅⟩∗)

are equivalent in the sense that, for a suitable constant C∗ ≡ C∗(Ω), one has

∣∣f ∣∣∗ = (∫
Ω
∣Df ∣2 dx)

1/2
≤ (∫

Ω
(∣f ∣2+∣Df ∣2)dx)

1/2
= ∣∣f ∣∣ ≤

√
C2
∗ + 1(∫

Ω
∣Df ∣2 dx)

1/2
=
√
C2
∗ + 1∣∣f ∣∣∗,

for all f ∈H1
0(Ω). Then, by de�nition of H1

0(Ω)-weak solution, we deduce the following estimate

∣∣Du∣∣L2(Ω) = ∣∣u∣∣∗ = sup
v∈H1

0(Ω)
∣∣v∣∣∗≤1

⟨u, v⟩∗ = sup
v∈H1

0(Ω)
∣∣v∣∣∗≤1

∫
Ω
Du ⋅Dv dx = sup

v∈H1
0(Ω)

∣∣v∣∣∗≤1

∫
Ω
fv dx (1.17)

≤ sup
v∈H1

0(Ω)
∣∣v∣∣L2(Ω)≤C∗

∫
Ω
fv dx

≤ sup
v∈L2(Ω)

∣∣v∣∣L2(Ω)≤C∗

∫
Ω
fv dx = C∗∣∣f ∣∣L2(Ω).

Moreover we have
∣∣u∣∣L2(Ω) ≤ C∗ ∣∣u∣∣∗ ≤ C∗2 ∣∣f ∣∣L2(Ω).

We now introduce a regularity estimate. We recall that, given a Lipschitz open bounded subset
Ω ⊂ Rn, n ≥ 2, the Morrey Space of exponents 1 ≤ p < ∞, λ ≥ 0 is de�ned as

Lp,λ(Ω) ∶=
⎧⎪⎪⎨⎪⎪⎩
u ∈ Lp(Ω) s.t. sup

x0∈Ω
ρ>0

ρ−λ∫
Ω∩B(x0,ρ[

∣u∣p dx < ∞
⎫⎪⎪⎬⎪⎪⎭
.

The Morrey Space Lp,λ(Ω) can be endowed with the norm de�ned by

∣∣u∣∣2Lp,λ(Ω) ∶= sup
x0∈Ω
ρ>0

ρ−λ∫
Ω∩B(x0,ρ[

∣u∣p dx.

Moreover in local sense, for any open subset Ω, we set

Lp,λloc (Ω) ∶=
⎧⎪⎪⎨⎪⎪⎩
u ∈ Lploc(Ω) s.t. u∣Ω′ ∈ Lp,λ(Ω′), for any Lipschitz open subset Ω′ ⊂⊂ Ω

⎫⎪⎪⎬⎪⎪⎭
.

We have the following important regularity result.

Theorem 1.4.2. Given an open subset Ω ⊂ Rn, n ≥ 2, let u ∈W 1,2
loc (Ω) be a weak solution to

−∆u = f ,

where f ∈ L2,λβ(Ω), λβ = 2β +n− 2, for some 0 < β < 1. Then Du is locally β-Hölder continuous.

More speci�cally, given a sequence Ω̂ ⊂⊂ Ω̃ ⊂⊂ Ω such that Ω̃ is Lipschitz, the following estimate

holds

∣Du ∶ Ω̂∣β ≤ C(∣∣Du∣∣L2(Ω̃) + ∣∣f ∣∣
L

2,λβ (Ω̃)), (1.18)

for a suitable constant C ≡ C(β,n, Ω̂, Ω̃,Ω).
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For a proof of this result (possibly in a more general setting and with quite di�erent assump-
tions), one can see for example [10].

Let's assume now that u ∈ C1,β(Ω) is a H1
0(Ω)-weak solution to (1.16), and let

f ∈ L∞(Ω) ⊂ L2(Ω).

Then, for any 0 < λ < n, �xed ρ0 > 0 arbitrarily, one has:

(1) if ρ ≥ ρ0, ρ
−λ ∫Ω∩B(x0,ρ[ ∣f ∣

2 dx ≤ ρ−λ0 ∣∣f ∣∣2L2(Ω);

(2) if ρ ≤ ρ0, ρ
−λ ∫Ω∩B(x0,ρ[ ∣f ∣

2 dx ≤ ρn−λ∣∣f ∣∣2L∞(Ω) ≤ ρ
n−λ
0 ∣∣f ∣∣2L∞(Ω) .

Therefore in particular
f ∈ ⋂

0<λ<n
L2,λ(Ω).

Fixed δ1 > 0 arbitrarily, pick Ω̂ ≡ Ω̂δ1 in order that

∣Du ∶ Ω∣β ≤ ∣Du ∶ Ω̂∣β + δ1.

By estimates (1.17), (1.18), for 0 < β < 1, up to a good choice of C ≡ C(β,n, δ1,Ω), we infer that

∣Du ∶ Ω̂∣β ≤ C(∣∣f ∣∣L2(Ω) + ∣∣f ∣∣
L

2,λβ (Ω)).

Then, for δ2 > 0, taking ρ0 = δ2 and supposing that ∣∣f ∣∣L2(Ω) ≤ δ
n/2
2 in the estimate written some

lines ago, we obtain

∣Du ∶ Ω∣β ≤ C(β,n, δ1,Ω)[δn/22 + (∣∣f ∣∣L∞(Ω) + 1)δ
n−λβ

2
2 ] + δ1 = Ξβ,n,Ω,∣∣f ∣∣L∞(Ω)(δ1, δ2).

Exploiting the inequality above, we can show the following result.

Theorem 1.4.3. Fixed c ≠ 0 and a open nonempty subset A ⊂ B(0,1[, consider the boundary

value problem
−∆w = cχA in B(0,1[

w = 0 on ∂B(0,1[.
(1.19)

Then the only H1
0(Ω)-weak solution w to (1.19) is of class C1,β(B(0,1]), for any 0 < β < 1.

Moreover, there exists σ ≡ σ(β,n, c) > 0 with the property that, since ∣A∣ ≤ σ, it follows

∣∣w∣∣C1,β(B(0,1]) ≤ 1.

Proof. Assume that w ∈ C1,β(B(0,1]) is the H1
0(B(0,1[)-weak solution to 1.19. Then w is con-

tinuous up to the boundary of the unit ball, is non identically zero, but is null on the boundary.
Therefore there is a point x0 ∈ B(0,1[ in which w attains its maximum or its minimum (if c > 0
or if c < 0 respectively). Then by di�erentiability

Dw(x0) = 0.

Thus, �xed also a point x1 ∈ ∂B(0,1[ and assuming that ∣A∣ ≤ δn2 /∣c∣2, we have:

∣Dw ∶ B(0,1[∣β ≤ Ξβ,n,c(δ1, δ2) ≡ Ξβ,n,B(0,1[,c(δ1, δ2)
∣Dw(x)∣ ≤ ∣Dw(x) −Dw(x0)∣ ≤ 2βΞβ,n,c(δ1, δ2)
∣w(x)∣ ≤ ∣w(x) −w(x1)∣ ≤ 2β+1Ξβ,n,c(δ1, δ2).
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By de�nition of Ξβ,n,c(δ1, δ2), taking for example δ1 = 1/2, choosing a good δ2 (function of β, n
and c) and setting σ(β,n, c) = δn2 /∣c∣2, we infer that

∣∣w∣∣C1,β(Ω) ≤ 1,

and the thesis follows. To conclude, it su�cies to demonstrate that that the unique H1
0(B(0,1[)-

weak solution of (1.19) is of class C1,β(B(0,1]). This fact is an immediate consequence of the
following

Theorem 1.4.4. Let Ω ⊂ Rn, n ≥ 2, be an open, bounded, connected subset, and f ∈ Lp(Ω),
for some 1 ≤ p < ∞. Then, denoted by Sn the fundamental solution to the Laplace Operator in

dimension n, the Newtonian Potential

N f(x) ≡ ∫
Ω
Sn(x − y)f(y)dy, x ∈ Ω,

is of class W 2,p(Ω) and

∆(N f) = f a.e. in Ω.

Furthermore, there exists a constant CCZ ≡ CCZ(p,n), dependent only on p and n, such that the

so called Calderon-Zygmund Inequality holds true:

∣∣D2N f ∣∣Lp(Ω) ≤ CCZ ∣∣f ∣∣Lp(Ω).

A proof of this result can be found in [5, p. 230].
The smoothness of the boundary of the ball allows to apply the well known Sobolev inclusions,

deducing that, if p > n
N f ∈W 1,p(B(0,1[) ↪ C1,1−n/p(B(0,1])

continuously. Let f ≡ cχA: it's clear that the only H1
0(B(0,1[)-weak solution to (1.19) is

w ≡ w0 −N f ,

where w0 is the unique solution to

−∆w = 0 in B(0,1[
w = N f on ∂B(0,1[.

It's known that the Schauder regularity of w0 coincides with the Schauder regularity of the
boundary datum, and therefore it's clear that, if p > n, w ∈ C1,1−n/p(B(0,1]). From the fact that

χA ∈ ⋂
p>n

Lp(B(0,1[),

it follows that w is of class C1,β(B(0,1]), for all 0 < β < 1, and we conclude. QED



Chapter 2

Symmetry properties via Re�ection

Method

In this chapter we analyze into detail work [2], studying a �rst, quite standard re�ection tech-
nique. Using this technique, we demonstrate an interesting symmetry property for solutions of
equations like −∆u + b(x)∂γu + f(u) = 0: this property turns out to ensure the radiality of the
solutions to

−∆u = f(u) in B(0,R[
u = 0 on ∂B(0,R[.

From now on, let the dimension n ≥ 2.

2.1 A re�ection technique for bounded, smooth open subsets

Let Ω ⊂ Rn be a smooth (at least C2) open, bounded, connected subset. Given a unit vector
γ ∈ Sn−1, let Tλ be the hyperplane γ ⋅ x = λ, for λ ∈ R, and, given x ∈ Rn, denote by xλ the
re�ection of x in Tλ. As λ big, Tλ does not intersect Ω. Let's move Tλ letting λ to decrease: from
a suitable value of λ on, Tλ intersects Ω and selects an open cap

Σ(λ) ∶= Ω ∩ {γ ⋅ x > λ}.

Set Σ′(λ) the re�ection of Σ(λ) in the plane Tλ. At the beginning, Σ′(λ) is contained in Ω; then
Σ′(λ) will remain in Ω until to one of the following two conditions occurs:

(a) Σ′(λ) becomes internally tangent to ∂Ω at some point P not contained in Tλ;

(b) Tλ assumes a position orthogonal to ∂Ω at some point.

We denote by λ1 the �rst value of λ such that one of the two positions (a) or (b) above is reached,
and we set

Σ(λ1) ∶= Σγ

Σ′(λ1) ∶= Σ′
γ .

We call Σγ the maximal cap associated to γ. Note that Σ′
γ is contained in Ω. The conditions (a),

(b) above are necessary, but one can immediately see that are not su�cient to guarantee that,
for λ < λ1, Σ′

λ fails to be contained in Ω (see for example the open Ω represented in the �gure at
the beginning of the next page).

26
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Let λ2 ≤ λ1 be the supremum of the values λ such that Σ′(λ) ⊈ Ω: Σ(λ2) is said to be the optimal
cap associated to γ.

2.2 The symmetry property for solutions to some elliptic equa-

tions and related consequences

We are now enabled to state and prove a symmetry result for solutions to elliptic equations.
Given a smooth open, bounded, connected subset Ω, let u ∈ C2(Ω) solve

∆u + b1(x)ux1 + f(u) = 0 in Ω, (2.1)

where b1 ∈ C0(Ω), f ∈ C1(R). Let γ = (1,0, ...,0) and Σ ∶= Σγ be the maximal cap associated to
γ. The correspondent hyperplane Tλ1 coincides with x1 = λ1 and, setting

λ0 ∶= max
x∈Ω

x1,

we have λ1 < λ0. We introduce the following hypotheses on u:

u > 0 in Ω

u ∈ C2(Ω ∩ {x1 > λ1}) (2.2)

u = 0 on ∂Ω ∩ {x1 > λ1}.

Given x ∈ Rn, we further denote by xλ the re�ection of x in Tλ.

Theorem 2.2.1. Let u like in (2.1) and suppose that u satis�es the assumptions (2.2). Assume
that b1 ≥ 0 in Σ ∪Σ′. Then, for any λ1 < λ < λ0, one has

ux1 < 0 and u(x) < u(xλ), for all x ∈ Σ(λ).

Thus ux1 < 0 in Σ and in addition, if ux1 vanishes on Tλ1 ∩Ω, u has to be symmetric with respect

to Tλ1 , Ω = Σ ∪Σ′ ∪ (Tλ1 ∩Ω) and b1 ≡ 0.

The proof will be given in the next section. First we prove some consequences of the theorem
above.
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Corollary 2.2.1. Let u ∈ C2(B(0,R]), u ≥ 0, solve

−∆u = f(u) in B(0,R[
u = 0 on ∂B(0,R[,

where f ∈ C1(R). Then u(x) ≡ u∗(∣x∣) is radial and

du∗

dr
< 0 in ]0,R[.

Proof. Applying the previous theorem, we infer that ux1 < 0, for x1 > 0, for any choiche of the
x1 axis. This fact implies that ux1 > 0 for x1 < 0, and by continuity necessarily ux1 ≡ 0 on x1 = 0.
The second part of the same theorem guarantees that u is symetric with respect to x1 and so by
arbitrariness of of the choice of the axis u is necessarily radial, and furthermore

du∗

dr
< 0 in ]0,R[.

QED

Corollary 2.2.2. Let u ∈ C2(B(0,R] ∖B(0,R′]), u ≥ 0, be a solution to

−∆u = f(u) in B(0,R[∖B(0,R′]
u = 0 on ∂B(0,R[,

where f ∈ C1(R). Then ∂ru < 0 in [R+R′2 ,R[.

Proof. Also in this case we can choose the direction x1 arbitrarily, namely associating it to
whatever unit vector γ. The previous theorem ensures that γ ⋅ ∇u < 0. Observing that the union
of the caps Σγ is exactly the ring of radii (R +R′)/2, R, and that "by structure" of the annulus

∂ru cannot vanish on ∂B(0, R+R′2 [, we conclude. QED

In particular, we have the following further consequence.

Corollary 2.2.3. Let u ∈ C2(B(0,R] ∖ {0}), u ≥ 0 solve

−∆u = f(u) in B(0,R[∖{0}
u = 0 on ∂B(0,R[,

where f ∈ C1(R). Then ∂ru < 0 in ]R2 ,R[.

This result is very weak, and, we can say, its weakness justi�es the necessity of a new, less
standard re�ection method, which will be described in the following chapter. Roughly speaking,
the presence of the hole at the center of the unit ball makes fail the argument used in Corollary
2.2.1, and so permits to infer only a poor result, as Corollary 2.2.3 is.

2.3 Proof of the Theorem 2.2.1 on the symmetry property

Before moving on to expose the proof of the theorem, it's better to state and prove two Lemmas.
Until to the end of the section, Ω is assumed to be a smooth open, bounded, connected subset.
We set ν ≡ (ν1, ..., νn) the outer unit normal vector �eld on ∂Ω. Moreover, in addition to the
hypotheses used in the following statements, we assume that u is like in (2.1) and that u respects
assumptions (2.2).
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Lemma 2.3.1. Let x0 ∈ ∂Ω be a point in which ν1(x0) > 0. For ε > 0, let

Ωε ∶= Ω ∩B(x0, ε[

and u ∈ C2(Ωε) be such that

u > 0 in Ω,

u = 0 on ∂Ω ∩B(x0, ε[.

Then there exists a δ ≡ δε > 0 such that ux1 < 0 in Ωδ.

Proof. Being u > 0 in Ω, u = 0 on ∂Ω∩B(x0, ε[, it follows that uν ≤ 0 on ∂Ω∩B(x0, ε[, and then
that ux1 ≤ 0 there (it su�cies to pick ε > 0 enough small to ensure that ν1 > 0 on ∂Ω ∩B(x0, ε[
whole). By contradiction, let the thesis be false. Then one can �nd a sequence {xj}j≥1 such that
xj → x0, ux1(xj) ≥ 0, for every j. For j big enough, the line

{xj + te1∣t ≥ 0}

intersects ∂Ω in at least one point yj in which necessarily ux1 has to be nonpositive. For ε small
enough, applying the Lagrange Mean Value Theorem on any segment [xj , yj], we deduce that

ux1(x0) = 0 ≥ ux1,x1(x0).

Let f(0) ≥ 0. Then u solves

∆u + b1ux1 + f(u) − f(0) ≤ 0 in Ωε,

or equivalently, thanks to the Lagrange Theorem, �xed c1 ≡ c1(x) suitably,

∆u + b1ux1 + c1u ≥ 0.

Applying to −u Hopf Lemma 1.1.6 already proved, we �nd

uν(x0) < 0⇒ ux1(x0) < 0,

but this is a contradiction. If instead f(0) < 0, another contradiction occurs. We argue as follows:
let u1, ..., un be an orthonormal basis with associated coordinates y1, ..., yn such that ν ⋅ ui > 0,
for any 1 ≤ i ≤ n. With the same argument used to demonstrate that ux1(x0) = 0 ≥ ux1,x1(x0),
one shows that uyi(x0) = 0, uyi,yi(x0) ≤ 0, for any i. But therefore

0 ≥ ∆u = −f(u) > 0 at x0,

the Laplace Operator not changing passing to y1, ..., yn, and the reductio ad absurdum is con-
cluded. QED

Lemma 2.3.2. Suppose that, for some λ1 ≤ λ < λ0,

ux1(x) ≤ 0, u(x) ≤ u(xλ), for any x ∈ Σ(λ),

but u(x) is not identically u(xλ) in Σ(λ). Then if b1 ≥ 0 in Σ(λ) ∪Σ′(λ), one has

u(x) < u(xλ), for any x ∈ Σ(λ), ux1(x) < 0, for any x ∈ Ω ∩ Tλ.
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Proof. Consider v(x) ≡ u(xλ) for x ∈ Σ′(λ) (note that xλ ∈ Σ(λ)). The map v respects vx1 ≥ 0
and solves

∆v(x) − b1(xλ)vx1(x) + f(v(x)) = 0.

Holding also (2.1), one infers that

∆v(x) − b1(xλ)vx1(x) + f(v(x)) −∆u(x) − b1(x)ux1(x) − f(u(x)) = 0, in Σ′(λ),

and so we deduce that

∆(v − u)(x) + b1(x)(v − u)x1(x) + f(v(x)) − f(u(x)) = (b1(xλ) + b1(x))vx1(x) ≥ 0.

Now the assumptions under which we are working ensure us that in Σ′(λ) the function w ≡ v−u
is nonpositive but not identically zero. Moreover, applying the mean integral Theorem to the
inequality just inferred, we obtain that for a suitable map c ≡ c(x)

∆w + b1(x)wx1 + c(x)w ≥ 0 in Σ′(λ).

By w ≡ 0 in Tλ ∩ Ω, hence on ∂Σ′(λ) whole, using Maximum Principle 1.1.5 and Hopf Lemma
1.1.6, we deduce that

w < 0 in Σ′(λ), wx1 > 0 on Tλ ∩Ω.

Consequently −ux1 = wx1/2 > 0. QED

We are now ready to prove Theorem 2.2.1.

Proof (of Theorem 2.2.1). By Lemma 2.3.1, it follows that, as λ close to λ0, λ < λ0, it holds

ux1(x) < 0, u(x) < u(xλ), for every x ∈ Σ(λ). (2.3)

Let µ < λ0 be the critical value such that, as λ < µ, (2.3) no longer holds, and for λ = µ one has

ux1(x) < 0, u(x) ≤ u(xµ), for any x ∈ Σ(µ).

Let's show that µ = λ1.
Suppose that µ > λ1. Therefore, for any x0 ∈ ∂Σ(µ) ∖ Tµ,

xµ0 ∈ Ω.

Because 0 = u(x0) < u(xµ0), we deduce that u(x) is not identically u(xµ) in Σ(µ). Hence we can
apply Lemma 2.3.2 achieving that

u(x) < u(xµ) in Σ(µ), ux1 < 0 on Ω ∩ Tµ.

Thus (2.3) holds for λ = µ too. Since ux1 < 0 on Ω ∩ Tµ, using Lemma 2.3.1, it follows that

ux1 < 0 in Ω ∩ {x1 > µ − ε}, for some ε > 0. (2.4)

By de�nition of µ, we deduce that what we are going to describe has to hold: there exist a
sequence {λj}j≥1 such that λ1 < λj ↗ µ and another sequence {xj}j≥1 such that

xj ∈ Σ(λj) and u(xj) ≥ u(xλ
j

j ).

Up to subsequences, by compactness, xj → x, for a suitable x ∈ Σ(µ). Therefore

xλ
j

j → xµ and u(x) ≥ u(xµ). (2.5)
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By the validity of (2.3) as λ = µ, it has to hold

x ∈ ∂Σ(µ).

If x didn't belong to Tµ, then x would lay on ∂Ω, and hence xµ ∈ Ω,

0 = u(x) < u(xµ),

but this is a contradiction, by relation (2.5). Therefore x ∈ Tµ and xµ = x. Now, as j big enough,

the segment joining xj and x
λj

j belongs to Ω and, by the Lagrange's Theorem, it has to contain
a point yj such that ux1(yj) ≥ 0. This fact contradicts (2.4), because yj converges to x. Thus
µ = λ1 and (2.3) holds, for any λ0 > λ > λ1. By continuity, one also deduces that, in Σ,

ux1 < 0

u(x) ≤ u(xλ1).

To complete the proof, suppose that ux1 vanishes at some point of Ω ∩ Tλ1 . By Lemma 2.3.2,
it follows that u(x) ≡ u(xλ1) in Σ. From u(x) = 0, for every x ∈ ∂Ω ∩ {x1 ≥ λ1}, it follows that
u(xλ1) = 0 and �nally we infer that

Ω = Σ ∪Σ′ ∪ (Ω ∩ Tλ1).

Lastly, let b1 > 0 at some point of Ω, that we may assume not contained in Tλ1 (by continuity).
Thanks to the assumptions (2.2) and to the symmetry of u with respect to Tλ1 just proved, we
note that

b1(x)ux1 = b1ux1(xλ1).

If x ∈ Σ, or similarly in Σ′, the left hand side is negative, instead the right hand side is nonnegative.
Thus a contradiction occurs, and b1 is necessarily identically zero. QED



Chapter 3

The singular Yamabe Equation

We now enter the core of the thesis: in this chapter we study into detail work [1]. In particular,
we need to develop a more sophisticated re�ection technique that is, citing textually the work
of Ca�arelli, Gidas and Spruck, a �"measure theoretic" variation� of the more basic re�ection
method introduced and exploited in the previous chapter. The aim of this chapter is to furnish a
complete characterization of the solutions to the Yamabe Equation in the punctured ball. To do
so, we will need to develop a sophisticated machinery, boosting and trying to generalize to the
limiting exponent α = n+2

n−2 the techniques and the arguments used by Gidas and Spruck in [11]
to classify the singular solutions to equations like −∆u = uα, for 1 < α < n+2

n−2 . We begin with an
exhaustive study of the radial solutions to the Yamabe Equation in the punctured ball: such an
analysis is fundamental because permits to formulate the classi�cation result contained in the
last section. In the second section we �rst exploit the Kelvin Transform in order to change the
formulation of the problem: roughly speaking, instead of studying an equation in the punctured
ball, we deal with an equation de�ned in a neighbourhood of in�nity. Second, we prove some
general decay estimates: these estimates represent the fundamental assumption under which we
will work along the whole chapter. The subsequent section is devoted to the proof of the Re�ection
Theorem, and to understand what is the asymptotic symmetry and how can be deduced by the
Re�ection Theorem. The �nal section is dedicated to analyze the applications of the theoretical
tools developed in the previous parts: in particular, the last result of the chapter contains the
classi�cation of the solutions to the singular Yamabe Equation which represents the gist of the
thesis. From now on, the dimension n is assumed to be ≥ 3.

3.1 Radial solutions to the Yamabe Equation

We start giving an exhaustive survey regarding the radial solutions to the Yamabe Equation,
fully classifying them. This study is preliminary to the more di�cult issue of classify the singular
solutions to the Yamabe Equation that we will study in the �nal part of this chapter, proving
that, around zero, any singular solution to the Yamabe Equation is "close to" a radial, singular
solution to the same equation.

We want to �nd the radial, C2 solutions to the Yamabe Equation in the punctured ball,
namely to the following equation:

−∆u = u
n+2
n−2 , in B(0,1[∖{0}. (3.1)

To do so, we �rst recall the formula for the Laplace Operator in spherical coordinates. Denoted
by S ∶= ∂B(0,1[, let Ω ⊂ Rn ∖ {0} be an open subset, u ∈ C2(Ω) and consider the representation
of u in spherical coordinates, that is

v(r, θ) ≡ u(rθ),

32
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for (r, θ) ∈ {(∣x∣, x∣x∣) ∣ x ∈ Ω} ⊂]0,+∞[×S. Then we recall that

∆u(x) = ∂
2v

∂r2
(∣x∣, x∣x∣ ) +

n − 1

∣x∣
∂v

∂r
(∣x∣, x∣x∣ ) +

1

∣x∣2 ∆Sv(∣x∣,
x

∣x∣ ), (3.2)

for any x ∈ Ω, where ∆S denotes the Laplace-Beltrami Operator on the unit sphere.
Let Ω = B(0,R[∖B(0, r], for 0 ≤ r < R ≤ ∞ arbitrarily chosen, and suppose that u = φ(∣x∣),

φ ∈ C2(]r,R[), is radially symmetric. Then formula (3.2) yields

∆u(x) = φ′′(∣x∣) + n − 1

∣x∣ φ′(∣x∣), for x ∈ Ω.

So the analysis of the radial solutions to (3.1) can be reduced to the study of an ordinary
di�erential equation: in fact, it's clear that u ∈ C2(B(0,1[∖{0}) is a radial solution to (3.1) if
and only if, taken φ ∈ C2(]0,1[) such that u(x) = φ(∣x∣), φ solves

φ′′(r) + n − 1

r
φ′(r) + φ(r)

n+2
n−2 = 0, in ]0,1[. (3.3)

In order to study this ODE, we may adopt the following ansatz 3

ψ(t) ≡ r
n−2

2 φ(r) (3.4)

t = − ln(r), t > 0.

Such an approach permits to deduce that ψ solves the second order ODE

ψ′′ − (n − 2

2
)

2

ψ + ψ
n+2
n−2 = 0, in ]0,+∞[, (3.5)

and conversely that if ψ solves (3.5), then φ is a solution to (3.3). We immediately note that
(3.5) is the Newton Equation associated to a conservative �eld with potential

U(ψ) ≡ −1

2
(n − 2

2
)

2

ψ2 + n − 2

2n
ψ

2n
n−2 .

It's well known that the total energy de�ned by

E(ψ,ψ′) ≡K(ψ′) +U(ψ) = 1

2
(ψ′)2 − 1

2
(n − 2

2
)

2

ψ2 + n − 2

2n
ψ

2n
n−2 ,

i.e. the sum of the kynetic energy and the potential energy is a prime integral for equation (3.5),
namely is constant along its solutions. These physical considerations allow then to infer that if
ψ solves (3.5) then ψ solves

(ψ′)2 = (n − 2

2
)

2

ψ2 − n − 2

n
ψ

2n
n−2 +D, (3.6)

for a suitable value of the total energy E =D/2. Our purpose is now to analyze the C2 solutions
ψ to (3.6) as D ∈ R.

For ψ ∈ R, consider the even, C1(R) function

AD(ψ) ≡ −2U(∣ψ∣) +D = (n − 2

2
)

2

∣ψ∣2 − n − 2

n
∣ψ∣

2n
n−2 +D.

3substitution (3.4) is known as Emden-Fowler substitution.
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As ψ > 0, A′
D(ψ) = 2(n − 2

2
)

2

ψ − 2ψ
n+2
n−2 , and so A′

D(ψ) ≥ 0 if and only if

ψ ≤ ψ∗ ≡ (n − 2

2
)
n−2

2

,

and A′
D(0) = 0. Therefore ψ∗ is a maximum and, being

A0(ψ∗) =
2

n
(n − 2

2
)
n

,

in order that (3.6) is well de�ned we need to impose the following constraint on D:

D ≥ − 2

n
(n − 2

2
)
n

.

Let
PD ∶= A−1

D (]0,+∞[):
by evenness, we deduce that as D = 0

P0 =]a0, b0[∪] − b0,−a0[, where a0 ∶= 0, b0 ∶= (n(n − 2)
4

)
n−2

2

.

Furthermore, if 0 >D > − 2

n
(n − 2

2
)
n

, then

PD =]aD, bD[∪] − bD,−aD[, where a0 < aD < bD < b0,

and if D > 0, PD =] − bD, bD[, bD > b0. In addition, for any D > − 2

n
(n − 2

2
)
n

,

ZD ∶= A−1
D ({0}) = ∂PD,

and any element of ZD is a constant solution to (3.6).
We immediately note that ψ solves (3.6) if and only if

ψ ∈ PD
ψ′ ∈ {±

√
AD(ψ)},
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for any time, and so, for D > − 2

n
(n − 2

2
)
n

, we want to study separately the following ODEs

ψ′ =
√
AD(ψ) (3.7a) ψ′ = −

√
AD(ψ) (3.7b)

for ψ ∈ PD. The map
√
AD is locally Lipschitz in PD, and thus we can apply the local existence

and uniqueness result to both (3.7a), (3.7b). Moreover the escape from compact subsets Theo-
rem guarantees that any maximal solution to a Cauchy Problem associated to (3.7a) or (3.7b)
needs to be de�ned on R whole 4. We �nally observe that the constant solutions to (3.7a), (3.7b)

are exactly the elements of ZD. Therefore, for D > − 2

n
(n − 2

2
)
n

, for every t0 ∈ R, ψ0 ∈ PD, the
following Cauchy problems

⎧⎪⎪⎨⎪⎪⎩

ψ′ =
√
AD(ψ)

ψ(t0) = ψ0

(3.8a)

⎧⎪⎪⎨⎪⎪⎩

ψ′ = −
√
AD(ψ)

ψ(t0) = ψ0

(3.8b)

have exactly one (maximal) solution de�ned on R and, observed that
√
AD is of class C1, such a

maximal solution needs to be of class C2. More precisely, the following result holds.

Lemma 3.1.1. Let ψ be the maximal solution to Cauchy problem (3.8a) (resp. (3.8b)), for
t0 ∈ R, ψ0 ∈ PD. Then:

(a) −ψ solves (3.8b) (resp. (3.8a)) for initial data t0, −ψ0 ∈ PD, and ψ̃(t) ≡ ψ(−t) solves (3.8b)
(resp. (3.8a)) for initial data −t0, ψ0;

(b) ψ′ never vanishes, and so ψ is is monotone. Moreover, for any time, ψ belongs to the
connected components of PD which contains ψ0;

(c) ψ converges to a �nite limit as t→ ±∞, and in particular:

(c1) if D ≤ 0,

lim
t→+∞

ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

1
2(1 + sgn(ψ0))bD + 1

2(sgn(ψ0) − 1)aD if ψ′ > 0
1
2(1 + sgn(ψ0))aD + 1

2(sgn(ψ0) − 1)bD if ψ′ < 0

lim
t→−∞

ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

1
2(1 + sgn(ψ0))aD + 1

2(sgn(ψ0) − 1)bD if ψ′ > 0
1
2(1 + sgn(ψ0))bD + 1

2(sgn(ψ0) − 1)aD if ψ′ < 0
;

(c2) if D > 0,

lim
t→±∞

ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

±bD if ψ′ > 0

∓bD if ψ′ < 0.

Finally, if ψ0 ∈ ZD, the constant ψ ≡ ψ0 is the unique solution to both (3.8a) and (3.8b).

Proof. The �rst point is an immediate consequence of the de�nitions of Cauchy problems (3.8a)
and (3.8b). Let for example ψ solve (3.8a), and assume that ψ′ vanishes at some time τ . Then
necessarily ψ(τ) = c, for some c ∈ ZD, and then c is a constant solution (3.6). The Comparison
Principle for ODEs ensures then that ψ ≡ c in [τ,+∞[. From point (a) it follows that ψ̃ solves
(3.7b) and then ψ̃ ≡ c in [−τ,+∞[, namely ψ ≡ c in ] −∞, τ]. Thus ψ is identically c, but this is

4This aspect is meaningful becuase ensures that any radial solution to the Yamabe Equation in the punctured
ball can be naturally extended to Rn ∖ {0}.
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a contradiction, because c ≠ ψ0. Thus ψ
′ needs to be always positive or negative, and then to be

monotone. Furthermore the continuity of ψ guarantees that ψ lays in the connected component of
PD which contains ψ0, and so the proof of (b) is concluded. We now characterize this connected
component, denoted by P 0

D:

(1) if D ≤ 0,

P 0
D =

⎧⎪⎪⎨⎪⎪⎩

]aD, bD[ if ψ0 > 0

] − bD,−aD[ if ψ0 < 0;

(2) if D > 0, P 0
D = PD =] − bD, bD[.

The monotonicity of ψ implies that:

lim
t→+∞

ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

S if ψ′ > 0

s if ψ′ < 0

lim
t→−∞

ψ(t) =
⎧⎪⎪⎨⎪⎪⎩

s if ψ′ > 0

S if ψ′ < 0
,

where S ∶= supψ, s ∶= inf ψ, S, s ∈ P 0
D. Observed that clearly −∞ < s < S < +∞, we infer that ψ′

needs to go to zero as ∣t∣ → ∞. Thus necessarily S, s ∈ ZD, more speci�cally

S, s ∈ ∂PD ∩ P 0
D = ∂P 0

D,

and (c) follows from the characterization of P 0
D operated before. Finally, the last statement

follows since the fact that, if ψ0 ∈ ZD, the existence of a nonconstant solution to (3.8a) or (3.8b)
would violate the classi�cation for ψ0 ∈ PD just demonstrated. QED

The main consequence of this result is that we can formulate a existence and "semi-uniqueness"
result for equation (3.6).

Theorem 3.1.1. We have:

(a) if D > − 2

n
(n − 2

2
)
n

, then for every t0 ∈ R, ψ0 ∈ PD, the following Cauchy Problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ψ′)2 = (n − 2

2
)

2

ψ2 − n − 2

n
ψ

2n
n−2 +D

ψ(t0) = ψ0

(3.9)

has exactly two C2 solutions ψ1, ψ2, the �rst solving (3.8a), the second one solving (3.8b).
Moreover, if ψ0 ∈ ZD, then ψ ≡ ψ0 is the unique solution to (3.9);

(b) if D = − 2

n
(n − 2

2
)
n

, then ψ ≡ ±(n − 2

2
)
n−2

2

are the unique solutions to equation (3.6).

Proof. Let I be an interval and ψ ∶ I Ð→ R be a solution to (3.9) for t0 ∈ R, ψ0 ∈ PD. Suppose that
ψ′(t0) > 0 (if ψ′(t0) < 0 the proof is very similar). Then we can consider the maximal interval
]a, b[⊂ I such that

t0 ∈]a, b[
ψ′ > 0 in ]a, b[.
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If ]a, b[= I then we deduce that ψ solves (3.8a), and we conclude. If ]a, b[ ⊊ I, then ψ′ necessarily
vanishes at either a or b, but this is a contradiction because ψ0 ∈ PD and Lemma 3.1.1 ensures
that ψ cannot vanish. Finally, if ψ0 ∈ ZD, if there existed a nonconstant solution to (3.9), then
there would be ψ̃0 ∈ PD such that ψ is a solution to (3.9) for initial data t0, ψ̃0, but this
is a contradiction by the characterization done above. Point (b) follows from the fact that, for

D = − 2

n
(n − 2

2
)
n

the function AD (de�ned before) is nonnegative only at the points ±(n − 2

2
)
n−2

2

,

and we conclude. QED

Now we can prove the following classi�cation result for the radial solutions to the Yamabe
Equation in the punctured ball.

Theorem 3.1.2. Let u(x) = φ(∣x∣) be a radial, C2 solution to equation (3.1) (the Yamabe Equa-
tion in the punctured ball). Then one of the following conditions holds true:

(a) φ(r) = ±(n − 2

2
)
n−2

2

r
2−n

2 , for r > 0;

(b) φ(r) = r 2−n
2 ψD,c,i(− ln r), for r > 0, where ψD,c,i is the unique solution to

⎧⎪⎪⎨⎪⎪⎩

ψ′ = (−1)i
√
AD(ψ)

ψ(0) = c,

for some D > − 2

n
(n − 2

2
)
n

, c ∈ PD, i ∈ {0,1}.

In particular any radial solution to (3.1) can be naturally extended to a radial solution to the

Yamabe Equation in Rn ∖ {0}.

Proof. By substitution (3.4), we know that φ needs to coincide with r
2−n

2 ψ(r), for a suitable

solution ψ to (3.6). Point (a) corresponds to the limiting situation in which D = − 2

n
(n − 2

2
)
n

.

Instead at point (b) we classify all the solutions to (3.6) under the assumption D > − 2

n
(n − 2

2
)
n

using Theorem 3.1.1 (we �x the initial time t0 = 0 5, we let the initial value vary in PD, and we
choose the sign of the derivative of the solution). QED

Finally we want to answer two questions: which are the radial solutions to (3.1) that are
nonnegative? Which are the radial solutions to (3.1) that are not singular at the origin?

Corollary 3.1.1. We have:

(a) the nonnegative, radial solutions to (3.1) are exactly

φ(r) = (n − 2

2
)
n−2

2

r
2−n

2

φ(r) = r
2−n

2 ψD,c,i(− ln r),

for 0 ≥D > − 2

n
(n − 2

2
)
n

, c ∈ PD ∩ [0,+∞[, i ∈ {0,1};

5Note that this is an arbitary choice: we could select whatever real value t0.
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(b) the radial solutions to (3.1) that are bounded around the origin are exactly

φ ≡ 0

φ(r) = r
2−n

2 ψD,c,i(− ln r);

for D = 0 and either c ∈ PD ∩ [0,+∞[, i = −1, or c ∈ PD∩] −∞,0], i = 1.

Proof. The �rst statement is a straightforward consequence of all the theory developed up to
now. To show (b), it's enough to observe that since the boundedness of φ around zero it follows
that

ψ(t) ≡ e−
n−2

2
t φ(e−t)

needs to shrink to zero as t→ +∞. Therefore the only possibility is that (b) holds. QED

In [8], one can �nd the precise computation of the radial, nonsingular solutions to the Yamabe
Equation: the idea is to prove that, up to a further substitution, the solutions to equation (3.6)
for D = 0 are exactly the solutions to the Euler Equation

ρ2θ′′(ρ) + rθ′(ρ) = θ(ρ).

Before concluding the section, we introduce the following notation which will be used at the end
of the chapter. We set

Φ(D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{r 2−n
2 ψD,c,i(− ln r) s.t. c ∈ PD, i ∈ {0,1}} if D > − 2

n
(n − 2

2
)
n

{±(n − 2

2
)
n−2

2

r
2−n

2 } if D = − 2

n
(n − 2

2
)
n

.

In other words, Φ(D) is the collection of the radial solutions that have energy E =D/2. Moreover
we denote by Φ+(D) the family formed by the nonnegative elements of Φ(D) (classi�ed in the
previous Corollary).

3.2 A �rst approach to the classi�cation problem for the singular

Yamabe Equation

In this section we develop a �rst analysis of the classi�cation issue. First we try to understand
how the Kelvin Transform comes into play in the study of a singular solution to a Yamabe-type
Equation, and then we aim to prove some general decay estimates valid for the Kelvin Transform
of the singular solution. These estimates will be strongly used along the work, representing the
basis for the validity of the Re�ection Theorem.

3.2.1 The role of the Kelvin Transform

In order to study a nonnegative, smooth solution to an equation

−∆u = g(u), in B(0,1[∖{0} (3.10)

with a nonremovable singularity at the origin, we will make use of the Kelvin Transform with
respect to a point z close to the origin: in such a way, we transform u into a map v with a good
behaviour at in�nity and with a singularity far from the origin.

Given z ∈ Rn, for r > 0, we set

Φz,r ∶ Rn ∖ {z} Ð→ Rn ∖ {z}, Φz,r(y) ≡ z +
r2

∣y − z∣2 (y − z):
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Φz,r is a C∞ di�eomorphism of Rn ∖ {z} in itself; moreover, Φz,r is involutive, that is

Φz,r ○Φz,r = idRn∖{z}.

We recall the following

De�nition 3.2.1. Given z ∈ Rn, let A ⊂ Rn ∖ {z} and u ∶ A → R be a function. For r > 0, we
de�ne the (z, r)-Kelvin Transform of u as the map

Kz,ru ∶ Φz,r(A) Ð→ R

de�ned by (Kz,ru)(y) ≡ ∣y − z∣2−nu(z + r2

∣y − z∣2 (y − z)) = ∣y − z∣2−nu(Φz,r(y)).

We immediately note that Kz,r(Kz,ru) = r2(2−n)u. Let A ⊂ Rn ∖ {z} be an open and u be a
C2(A) map: being Φz,r a smooth di�eomorphism, Φz,r(A) is an open and Kz,ru is C2(Φz,r(A)).
With a straightforward computation one can verify that

∆(Kz,ru)(y) = r4∣y − z∣−(n+2)∆u(z + r2

∣y − z∣2 (y − z)) = r
4∣y − z∣−(n+2)∆u(Φz,r(y)), (3.11)

for any y ∈ Φz,r(A). In particular, u is harmonic if and only if Kz,ru is harmonic.
Let u ≥ 0 be a singular, C2 solution to the equation (3.10) introduced at the beginning of the

chapter. Given z ∈ B(0,1[, consider

v(x) ≡ (Kz,1u)(x + z) = ∣x∣2−nu(z + x

∣x∣2 ). (3.12)

We note that the singularity of u at the origin is sent in x ∶= −z/∣z∣2: this is a singularity for v as
far from the origin as z is close to 0. Relation (3.11) guarantees that

∆v(x) = ∣x∣−(n+2)∆u(z + x

∣x∣2 )

and hence that

−∆v(x) = ∣x∣−(n+2)g(u(z + x

∣x∣2 )) = ∣x∣−(n+2)g(∣x∣n−2v(x));

equivalently, in Φz,1(B(0,1[∖{0, z}) − z, the following equation holds

−∆v(x) = f(∣x∣, v(x)), (3.13)

where f(r, v) ≡ r−(n+2)g(rn−2v). Therefore if u solves (3.10), then v solves (3.13) (in the open set
Φz,1(B(0,1[∖{0, z})−z). In the following, we will need another property of the Kelvin Transform:
the Kelvin Transform preserves the notion of weak solution too. Let's try to understand more
precisely what this expression does mean. Assume that the map g ful�lls the two assumptions
(i), (ii) of Lemma 1.2.3: thanks to Corollary 1.2.1, we know that the map u is a weak solution
to equation (3.10) in the entire ball B(0,1[. We claim that map v as de�ned in (3.12) weakly
solves equation (3.13) in Ω ∶= Φz,1(B(0,1[∖{z}) − z (note that we are including the singularity
−z/∣z∣2 of v). To prove so, we �rst observe that, if K ′ ∶=K − z is a compact in Ω, then

∫
K′

∣f(∣x∣, v(x))∣dx = ∫
K′

∣x∣−(n+2)∣g(u(Φz,1(x + z)))∣dx

= ∫
K

∣x′ − z∣−(n+2)∣g(u(Φz,1(x′)))∣dx′

= ∫
Φz,1(K)

∣Φz,1(x′′) − z∣−(n+2)∣g(u(x′′))∣∣det(Jac(Φz,1)(x′′))∣dx′′

≤ C(K)∫
Φz,1(K)

∣g(u(x′′))∣dx′′ < ∞, because g(u(⋅)) ∈ L1
loc(B(0,1[),
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and similarly

∫
K′

∣v(x)∣dx ≤ C(K)∫
Φz,1(K)

∣u(x)∣dx < ∞, because u(⋅) ∈ L1
loc(B(0,1[).

Therefore both v and f(∣ ⋅ ∣, v(⋅)) lay in L1
loc(Ω). Pick now ζ ∈ C∞c (Ω), and, as ε > 0, consider a

function ρε ∈ C∞(Rn) such that 0 ≤ ρε ≤ 1 and

ρε ≡ 0 in B(−z/∣z∣2, ε/2]
ρε ≡ 1 in Rn ∖B(−z/∣z∣2, ε[
∣∇ρε∣ ≤ C/ε, ∣∆ρε∣ ≤ C/ε2.

Now v is a solution to (3.13) in Ω and thus, for every ε > 0, one has

0 = ∫
Ω
(v∆(ρεζ) + f(∣x∣, v(x))(ρεζ))dx

= ∫
Ω
ρε(v∆ζ + f(∣x∣, v(x))ζ)dx + ∫

B(−z/∣z2∣,ε]∖B(−z/∣z2∣,ε/2[
(2v∇ζ ⋅ ∇ρε + vζ∆ρε)dx.

Observing that as ε→ 0+ the �rst summand converges to

∫
Ω
(v∆ζ + f(∣x∣, v(x))ζ)dx,

and the second one goes to 0 (both by dominated convergence), one deduces that what we claimed
above holds true.

So let's resume what we have proved up to now: if u is a smooth solution to

−∆u = g(u), in B(0,1[∖{0},

then by Corollary 1.2.1 u is a weak solution to the same equation in the whole ball B(0,1[, and
the function de�ned by

v(x) ≡ (Kz,1u)(x + z) = ∣x∣2−nu(z + x

∣x∣2 )

is a solution in Φz,1(B(0,1[∖{0, z})−z, and a weak solution in Φz,1(B(0,1[∖{z})−z to equation

−∆v(x) = f(∣x∣, v(x)),

where f(r, v) ≡ r−(n+2)g(rn−2v). The idea of all the next work is to analyze the behaviour of v
(instead of u) in order to classify the solutions to equation (3.10) in the punctured ball.

3.2.2 Decay estimates

In the setting of the previous subsection, we observe that, as ∣x∣ → ∞, one has

f(∣x∣, v(x)) = O(∣x∣−(n+2))
v(x) = O(∣x∣2−n),

because of the continuity of u at z (and trivially of g at u(z)). Actually, using the Taylor
expansion, we may prove more precise decay estimates.
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Lemma 3.2.1. For any 1 ≤ i, j ≤ n, the solution v to equation (3.13) de�ned at (3.12) satis�es
the following asymptotic expansions:

v(x) = 1

∣x∣n−2
(a0 +

n

∑
k=1

ak
xk
∣x∣2) +O(∣x∣−n) (3.14)

∂v

∂xi
(x) = −(n − 2)a0

xi
∣x∣n +O(∣x∣−n) (3.15)

∂2v

∂xi∂xj
(x) = O(∣x∣−n) (3.16)

as ∣x∣ → ∞, where a0 ∶= u(z), ak ∶=
∂u

∂xk
(z).

Proof. Let's start proving (3.14): as ∣x∣ → ∞

∣x∣n−2v(x) = u(z + x

∣x∣2 ) = u(z) + ∇u(z) ⋅
x

∣x∣2 +O(∣x∣−2),

and then

v(x) = 1

∣x∣n−2
(u(z) +∑

i

∂u

∂xi
(z) xi

∣x∣2) +O(∣x∣−n).

Furthermore we observe that

(n − 2)∣x∣n−4xi v(x) + ∣x∣n−2 ∂v

∂xi
(x) =

= − 2

∣x∣4 ∑j
∂u

∂xj
(z + x

∣x∣2 )xixj +
1

∣x∣2
∂u

∂xi
(z + x

∣x∣2 )

= −2xi
∣x∣4 ∑j

( ∂u
∂xj

(z) +O(∣x∣−1))xj +
1

∣x∣2(
∂u

∂xi
(z) +O(∣x∣−1)).

Therefore from (3.14) it follows that

(n − 2) 1

∣x∣2xi u(z) +
(n − 2)xi

∣x∣4 ∑
j

∂u

∂xj
(z)xj + ∣x∣n−2 ∂v

∂xi
(x) =

= −2xi
∣x∣4 ∑j

∂u

∂xj
(z)xj +

1

∣x∣2
∂u

∂xi
(z) +O(∣x∣−3),

that is exactly (3.15). A similar computation using (3.14) and (3.15) permits to prove the validity
of (3.16). QED

These estimates turn out to be very important, assuring the validity of two crucial Lemmata
which we are going to prove in the next section.

3.3 The Re�ection Theorem

In this section we will prove the Re�ection Theorem, but �rst we need some preliminary Lemmata
whose proofs are strongly based on the results given in the past sections. We use the following
notation: given a point x = (x′, xn) ∈ Rn−1 ×R ≡ Rn, we indicate by

xλ ∶= (x′,2λ − xn)

the re�ection of x across the hyperplane xn = λ, as λ ∈ R.
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3.3.1 Some preliminary results

The following, �rst preliminary result will be directly involved at the beginning of the proof of
the Re�ection Theorem: in fact, it permits to start the re�ection process, representing a sort of
weak, more general version of the Re�ection Theorem.

Lemma 3.3.1. Let v be a function of class C2 de�ned in an open neighbourhood of in�nity. If
v satis�es the asymptotic expansions (3.14), (3.15), (3.16) for some a0, a1, ..., an ∈ R, a0 > 0, then
there exist two constants λ,R > 0 such that, from λ ≥ λ, it follows that

v(x) > v(xλ), for xn < λ, ∣x∣ > R.

Proof. Expansions (3.14), (3.15) ensure respectively that

v(x) − v(xλ) = a0(
1

∣x∣n−2
− 1

∣xλ∣n−2
) +

n−1

∑
j=1

ajxj(
1

∣x∣n −
1

∣xλ∣n
)+

+an
(x − xλ)n

∣x∣n + an(xλ)n(
1

∣x∣n −
1

∣xλ∣n
) +O(∣x∣−n),

∂v

∂xn
(x) = −(n − 2)a0

xn
∣x∣n +O(∣x∣−n), (3.17)

where, thanks to xn < λ, we have ∣xλ∣ =
√

∣x′∣2 + (2λ − xn)2 =
√

∣x′∣2 + 4λ2 − 4λxn + x2
n ≥ ∣x∣, so

1

∣xλ∣n
= O(∣x∣−n).

Now if ∣xλ∣ ≥ 2∣x∣, then

v(x) − v(xλ) ≥
1

2
a0

1

∣x∣n−2
+O(∣x∣−(n−1)) ≥ a0

4∣x∣n−2
> 0,

for ∣x∣ big. If instead ∣xλ∣ < 2∣x∣, as ∣x∣ ≥ 1, the following relations hold

1

∣x∣n−2
− 1

∣xλ∣n−2
= 1

∣x∣n−2
− 1

∣xλ∣n−3

1

∣xλ∣
≥ 1

∣x∣n−3
( 1

∣x∣ −
1

∣xλ∣
) = ∣xλ∣ − ∣x∣

∣x∣n−2 ∣xλ∣
≥ 1

2

∣xλ∣ − ∣x∣
∣x∣n−1

∣
n−1

∑
j=1

ajxj(
1

∣x∣n −
1

∣xλ∣n
)∣ ≤ c ∣x∣

∣x∣n−1
( 1

∣x∣ −
1

∣xλ∣
) = c

∣x∣n−2
( 1

∣x∣ −
1

∣xλ∣
) ≤ c ∣xλ∣ − ∣x∣

∣x∣n

∣(x − xλ)n∣
∣x∣n = 2 (λ − xn)

∣x∣n = 1

2λ

∣xλ∣2 − ∣x∣2
∣x∣n ≤ 3

2λ

∣xλ∣ − ∣x∣
∣x∣n−1

,

where the last inequality follows from ∣xλ∣2 − ∣x∣2 = (∣xλ∣ + ∣x∣)(∣xλ∣ − ∣x∣) ≤ 3∣x∣(∣xλ∣ − ∣x∣). We also
have

∣(xλ)n∣(
1

∣x∣n −
1

∣xλ∣n
) ≤ ∣xλ∣ (

1

∣x∣n −
1

∣xλ∣n
) (3.18)

≤ c

∣x∣n−2
( 1

∣x∣ −
1

∣xλ∣
)

≤ c ∣xλ∣ − ∣x∣
∣x∣n ,
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up to a suitable choice of a constant c > 0 depending on aj , n. Thus, for λ, ∣x∣ big, one �nds

v(x) − v(xλ) ≥ c1
∣xλ∣ − ∣x∣
∣x∣n−1

− c2

∣x∣n ,

for two suitable constants c1, c2 > 0. As a matter of fact, for λ, ∣x∣ big, we have

v(x) − v(xλ) ≥
1

4

∣xλ∣ − ∣x∣
∣x∣n−1

− 2c
∣xλ∣ − ∣x∣

∣x∣n +O(∣x∣−n)

= 1

4

∣xλ∣ − ∣x∣
∣x∣n−1

(1 − 8c
∣xλ∣ − ∣x∣

∣x∣n
∣x∣n−1

∣xλ∣ − ∣x∣) + O(∣x∣−n)

≥ 1

8

∣xλ∣ − ∣x∣
∣x∣n−1

− c2

∣x∣n .

Now we have two alternatives:

(a) ∣xλ∣ − ∣x∣ > c2

c1

1

∣x∣ : then we trivially obtain v(x) − v(xλ) > 0;

(b) ∣xλ∣ − ∣x∣ ≤ c2

c1

1

∣x∣ : this is equivalent to

¿
ÁÁÀ1 + 4λ2 − 4λxn

∣x∣2 ≤ c2

c1

1

∣x∣2 + 1,

or, equivalently,

∣x∣2 + 4λ2 − 4λxn
∣x∣2 ≤ A

∣x∣4 +
B

∣x∣2 + 1⇐⇒

⇐⇒ 4λ(λ − xn) ≤
A

∣x∣2 +B + 1⇐⇒ xn ≥ λ −
C

λ
, for some C > 0.

Thus by (3.17), for ∣x∣, λ big, we infer

∂v

∂xn
(x) ≤ −(n − 2)a0 (λ −

C

λ
) 1

∣x∣n +
C ′

∣x∣n

= −(n − 2)a0 λ + (n − 2) a0

∣xn∣
C

λ
+ C ′

∣x∣n
< 0, along the segment {(x′, (1 − t)xn + t(xλ)n) ∣ 0 ≤ t ≤ 1},

and then v(x) > v(xλ).

QED

The following technical Lemma will help us to �nd the contradiction needed to conclude the
proof of the Re�ection Theorem.

Lemma 3.3.2. Let v ∈ C2(Rn ∖B(0,R]) be a positive solution to

−∆v = F (x), in ∣x∣ > R,

and assume that v respects the expansions (3.14), (3.15), (3.16). Suppose that, as xn > 0, ∣x∣ > R:
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(i) the relations below hold

v(x′, xn) ≤ v(x′,−xn), for any (x′, xn)
v(x′, xn) ≠ v(x′,−xn), at some point;

(ii) F (x′, xn) ≤ F (x′,−xn), for any (x′, xn).

Then there exist ε > 0, S > R such that the following statements hold:

(1)
∂v

∂xn
< 0 in ∣xn∣ < ε, ∣x∣ > S;

(2) v(x′, xn) < v(x′,2λ − xn) = v(xλ) in xn > ε/2, ∣x∣ > S, for 0 < ∣λ∣ < αε, where 0 < α < 1/2 is
small enough.

Proof. Let w(x) ≡ v(x′,−xn) − v(x′, xn) ≥ 0, for ∣x∣ > R, xn ≥ 0: w is of class C2 up to the
boundary, and furthermore

∆w(x) = ∆v(x′,−xn) −∆v(x′, xn)
= F (x′, xn) − F (x′,−xn) ≤ 0.

Surely w admits the outer partial derivative along −en on ∣x∣ > R, xn = 0, and accordingly,
thanks to Hopf Lemma 1.1.3, ∂w/∂(−en) < 0 on ∣x∣ > R, xn = 0, because w is null there and is
not constant by hypothesis. Thus

∂w

∂xn
> 0, in ∣x∣ > R, xn = 0.

Moreover, thanks to Maximum Principle 1.1.1, being w ≥ 0 in ∣x∣ > R, xn > 0 and nonconstant
there, w cannot vanish on ∣x∣ = R + 1, xn > 0. The compactness of ∣x∣ = R + 1, xn ≥ 0 allows then
to deduce that

w(x) ≥ k xn∣x∣n = k xn
(R + 1)n ,

on ∣x∣ = R + 1, xn > 0, for k small enough. Now
xn
∣x∣n is harmonic out of the origin and then,

applying Maximum Principle 1.1.1 again, we infer

w(x) > k xn∣x∣n ,

in ∣x∣ > R + 1, xn > 0. Then it follows that:

wxn(x′,0) = lim
xn→0+

w(x′, xn) −w(x′,0)
xn

= lim
xn→0+

w(x′, xn)
xn

≥ lim
xn→0+

k xn
∣x∣n

1

xn
= k

∣x′∣n

and thus

vxn(x′,0) ≤ −
k

2∣x′∣n ,

as ∣x′∣ > R + 1. Now, given h > 0, being v two times di�erentiable,

vxn(x′, h) − vxn(x′,0) = vxnxn(x′, h∗)h,
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for a suitable 0 ≤ h∗ ≤ h, for every ∣x′∣ > R. The decay estimate (3.16) ensures that

vxnxn(x) = O(∣x∣−n),
where x = (x′, h), and then, as ∣x′∣ big, for a suitable constant C > 0, one has

vxn(x′, h) ≤ vxn(x′,0) +
C ∣h∣
∣x∣n

≤ − 1

2

k

∣x′∣n +
C ∣h∣
∣x∣n ≤ −1

4

k

∣x′∣n ,

up to the observation that ∣x∣ ≥ ∣x′∣ and the a choice of h such that ∣h∣ ≤ k/4C ≡ ε. Then (1) holds
true.

Let's now demonstrate (2). We note that, as ∣x∣ > R + 1, ∣λ∣ small,

v(x′,2λ − xn) − v(x′,−xn) = vxn(x′, µ − xn)2λ,
for some µ, and using (3.15), for xn > 0 and ∣x∣ big,

vxn(x′, µ − xn) = −(n − 2)a0
µ − xn
∣x∣n +O(∣x∣−n)

≥ − c

∣x∣n (xn + c), for some c > 0.

Thus v(x′,2λ − xn) − v(x′, xn) ≥ −
cλ

∣x∣n (xn + c), and so

v(x′,2λ − xn) − v(x′, xn) =
= (v(x′,−xn) − v(x′, xn)) + (v(x′,2λ − xn) − v(x′,−xn))

≥ k xn∣x∣n − c ∣λ∣ (xn + c)∣x∣n = (k − c∣λ∣)xn − c∣λ∣
∣x∣n

≥ kε/4 − c∣λ∣∣x∣n ,

taking xn > ε/2, ∣λ∣ <
k

4 c
ε, and we conclude. QED

We recall that
F (x) ≡ f(∣x∣, v(x)) = ∣x∣−(n+2) g(∣x∣n−2v(x)),

where v ≥ 0 is the solution (3.12). Assume that, given λ ≥ 0, v(xλ) ≥ v(x), as xn > λ. We want
to impose conditions on g in order to have

F (xλ) ≥ F (x). (3.19)

So let's introduce the following two assumptions:

g is nondecreasing in R (3.20)

t−
n+2
n−2 g(t) is nonincreasing in R. (3.21)

Therefore, as xn > λ, setting s ∶= ∣xλ∣n−2v(x), t ∶= ∣x∣n−2v(x), we have:
F (xλ) = ∣xλ∣−(n+2) g(∣xλ∣n−2v(xλ))

≥ ∣xλ∣−(n+2) g(∣xλ∣n−2v(x))

= v(x)
n+2
n−2 s−

n+2
n−2 g(s)

≥ v(x)
n+2
n−2 t

n+2
n−2 g(t)

...

≥ ∣x∣−(n+2) g(∣x∣n−2v(x)) = F (x),
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that is what we wanted to achieve. Note that the inequality (3.19) holds in particular as we treat

the Yamabe Equation, namely for g(t) ≡ tn+2
n−2 .

We now pass to state an prove an Extension Lemma which will be involved in the �nal part
of the proof of the Re�ection Theorem.

Lemma 3.3.3 (Extension Lemma). Given 0 < β < 1, let

v ∈ C1,β(B(0,2] ∖B(0,1[), v > 0

be a weak, nonnegative supersolution to

−∆v = f(x, v), in 1 ≤ ∣x∣ ≤ 2,

where f(x, ⋅) ∈ L∞loc(R), f(⋅, v) ∈ L∞(B(0,2[), for any x ∈ B(0,2], v ∈ R. In addition, assume that
there exist 0 < δ0 < 1, M > 0 such that

δ0 ≤ v ≤ 1/δ0, ∣∣v∣∣C1,β(B(0,2]∖B(0,1[) ≤M .

Then there exists a value σ ≡ σ(β,n, δ0,M, f) > 0 such that, if ∅ ≠ A ⊂ B(0,1[ is open and
∣A∣ ≤ σ, then v can be extended to a map v ∈ Lip(B(0,2[) which satis�es the properties below:

(a) δ0/2 ≤ v < 3/δ0 in B(0,2[;

(b) v is a weak supersolution to

−∆v = f(x, v), in {1 < ∣x∣ < 2} ∪A;

(c) vν ≥M + 1 on ∂B(0,1[.
Roughly speaking, the Extension Lemma says that a supersolution in the ring 1 ≤ ∣x∣ ≤ 2 can

be extended to a supersolution on a su�ciently small measure open subset contained in the unit
ball.

Proof (of the Extension Lemma). We �rst extend v to B(0,1] choosing ṽ ∈ C1,β(B(0,1]) such
that

δ0/2 ≤ ṽ ≤ 2/δ0

∣∆ṽ∣ ≤ C(δ0,M) ≡ C, for a suitable constant C

ṽ = v, ṽν ≥M + 2 on ∂B(0,1[
(such a map ṽ can be built setting ṽ ≡ ṽ0 + ρ, where ṽ0 is the harmonic extension of v∣∂B(0,1[
to the whole unit ball, and ρ is a suitable radial corrector). By Theorem 1.4.3, we know that,
for any 0 < β < 1, there is σ ≡ σ(β,n, δ0,M, f) such that, since ∣A∣ ≤ σ, it follows that the only
H1

0(B(0,1[)-weak solution to

−∆w = (C + sup
x∈B(0,1]
0≤t≤3/δ0

∣f(x, t)∣)χA in B(0,1[

w = 0 on ∂B(0,1[.

is of class C1,β(B(0,1]) and ∣∣w∣∣C1,β(B(0,1]) ≤ 1. By superharmonicity we have w ≥ 0, and so

δ0/2 ≤ ṽ +w ≤ 2/δ0 + 1 < 3/δ0.

Thus, by construction, we also infer that

−∆(ṽ +w) ≥ sup
x∈B(0,1]
δ0/2≤t≤3/δ0

∣f(x, t)∣ ≥ f(x, ṽ +w) in A

(ṽ +w)ν ≥M + 1 on ∂B(0,1[.
Therefore, observed that ṽ +w is Lipschitz, the choice v ≡ ṽ +w turns out to be good. QED
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3.3.2 The Re�ection Theorem: statement and proof

We are now ready to prove the following

Theorem 3.3.1 (Re�ection Theorem). Let v > 0 be a weak solution to

−∆v = f(x, v) ≡ F (x),

in {∣x∣ ≥ 1} 6, where f ∶ Rn × R Ð→ R is such that f(x, ⋅) ∈ L∞loc(R), for any x ∈ B(0,2],
f(⋅, v) ∈ L∞(B(0,2[), for any v ∈ R, and f ≥ 0 as v ≥ 0. Assume that:

(i) v is of class C2 in {1 ≤ ∣x∣ ≤ 2} ∪ {∣x∣ > R} ∪ {xn > 1} (the grey region in the next �gure),

for some R > 2, and v is lower semicontinuous;

(ii) v satis�es the asymptotic expansions (3.14), (3.15), (3.16);

(iii) provided that xn > λ > 0 and v(x) ≤ v(xλ), F (x) ≤ F (xλ) holds true;

(iv) there exist δ0, C > 0 such that, for some 0 < β < 1,

0 < δ0 ≤ v∣B(0,2[∖B(0,1] ≤
1

δ0
, ∣∣v∣∣C1,β(B(0,2[∖B(0,1]) ≤ C;

(v) there exists an open A′ ⊂ {(x′,0) ∣ ∣x′∣ < 1} such that, taken the value σ given by the

Extension Lemma, one has ∣A′∣ < σ/2 and there exists M > 2 such that, if x = (x′, xn), for
x′ ∉ A′, ∣x′∣ < 1 and xn ≥M , then

v(x) ≤ δ0

4
.

Therefore, denoting by v the extension of v whose existence is ensured by Extension Lemma for

A = {x = (x′, xn) ∣ x′ ∈ A′, ∣x∣ < 1},

v(x) ≤ v(xλ), as xn > λ ≥M .

Proof. Lemma 3.3.1 ensures us that there exist λ, R > R such that, for λ ≥ λ,

v(x) < v(xλ), for xn > λ, ∣xλ∣ > R.
6In other words, we require that there exists a δ > 0 such that v is a weak solution to the equation in the open

set {∣x∣ > 1 − δ}.
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Observing that v is positive and lower semicontinuous in {∣x∣ ≥ 1}, v attains a positive minimum
in {1 ≤ ∣x∣ ≤ R}, and so we may consider a radius R̃ > R such that

∣x∣ ≥ R̃⇒ ∣v(x)∣ ≤ ( min
1≤∣x∣≤R

v(x))/2,

where such an R̃ exists because v shrinks to 0 as ∣x∣ goes to in�nity. Now, for λ ≥ max{λ, R̃},

v(x) < v(xλ), for xn > λ, ∣xλ∣ > R,

thanks to what we observed above. Furthermore, whenever ∣xλ∣ ≤ R, we have

v(xλ) ≥ min
1≤∣x∣≤R

v(x) > max
∣x∣≥R̃

∣v(x)∣ ≥ max
∣x∣≥λ

∣v(x)∣ ≥ v(x).

Therefore as λ0 big enough
v(x) ≤ v(xλ), for xn > λ ≥ λ0. (3.22)

It remains to show that we can take λ0 = M . To prove so, the idea is to demonstrate that the
set of the λ ≥ M such that relation (3.22) holds is both open and closed in [M,+∞[. We start
proving that it's open. To do so, let λ >M be such that

v(x) ≤ v(xλ), for xn > λ.

We want to show that there exists a neighbourhood U of λ in [M,+∞[ such that λ ∈ U implies

v(x) ≤ v(xλ), for xn > λ.

By contradiction, let this proposition be false. Then there are a sequence {λj}j≥1 ⊂]M,+∞[ and
a sequence {xj}j≥1 of points such that

λj → λ, xjn > λj , v(xj) > v(x
j
λj

).

We claim that one may extract a subsequence from {xj}j≥1 converging to a point x with xn ≥ λ.
It su�cies to show that {xj}j≥1 has to be bounded. If it were false, one could �nd a subsequence
{xjk}k≥1 such that ∣xjk ∣ → ∞. Referring our notations to Lemma 3.3.2 (extended to the case of
λ general, not necessarily zero), choosing k big enough, one can suppose

∣λjk − λ∣ < ε/4, ∣xjk ∣ > S, as k ≥ k.

There are two cases:

(a) up to a further subsequence,

λjk < xjkn < λjk +
3

4
ε, if k ≥ k.

Therefore, using (1) of Lemma 3.3.2, one deduces that

v(xjk) < v(xjkλjk ),

and this is a contradiction;

(b) de�nitively xjkn ≥ λjk + 3
4ε. By construction, xjkn > 0 and then, by (2) of Lemma 3.3.2, one

has
v(xjk) < v(xjkλjk ),

and a further contradiction occurs.
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Thus {xj}j≥1 has to be bounded, and so to admit a converging subsequence {xjk}k≥1 whose limit
is a suitable point x. Clearly

xn = xn − xjkn + xjkn ≥ −∣xn − xjkn ∣ + xjkn =
= −∣xn − xjkn ∣ + xjkn − λjk + λjk − λ + λ
≥ −∣xn − xjkn ∣ − ∣λjk − λ∣ + λ→ λ.

We have three possibilities:

(a) xn = λ and vxn(x) ≥ 0;

(b) xn > λ and ∣xλ∣ ≥ 1;

(c) xn > λ and ∣xλ∣ < 1.

In all these cases, consider w(x) ≡ v(xλ) − v(x), for xn > λ: w is nonnegative and weakly

superharmonic, thanks to Lemma 1.2.2, in {xn > λ} ∩ ∣xλ∣ > 1 − δ, for a δ > 0 small enough;
furthermore the lower semicontinuity of v(xλ) ensures that w is lower semicontinuous and that
w(x) = 0, because

0 ≤ w(x) = v(xλ) − v(x)
≤ lim inf

k→∞
[v(xjkλjk ) − v(x

jk)] + [v(xjk) − v(x)]

= lim inf
k→∞

v(xjkλjk ) − v(x
jk) ≤ 0.

If (a) holds true, then, up to a suitable choice of r > 0 in order that 1 < λ − r < 2, we have

w ∈ C2({λ ≤ xn ≤ λ + r})

and x ∈ {xn = λ}. Now w is nonidentically zero in such a strip, because for xn ≥ λ > M , as
x′ ∉ A′, ∣x′∣ < 1, v(x) ≤ δ0/4, but in the annulus of radii 1, 2 we have v ≥ δ0 (by hypotheses).

Being w(x) = 0, thanks to Hopf Lemma 1.1.3,
∂w

∂(−en)
(x) < 0 and thus

−2vxn(x) = wxn(x) > 0,

and this is a contradiction.
If (b) holds true, then the lower semicontinuity and the weak superharmonicity of w allow to

apply the Maximum Principle for weakly subharmonic maps 1.3.1 to −w in

{x ∣ xn > λ, ∣xλ∣ > 1 − δ}.

Observing that like in the case (a), w cannot be identically zero, we deduce that w(x) = 0 is a
contradiction, because x lays in the interior.

Finally if (c) holds true, then x′ ∈ A′ because otherwise

w(x) = v(xλ) − v(x) ≥
δ0

2
− δ0

4
= δ0

4
> 0,

and this is a contradiction. Thus picking r > 0 such that BRn−1(x′, r[⊂ A′, we may apply to −w
the Maximum Principle 1.3.1 for weakly subharmonic functions in

{x ∣ ∣xλ∣ < 1, xn > λ} ∩BRn−1(x′, r[×R,
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because, thanks to the Extension Lemma and Lemma 1.2.2, w has to be weakly superharmonic.
As in (b), this is a contradiction.

Therefore we proved that the set of the λ ≥ M such that relation (3.22) holds is open in
[M,+∞[. Let now {λj} be a sequence in [M,+∞[ converging to λ: we want to prove that, for
all x such that xn < λ,

v(x) ≥ v(xλ).
To do so, it's su�cient to note that since xn < λ it follows that, as j is big enough, xn < λj , for
j ≥ j, and

v(xλj) → v(xλ).
Thus the set of the λ ≥M such that (3.22) is valid is both open and closed in [M,+∞[, and so
it necessarily coincides with [M,+∞[. This concludes the proof. QED

We have the following two remarks about the Re�ection Theorem:

(1) M plays the role of λ1 in Theorem 2.2.1;

(2) assumption (v) is the strongest: from now on, a direction τ along which (v) holds will be
called admissible (in the statement we tacitly assumed that τ = en. This is general up to
an orthogonal change of coordinates).

3.4 Estimate of the measure of the set of the admissible directions

The objective of this section is to estimate the (surface) measure of the collection of nonadmissible
directions τ (seen as unit vectors contained in the unit sphere). To do so, we need to introduce
two assumptions on a map v de�ned in the complement of the unit ball:

(a) v ≥ 0 is weakly superharmonic and lower semicontinuous in Rn ∖B(0,1];

(b) ∫Rn∖B(0,1] v
p/∣x∣β < c0 < ∞, for some p ≥ 1, β < n.

From now on, we will work under these two assumptions. Note that both (a) and (b) are surely
satis�ed by a map v which respects the hypotheses of the Re�ection Theorem: as a matter of
fact (a) trivially holds, and the validity of (b) is ensured by the decay estimate

v = O(∣x∣2−n) as ∣x∣ → ∞.

Let's start with some notations: given a unit vector τ , we set

Γ(τ) ∶= {λτ + µu ∣ λ ≥ 0, ∣µ∣ < 3, u ∈ τ⊥, ∣u∣ = 1.}
Γk(τ) ∶= Γ(τ) ∩ (B(0,2k+1[∖B(0,2k]), as k ≥ 0;

we denote by P kτ the orthogonal projection along the direction τ on the hyperplane x ⋅ τ = 2k.

De�nition 3.4.1. Given k ≥ 0, µ > 0 the (k,µ)-exceptional set is de�ned by

A(k,µ) ∶= {τ ∣ ∣P kτ ({v(x) > µ} ∩ Γk(τ))∣n−1 > µ}.

We already state the crucial, main result of the section.

Theorem 3.4.1. There exists a constant C > 0 independent of µ and k such that

∣A(k,µ)∣ ≤ C

µ2
2
− k
p(n−β) .

In particular, for µ = 2−δk, δ = n−β
3p , A(k) ∶= A(k,2−δk), one has

∣A(k)∣ ≤ C 2−δk. (3.23)
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The proof of this result is not trivial and will be given later. We �rst explain how to use such
a result for our study, showing that it's precisely what we need. Let k0 ≥ 0 be an integer and τ
be a unit vector not contained in ⋃k≥k0

A(k): then by de�nition, for any k ≥ k0, one has

∣P kτ ({v(x) > 2−δk} ∩ Γk(τ))∣n−1 ≤ 2−δk.

Then let
B′
τ ∶= ⋃

k≥k0

[−2kτ + P kτ ({v(x) > 2−δk} ∩ Γk(τ))]:

we observe that B′
τ ⊂ {x ⋅ τ = 0} ∩B(0,3[ and

∣B′
τ ∣n−1 ≤ ∑

k≥k0

2−δk = c∗ 2−δk0 , where c∗ = 2δ

2δ − 1
.

Moreover, if x′ ∉ B′
τ , x

′ ∈ B(0,3[, setting

x ∶= x′ + ατ , α ≥ 2k0

kα ∶= max{k ≥ 1 ∣ 2k ≤ α} ≥ k0,

one has
v(x) ≤ 2−δkα(≤ 2−δk0),

because if v(x) > 2−δkα then x ∈ {v(x) > 2−δkα} ∩ Γkα(τ) and so x′ ∈ B′
τ , and this is a contradic-

tion. Thus, if k0 > max{δ−1 log2(2c∗
σ ), δ−1 log2( 4

δ0
)} and τ ∉ ⋃k≥k0

A(k), then τ is an sdmissible
direction: in fact, by construction, setting

A′
τ ∶= B′

τ ∩B(0,1[,

A′
τ is open (in x ⋅ τ = 0) and ∣A′

τ ∣n−1 < σ/2. Moreover, if x′ ∉ A′
τ , x

′ ∈ B(0,1[, since x = x′ + x ⋅ τ ,
x ⋅ τ ≥M = 2k0 , it follows that

v(x) ≤ 2−δk0 ≤ δ0

4
.

We now have to demostrate Theorem 3.4.1.

Proof (of Theorem 3.4.1). We estimate the measure of A(k,µ) by covering it with a union of

spherical caps D(τi), 1 ≤ i ≤ m, centered at a unit vector τi and of radius C2−k, where C is a
constant independent of k chosen in order that the measure of the radial projection of P kτ (Γk(τi))
onto the unit sphere coincides with the measure of D(τi), fork big. We have

∣A(k,µ)∣ ≤
m

∑
i=1

∣D(τi)∣ (3.24)

≤ C(2−k)n−1
m

∑
i=1

∣P kτi(Γk(τi))∣ (3.25)

≤ C(2−k)n−1 1

µ

m

∑
i=1

∣P kτi({v(x) > µ} ∩ Γk(τ))∣. (3.26)

We want to estimate the right hand side of the relation above by the average of v. So let w be
the capacitory potential of 21−kE in U ∶= B(0,8[∖B(0,1] where

E ∶=
m

⋃
i=1

{v(x) > µ} ∩ Γk(τi):



CHAPTER 3. THE SINGULAR YAMABE EQUATION 52

by de�nition, w is harmonic in U ∖E, w = 1 on E and w = 0 on 2U .By the Maximum Principle
1.1.1 we know

v(2k−1x) ≥ µw
in U . By de�nition of capacitory potential, we know that the capacity is given by the following
formula (here ν is the interior normal)

cap(21−kE) = ∫
U
∣∇w∣2 dx = ∫

∂U
wν dσ. (3.27)

Moreover, we have

n − 2

Rn−1 ∫∂B(0,R[
w = (1 − 1

Rn−2
)∫

∂B(0,1[
wν for 1 < R < 2, (3.28)

n − 2

Rn−1 ∫∂B(0,R[
w = ( 1

Rn−2
− 1

8n−2
)∫

∂B(0,8[
wν for 4 < R < 8. (3.29)

Using (3.27) and (3.28), (3.29) we obtain the following estimate:

∫
U
∣∇w∣2 dx ≤ c⨏

U
w dx ≤ c

µ
⨏
B(0,2k+2[∖B(0,2k−1[

v dx. (3.30)

Denote by P kτ the orthogonal projection P kτ composed on the left with the radial projection onto

the unit sphere. By construction, P kτ (Γk(τ)) is essentially D(τ) for large k. Given a point Q in

P kτ (E), let Q̂ be the �rst point of (P kτ )−1(Q) on the section curve γ̃ = 21−kγ sitting over Q. We
have

1 = ∫
γ̃

d

ds
w ds.

Integrating over P kτ (E) one achieves

∣P kτ (E)∣ ≤ ∫
Pkτ (E)

∫
γ̃
∣∇w∣dsdr,

and thus by Hölder's Inequality

∣P kτ (E)∣ ≤ ∫
D(τ)

∫
γ̃
∣∇w∣2 dsdr. (3.31)

The disks D(τi) can be chosen in order to have �nite overlapping and so by (3.24), (3.31) we
deduce

∣A(k,µ)∣ ≤ c

µ
∫
U
∣∇w∣2 dx.

Exploiting (3.30), we infer

∣A(k,µ)∣ ≤ c

µ2 ⨏Rk
v dx, (3.32)

where Rk ∶= B(0,2k+2[∖B(0,2k−1]. We now use assumptions (a), (b) written at the beginning,
obtaining

⨏
Rk
v dx ≤ c

2nk
∫
Rk
v dx

≤ c

2nk
2nk(1−1/p)2kβ/p(∫

Rn∖B(0,1]

vp

∣x∣β dx) (3.33)

≤ c2
k(β−n)

p .

Combining (3.32) and (3.33) we deduce that

∣A(k,µ)∣ ≤ c

µ2
2
k(β−n)

p ,

that is exactly what we aimed to show. QED
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3.5 The asymptotic symmetry

The last step before considering the applications of the Re�ection Theorem is to understand how
it allows to infer the asymptotic symmetry, and what this terminology would mean.

Given a unit vector τ , we set

xλ ≡ x + (2λ − x ⋅ τ)τ , x ∈ Rn,

the re�ection of x in the hyperplane z ⋅ τ = λ, as λ ∈ R. Moreover, in order to have a less heavy
notation, we set S ∶= ∂B(0,1[ (RS = ∂B(0,R[).

Theorem 3.5.1. Let v be a scalar function de�ned in Rn ∖B(0,1[ with the property that, for

some M > 0, A ⊂ S measurable,

v(x) ≤ v(xλ), provided that x ⋅ τ > λ ≥M , as τ ∈ A.

Then there are two constants ε0 > 0, C > 0, both independent of M , such that, since ∣S ∖ A∣ =
∣S∣ − ∣A∣ ≤ ε0 it follows that

v(x) ≥ v(y), whenever ∣x∣ > 1, ∣y∣ ≥ ∣x∣ +CM .

We �rst note that the proof turns out to be trivial as A = S. In fact, let x, y ∈ Rn and suppose
that ∣y∣ ≥ ∣x∣ +CM , for some constant C > 0 to be found. Then, choosing τ = y−x

∣y−x∣ , λ =
y−x
∣y−x∣ ⋅

x+y
2 ,

one has
y = xλ, y ⋅ τ ≥ λ.

Let's look for a condition on C in order to achieve λ >M :

λ = y − x
∣y − x∣ ⋅

x + y
2

= 1

2∣y − x∣ (∣y∣
2 − ∣x∣2)

= 1

2∣y − x∣ (∣y∣ − ∣x∣)(∣y∣ + ∣x∣)

≥ CM

2∣y − x∣ (∣y∣ + ∣x∣).

This last quantity is bigger or equal than M if and only if C(∣y∣ + ∣x∣) ≥ 2∣y − x∣. It then su�cies
to pick C ≥ 2. Therefore, as ∣y∣ ≥ ∣x∣ + 2M , thanks to the assumption done before, v(x) ≥ v(y),
and so the proof (in this simple case) is completed.

Our purpose is now to show the result above in the general case: the argument used above
cannot work, because y−x

∣y−x∣ could be not contained in A.

Proof (of Theorem 3.5.1). We start with some notations. Given z ∈ Rn, let Γz be the cone with
vertex at the origin, axis −z and aperture π/4, and let Cz be the cone with vertex at z, axis −z
and aperture π/4 (Cz = z + Γz).

Fix now a point x ∈ Rn and set R ∶= ∣x∣ + 2M . We look at those points z ∈ RS which can be
obtained by the re�ection of x in a plane Πτ with normal τ ∈ S ∩Γx and such that Πτ separates
z from B(0,M[. If τ ∈ A, we say that such a point z is admissible for x, and we then consider
the collection of the admissible points for x

Ax ∶= {z ∈ RS ∣ z = x + 2(λ − x ⋅ τ) with z ⋅ τ > λ, τ ∈ S ∩ Γx ∩A}.

We immediately note that, denoted by x′ the orthogonal projection of x onto the hyperplane
z ⋅ τ = 0, as τ ∈ S ∩ Γx, one has ∣x∣2 = ∣x′∣2 + (x ⋅ τ)2. Thus, if z = x + 2(λ − x ⋅ τ)τ , z ∈ RS, then

∣z∣2 = ∣x′ − (x ⋅ τ)τ + 2λτ ∣
= ∣x′∣2 + (2λ − x ⋅ τ)2 = ∣x∣2 + 4λ(λ − x ⋅ τ) = R2,
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and so R2 − ∣x∣2 ≤ 4λ(λ + ∣x∣), equivalently

(2λ + ∣x∣)2 ≥ R2.

Therefore 2λ ≥ R − ∣x∣ = 2M , and thus λ ≥M . Hence, by assumption, as z ∈ Ax,

v(z) ≤ v(x).

Let now y be a point such that ∣y∣ ≥ ∣x∣ +CM , C > 0 to be decided. We may similarly consider
the set of the admissible points for y

Ay ∶= {z ∈ RS ∣ z = y + 2(λ − y ⋅ τ)τ with y ⋅ τ > λ, z ⋅ y < 0, −τ ∈ S ∩ Γy, τ ∈ A}.

For the moment assume also that the angle α(x, y) between x and y is small enough, for example
it su�cies that α(x, y) < π/8. We aim to �nd a condition on C ensuring that, since

z = y + 2(λ − y ⋅ τ)τ , z ∈ RS, −τ ∈ S ∩ Γy, (3.34)

in particular since z ∈ Ay, it follows that λ ≥M . We �rst note that, as z satis�es the assumptions
(3.34) written above,

∣z∣2 = ∣y∣2 + 4λ(λ − y ⋅ τ) = R2,

and so ∣y∣2 = R2 + 4λ(y ⋅ τ − λ) > R2, ∣y∣ > R = ∣x∣ + 2M , namely C > 2 necessarily. We now look
for a more restrictive condition on C. In order to have that the condition described just before
holds true, it's enough to require that, as −τ ∈ S ∩ Γy,

∣y + 2(M − y ⋅ τ)τ ∣2 ≥ R2,

equivalently
∣y∣2 + 4M(M − y ⋅ τ) ≥ R2. (3.35)

In the particular case of τ = y/∣y∣, we observe that

(3.35)⇔ ∣y∣2 + 4M2 − 4M ∣y∣ ≥ R2

⇔ (∣y∣ − 2M)2 ≥ R2

⇔ ∣y∣ ≥ ∣x∣ + 4M .

So we can take C = 4 (but recall that we are working under the assumption α(x, y) < π/8). Let's
now treat the case of general τ :

(3.35)⇔ ∣y∣2 + 4M2 − 4M ∣y∣(y/∣y∣) ⋅ τ) ≥ R2.

Being (y/∣y∣) ⋅ τ = cos(α(y, τ)) ≤ 1, we deduce that

∣y∣2 + 4M2 − 4M ∣y∣((y/∣y∣) ⋅ τ) ≥
≥ ∣y∣2 + 4M2 − 4M ∣y∣.

So in order that (3.35) holds true, it su�cies to impose that ∣y∣2+4M2−4M ∣y∣ ≥ R2, and we know
that C = 4 guarantees the validity of this last inequality. Therefore in particular, as ∣y∣ ≥ ∣x∣+4M ,
from

z = y + 2(λ − y ⋅ τ)τ ∈ Ay,
it follows v(z) ≥ v(y). It's now geometrically clear that any point z ∈ Cx ∩RS can be written as

z = x + 2(λ − x ⋅ τ)τ
τ ∈ S ∩ Γx, λ ≥M ,
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and similarly that every point z ∈ Cy ∩RS such that z ⋅ y < 0 can be represented by

z = y + 2(λ − x ⋅ τ)τ
− τ ∈ S ∩ Γy, λ ≥M .

Then, selecting ε0 > 0 small enough, Ax covers a portion of Cx ∩ RS as big as we require, and
similarly Ay covers as a big part of {z ∈ Cy ∩RS ∣ z ⋅ y < 0} as we like. Moreover the request on
α(x, y) ensures that

µ ∶= ∣(Cx ∩RS) ∩ {z ∈ Cy ∩RS ∣ z ⋅ y < 0}∣ > 0.

We then can impose that

∣Ax ∩ (Cx ∩RS) ∩ {z ∈ Cy ∩RS ∣ z ⋅ y < 0}∣ > µ/2
∣Ay ∩ (Cx ∩RS) ∩ {z ∈ Cy ∩RS ∣ z ⋅ y < 0}∣ > µ/2.

Thus there exists z ∈ Ax ∩Ay, and one necessarily has

v(y) ≤ v(z) ≤ v(x).

Finally it remains to prove the statement as no conditions on the angle α(x, y) are imposed. If
α(x, y) ≥ π/8, we can build a �nite sequence z1, ..., zk, k ≤ 9, such that

z1 = x, zk = y, α(zi, zi+1) ≤ π/9 < π/8, ∣zi+1∣ ≥ ∣zi∣ + 4M ,

imposing ∣y∣ ≥ ∣x∣ + (9 × 4)M . QED

We are now ready to prove the following consequence.

Corollary 3.5.1. Let v respect the assumptions of the Theorem 3.5.1, and suppose in addition
that v is nonnegative, weakly superharmonic and continuous. Then

v(x) = (1 +O(∣x∣−1)) inf
∣x∣S

v, as ∣x∣ → ∞. (3.36)

Proof. By Theorem 3.5.1, we deduce that, as ∣x∣ > 1,

sup
(∣x∣+CM)S

v ≤ inf
∣x∣S

≤ sup
∣x∣S

v ≤ inf
(∣x∣−CM)S

v. (3.37)

On the other hand, as ∣y∣ ≥ R1, R1 > 1,

v(y) ≥ (R1

∣y∣ )
n−2

inf
R1S

v. (3.38)

As a matter of fact, consider for ε > 0

wε(y) ≡ v(y) + ε − (R1

∣y∣ )
n−2

inf
R1S

v:

it's clear that v ≥ infR1S v on R1S, and so that wε ≥ 0 on R1S. In addition, as S ≥ R1

εn−2 infR1S,

it also holds that wε ≥ 0 on SS, because v ≥ 0. Hence, being ∣y∣−(n−2) harmonic, and so having
that wε is weakly superharmonic and continuous, by the Maximum Principle 1.3.1 (applied to
−wε), we immediately deduce that wε ≥ 0 in R1 ≤ ∣y∣ ≤ S. Letting S →∞, one infers that wε ≥ 0
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in ∣y∣ ≥ R1, for any ε > 0, and the arbitrariness of ε permits to deduce that (3.38) holds true. In
particular, for R1 = ∣x∣ −CM , ∣y∣ = ∣x∣ +CM ,

inf
(∣x∣+CM)S

v ≥ (∣x∣ −CM
∣x∣ +CM )

n−2

inf
(∣x∣−CM)S

v,

and thus
inf

(∣x∣−CM)S
v ≤ (1 +O(∣x∣−1)) inf

(∣x∣+CM)S
v.

Thanks to the sequence of inequalities (3.37), we have that v ≤ inf(∣x∣−CM)S v, and so we may
conclude. QED

Property (3.36) is the so called asymptotic symmetry.

3.6 Applications of the Re�ection Theorem and the asymptotic

symmetry

We are now ready to study the applications of the theory developed up to now.

3.6.1 A �rst, general result

We begin demonstrating a general result holding for equations like −∆u = g(u) in B(0,1[∖{0}.

Theorem 3.6.1. Let u ∈ C2(B(0,1[∖{0}) ∩ C2,α(B(0,1] ∖B(0, r[), for some 0 < r < 1, u ≥ 0, be
a smooth solution to

−∆u = g(u) in B(0,1[∖{0}

with an isolated singularity at the origin. Assume that:

(I) g(0) = 0;

(II) g is nondecreasing;

(III) t−
n+2
n−2 g(t) is nonincreasing;

(IV) g(t) ≥ c tp for some p ≥ n
n−2 , c > 0.

Then

u(x) = (1 +O(∣x∣))m(∣x∣) as x→ 0,

where, as r > 0, m(r) ≡ ⨏S u(rz)dσ(z) = ⨏rS u(w)dσ(w) denotes the average of u on the sphere

of radius r.

Proof. As we did in the �rst section of this chapter, let's transform u by the Kelvin Transform

performed around a point z close to the origin: more speci�cally, for µ > 0, we pick z = µ−1en and
we indicate by vµ this transformation of u. Then the singularity of u at 0 is sent to the point
−µen, that is a singularity for vµ. The hypothesis (iv) ensures that g satis�es the two assumptions
of Lemma 1.2.3, and thus, since the computation performed at the end of the �rst section of this
chapter it follows that vµ weakly solves equation

−∆v = f(∣x∣, v) ≡ F (x),

in Rn ∖B(0,1 + 2µ−1], where f(∣x∣, v) = ∣x∣−(n+2) g(∣x∣n−2v(x)). We now show that, replacing 1
with 1 + 2µ−1, the �ve hypotheses of the Re�ection Theorem are respected:
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(i) it's enough to set R = µ + 1 and assign a suitable value to vµ at the singularity −µen, for
example

v(−µen) ∶= lim inf
x→−µen

v(x):

with such a choice, vµ turns out to be weakly superharmonic and lower semicontinuous,
and so v(−µen) > 0, because by assumption vµ is nonidentically zero;

(ii) holds because of Lemma 3.2.1;

(iii) hypotheses (II), (III) coincide exactly with assumptions (3.20) and (3.21) respectively: we
recall that these two assumptions were introduced in order that the map

F (x) = f(∣x∣, v(x)) = ∣x∣−(n+2) g(∣x∣n−2v(x))

satis�es F (x) ≤ F (xλ), for λ ≥ 0, xn > λ, provided that v(x) ≤ v(xλ), that's precisely what
is required in the assumption (iii) of the Re�ection Theorem;

(iv) choosing suitably δ0, C > 0 this assumptions follows: as matter of fact v ∈ C2,α(B(0,2[∖B(0,1]),
and C2,α(B(0,2] ∖B(0,1[) ↪ C1,1(B(0,2] ∖B(0,1[);

(v) vµ is weakly superharmonic and lower semicontinuous in ∣x∣ ≥ 1 + 2µ−1. Moreover the fact
that vµ = O(∣x∣2−n) for ∣x∣ big permits to infer that there exist p ≥ 1 and β < n, both
independet of µ, such that

∫
Rn∖B(0,1+2µ−1[

vpµ/∣x∣β

is �nite. Then assumptions (a) and (b) introduced at the beginning of the section 4.4
of the current chapter are ful�lled. Therefore Theorem 3.4.1 and the computations next
performed allow to infer that that assumption (v) of the Re�ection Theorem is satis�ed,
for any admissible direction τ .

Exploiting the notations of section 4.4, taken the value ε0 met in Theorem 3.5.1, the estimate
(3.23) ensures us that, picking an integer k0 > δ−1 log2(C c

∗
ε0

), the set of the nonadmissible direc-

tions has measure less than ε0. Furthermore we know that M = 2k0 is a good choice for the M
of the Re�ection Theorem.

For every µ > 0, let Aµ be the collection of the admissible directions of vµ, and, for k ≥ 1, j
integers, set

A∗ ∶= lim sup
k→∞

Ak = ⋂
k≥1

⋃
j≥k
Aj .

Let v be the Kelvin Transform of u with respect to the origin, and set A the collection of the
admissible directions for v: it's clear that

A ⊃ A∗.

In fact, let τ ∈ A∗: then, for any k ≥ 1, there exists jk ≥ k such that τ ∈ Ajk , namely such that

vjk(x) ≤ vjk(xλ) as x ⋅ τ > λ ≥M ,

and thus, letting k go to ∞ and exploiting the regularity of v, we �nd

v(x) ≤ v(xλ) as x ⋅ τ > λ ≥M .
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Therefore we have

∣A∣ ≥ ∣A∗∣ = ∫
S
χ(lim sup

k→∞
Ak)dσ =

= ∫
S

lim sup
k→∞

χ(Ak)dσ ≥ (Fatou's Lemma)

≥ lim sup
k→∞

∫
S
χ(Ak)dσ = lim sup

k→∞
∣Ak∣ ≥ ∣S∣ − ε0.

This estimate permits to apply Theorem 3.5.1 to v, and so to infer by Corollary 3.5.1 that

v(x) = (1 +O(∣x∣−1)) inf
∣x∣S

v, as ∣x∣ → ∞,

namely that as ∣y∣ → 0

u(y) = (1 +O(∣y∣)) inf
∣y∣S

u ≤ (1 +O(∣y∣))m(∣y∣),

that is precisely what we aimed to show. QED

3.6.2 Application to the Yamabe Equation

From now on, we concentrate our attention on the Yamabe Equation, fully exploiting that g(t) ≡
t(n+2)/(n−2), and thus proving a more speci�c, strong classi�cation result. To do so, we exploit the
classi�cation of the radial solutions performed in the �rst section and the general, less speci�c
result proved in the previous subsection

Theorem 3.6.2. Let u > 0 be a C2 solution to

−∆u = u
n+2
n−2 , in B(0,1[∖{0}, (3.39)

with a nonremovable, isolated singularity at the origin. Then there are an asymptotic constant

0 >D∞ ≥ − 2

n
(n − 2

2
)
n

and a radial solution φ ≡ φ(∣x∣) ∈ Φ+(D∞) such that

u(x) = (1 + o(1))φ(∣x∣),

as x→ 0.

Proof. We start showing that, if u solves (3.39), then

m(r) = O(r
2−n

2 ) (3.40)

m′(r) = O(r−
n
2 ), (3.41)

where we recall that m(r) = ⨏∂B(0,r[ u(z)dσz = ⨏∂B(0,1[ u(rw)dσw. Lemma 1.2.3 ensures that, if

0 < r < 1, u ∈ Ln+2
n−2 (B(0, r[), and so, for η smooth, we have

∫
B(0,r[

u∆η + ηu
n+2
n−2 dx = lim

ε→0+∫B(0,r[∖B(0,ε]
u∆η − η∆udx

= ∫
∂B(0,r[

uην − ηuν dσ − lim
ε→0+∫∂B(0,ε[

uην − ηuν dσ

= ∫
∂B(0,r[

uην − ηuν dσ.
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Choosing η ≡ r2 − ∣x∣2, we deduce that

∫
B(0,r[

(r2 − ∣x∣2)u
n+2
n−2 dx + 2r∫

∂B(0,r[
udσ = 2n∫

B(0,r[
udx, (3.42)

because ∆η = −2n, and on ∂B(0, r[ η is null, ην = −2x ⋅ (xr ) = −2r. We note that, for r > 0, the
following relation holds

−m′(r) = −⨏
∂B(0,1[

∇u(rw) ⋅w dσw

= −⨏
∂B(0,r[

∇u(z) ⋅ (z
r
)dσz

= −⨏
∂B(0,r[

uν dσ = 1

∣∂B(0,1[∣ rn−1 ∫B(0,r[
u
n+2
n−2 dx > 0,

and hence m decreases. Theorem 3.6.1 guarantees that

u(x) = (1 +O(∣x∣))m(∣x∣)

as x→ 0, and so, by (3.42), one deduces that

∫
B(0,r[

(r2−∣x∣2)u(x)
n+2
n−2 dx ≥ (for r > 0 small enough)

≥ ∫
B(0,r[

(r2 − ∣x∣2)1

2
m(∣x∣)

n+2
n−2 dx

≥ ∫
B(0,r/2[

3

8
r2m(∣x∣)

n+2
n−2 dx

≥ Crn+2m(r
2
)
n+2
n−2 ≥ Crn+2m(r)

n+2
n−2 ,

where the last two inequalities follow from m′ < 0. On the other hand we observe that, taking
r > 0 small enough,

∫
B(0,r[

(r2 − ∣x∣2)u(x)
n+2
n−2 dx < 2n∫

B(0,r[
udx ≤ 3n∫

r

0
m(t)tn−1 dt.

Therefore, joining these two estimates, we infer that, for r su�ciently small,

rn+2m(r)
n+2
n−2 < C1∫

r

0
m(t)tn−1 dt ≤ C1 r

4n−1
n+2 ∫

r

0
m(t)tn−1−4n−1

n+2 dt

≤ C1 r
4n−1
n+2 r

4
n+2 (∫

r

0
m(t)

n+2
n−2 tn−1)

n−2
n+2

= C1 r
4n
n+2 (∫

r

0
m(t)

n+2
n−2 tn−1 dt)

n−2
n+2

≤ C1 r
4n
n+2 (∫

R

0
m(t)

n+2
n−2 tn−1 dt)

n−2
n+2

,

for r ≤ R. Therefore we obtain

∫
R

0
rn−1m(r)

n+2
n−2 dr

≤ C1∫
R

0
r
n−6
n+2 dr × (∫

R

0
m(t)

n+2
n−2 tn−1 dt)

n−2
n+2

= C2R
2n
n+2 (∫

R

0
m(t)

n+2
n−2 tn−1 dt)

n−2
n+2

,
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equivalently

∫
R

0
rn−1m(r)

n+2
n−2 dr ≤ C3R

n−2
2 .

Thus we infer that Rnm(R)n+2
n−2 ≤ C3R

n−2
2 , namely

m(R) ≤ C4R
−n−2

2 ,

that is exactly (3.40). Estimate (3.41) can be obtained substituting (3.40) in the formula for
−m′(r) demostrated before. Indeed

∣m′(r)∣ = −m′(r) ≤ C5

rn−1 ∫B(0,r[
m(∣x∣)

n+2
n−2 dx

≤ C5

rn−1 ∫
r

0
m(t)

n+2
n−2 tn−1 dt

≤ C6

rn−1 ∫
r

0
t
n−2

2
−1 dt = C7

rn−1
r
n−2

2 = C7r
−n

2 .

Now consider the representation of u in spherical coordinates:

v(r, θ) ≡ u(rθ),

for 0 < r < 1, θ ∈ S. By the substitution ψ(t, θ) ≡ r
n−2

2 v(r, θ), t = − ln(r) 7, using (3.2), we
immediately deduce the validity of the following identity:

ψtt − (n − 2

2
)

2

ψ +∆Sψ + ψ
n+2
n−2 = 0, (3.43)

for t > 0, θ ∈ S. For t = − ln(r), set

β(t) ≡ ⨏
S
ψ dθ = r

n−2
2 ⨏

S
v(r, θ)dθ = r

n−2
2 m(r).

We observe that

ψ(t, θ) = e−
n−2

2
tv(e−t, θ)

= e−
n−2

2
tm(e−t)(1 +O(e−t))

= β(t)(1 +O(e−t)),

as t→∞, and also that

β′ + n − 2

2
β = −e−

n
2
tm′(e−t) = −r

n
2m′(r) ≥ 0.

Now estimate (3.40) applied to the de�nition of β ensures that β = O(1), as t→∞. Furthermore
the identity just deduced yields

β′ = O(1),
as t→∞. To go further, we have to prove the following estimates

∂

∂t
(ψ − β) = βO(e−t) (3.44)

∣∇θ(ψ − β)∣(= ∣∇θψ∣) = βO(e−t), (3.45)

as t →∞. In order to demonstrate (3.44), (3.45), we need two preliminary results. The �rst one
is a gradient estimate for the Poisson Equation that can be found in [5, p. 41].

7Note that this is exactly the Emden-Fowler substitution (3.4) introduced to study the radial solutions to the
Yamabe Equation.
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Theorem 3.6.3. Let Ω be an open, connected subset and u ∈ C2(Ω) be a solution to the Poisson

Equation −∆u = f in Ω. Denoted by

dx ∶= dist(x, ∂Ω),

for every x ∈ Ω, one has

sup
x∈Ω

dx∣Du(x)∣ ≤ CP (sup
Ω

∣u∣ + sup
x∈Ω

d2
x∣f(x)∣), (3.46)

for any x ∈ Ω, for a suitable constant CP ≡ CP (n).
The second one is a sophisticated Harnack-type Inequality taken from [11, p. 539].

Theorem 3.6.4. Given r > 0, let u be a positive, C2(B(0, r[∖{0}) solution to

−∆u = c(x)u, in B(0, r[∖{0},

where c = huα−1, for some 1 < α < (n + 2)/(n − 2). Suppose that h(x) is a nonnegative,

C1(B(0, r[∖{0}) function such that, around the origin,

c1∣x∣σ ≤ h(x) ≤ c2∣x∣σ

∣∇ ln(h)∣ ≤ c3/∣x∣,

for positive pure constants c1, c2, c3, and for an arbitrary real value σ. Then there exists ζ0 > 0
such that, for all 0 < ζ < ζ0, and for any 0 < ε ≤ r/2, the following Harnack's Inequality holds:

sup
ε≤∣x∣≤(1+ζ)ε

u(x) ≤ CH inf
ε≤∣x∣≤(1+ζ)ε

u(x),

where CH does not depend on ε, ζ, u and h.

Let's continue with the proof of the Classi�cation Theorem 3.6.2. Since Theorem 3.6.1 it
follows that

−∆(u −m) =m
n+2
n−2O(r)

in 1
2r < ∣x∣ < 2r. Inequality (3.46) says us that

∣∇(u −m)∣ ≤ C9(
supΩ ∣u −m∣

r
+ r sup

Ω
m

n+2
n−2O(r)) (3.47)

≤ C10(sup
Ω

(m + r2m
n+2
n−2 )) (3.48)

on ∂B(0, r[, where r is taken small enough, C10 ≡ C10(n). Moreover, we note that u solves

−∆u = u
n+2
n−2 = uβuα−1u = c(x)u,

and then the assumptions of Theorem 3.6.4 are satis�ed (it su�cies to set h = uβ , c = huα−1,
α + β = n+2

n−2 , 1 < α < n+2
n−2). Therefore, by (3.47) and the Harnack Inequality (applied in r ≤ ∣x∣ ≤

(1 + ζ)r), we infer

∣∇(u −m)∣ ≤ C11(m(r) + r2m(r)
4
n−2m(r))

≤ C12m(r)
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on ∂B(0, r[, where the last inequality follows from m = O(r 2−n
2 ), and C12 is independent of r, u

and m, up to a choice of a su�ciently, de�nitively small r > 0. In particular we have shown that

∣ ∂
∂r

(v −m)∣ ≤ C13m

∣∇θ(v −m)∣ ≤ C14 rm,

where we recall that v(r, θ) = u(rθ) is the spherical representation of u. From the fact that

∣ ∂
∂t

(ψ(t, θ) − β(t))∣ ≤ C15∣ψ(t, θ) − β(t)∣ + e−(
n−2

2
+1)t∣ ∂

∂r
(v −m)(e−t, θ)∣ = βO(e−t),

∣∇θ(ψ − β)∣ = e−(
n−2

2
+1)t∣∇θ(v −m)(e−t, θ)∣ ≤ C14e

−tβ = βO(e−t),

as t→∞, estimates (3.44), (3.45) follow.
Our aim is now to derive a energy estimate from identity (3.43), by multiplying by ψt and

integrating. We start observing that, if u(x) = φ(∣x∣) is radial, then ψ doesn't depend on θ and

ψ(t) = r n−2
2 φ(r), for t = − ln(r). The classi�cation of the radial solutions to the Yamabe Equation

operated at the beginning of the current chapter suggests us the following notion of energy for a
generic singular solution u:

D(t) ≡ (β′)2 − (n − 2

2
)

2

β + n − 2

2
β

2n
n−2 .

If ψ is radial, ψ = β and we know that the quantity D de�ned above is a prime integral. The
idea is now that, if ψ is not radial, then D is no longer a prime integral, but a weaker identity
holds: for t ≥ s,

D(t) =D(s) + (β2 + (β′)2)O(e−s) +O(e−t), (3.49)

as t, s → ∞. To prove so, it's su�cient to note that, multiplying identity (3.43) by 2ψt and
integrating, one has

∫
S
ψ2
t − (n − 2

2
)

2

ψ2 + n − 2

n
ψ

2n
n−2 − ∣∇θψ∣2 ∣

t

s

dθ = 0.

Exploiting (3.44), (3.45), we achieve

D(t) −D(s) = (β′)2 − (n − 2

2
)

2

β2 + n − 2

n
β

2n
n−2 ∣

t

s

= (β2 + (β′)2)O(e−τ)∣
t

s

,

that is precisely the energy estimate (3.49), up to the remark that β2(t)+ (β′(t))2 = O(1). Since
(3.49), it follows that, for k ≥ 1 integer,

D(k + 1) −D(k) = O(e−k).

Therefore the sequence {D(k)}k≥1 ful�lls the Cauchy Property and then converges to a limit
D∞. Substituting this value of the limit in (3.49), we infer that

D(s) =D∞ + (β2 + (β′)2)O(e−s),

namely that

(β′)2 = (n − 2

2
)

2

β2 − n − 2

n
β

2n
n−2 +D∞ + (β2 + (β′)2)O(e−t),



CHAPTER 3. THE SINGULAR YAMABE EQUATION 63

for t going to∞. Since the fact that (β2+(β′)2)O(e−t) shrinks to 0 as t→∞ and the nonnegativity
of β, it follows that D∞ needs tto respect the following, just met relation

0 ≥D∞ ≥ − 2

n
(n − 2

2
)
n

.

If D∞ < 0, considering the only radial solution φ(∣x∣) ∈ Φ+(D∞) corresponding to initial value
ψ(t0) = β(t0), and sgn(ψ) = sgn(β), we conclude that the statement holds for such a choice of
the radial solution. Instead, if D∞ = 0, it's clear that β needs to go to 0 like e−(n−2)t/2, and so that
u is nonsingular: this remark allows to deduce that D∞ cannot be 0 (because, by assumption, u
has a nonremovable singularity at the origin), and thus the proof is concluded. QED
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